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Abstract
Background: Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors of the head and neck in
the world. At present, the treatment methods include surgery, radiotherapy, and chemotherapy, but the 5-year survival rate is still not
ideal and the quality of life of the patients is low. Due to the relative lack of immunotherapy methods, this study aims to build a risk
prediction model of related immune genes, which can be used to effectively predict the prognosis of laryngeal cancer patients, and
provide targets for subsequent immunotherapy.

Methods:We collected the 111 cases of laryngeal squamous cell carcinoma and 12 matched normal samples in the The Cancer
Genome Atlas Database (TCGA) gene expression quantification database. The differentially expressed related immune genes were
screened by R software version 3.5.2. The COX regression model of immune related genes was constructed, and the sensitivity and
specificity of the model were evaluated. The risk value was calculated according to the model, and the risk curve was drawn to verify
the correlation between related immune genes, risk score, and clinical traits.

Results: We selected 8 immune-related genes that can predict the prognosis of LSCC in a COX regression model and plotted the
Kaplan–Meier survival curve. The 5-year survival rate of the high-risk group was 16.5% (95%CI: 0.059–0.459), and that of the low-risk
group was 72.9% (95% CI: 0.555–0.956). The area under the receiver operating characteristic (ROC) curve was used to confirm the
accuracy of themodel (AUG=0.887). After univariate andmultivariate regression analysis, the risk score can beused as an independent
risk factor for predicting prognosis. The risk score (P= .021) was positively correlated with the clinical Stage classification.

Conclusion:We screened out 8 immune genes related to prognosis: RBP1, TLR2, AQP9, BTC, EPO, STC2, ZAP70, and PLCG1
to construct risk value models, which can be used to speculate the prognosis of the disease and provide new targets for future
immunotherapy.

Abbreviations: HR= hazard ratio, LSCC= laryngeal squamous cell carcinoma, ROC= receiver operating characteristic, TCGA=
The Cancer Genome Atlas Database, TF = transcription factor.

Keywords:Cox regression model, laryngeal squamous cell carcinoma, prognostic-related immune genes introduction, risk score,
The Cancer Genome Atlas Database
1. Introduction
Laryngeal squamous cell carcinoma (LSCC) is the most
common cancer of the head and neck. The main risk factors
for laryngeal cancer include tobacco, human papillomavirus
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infection, laryngopharyngeal reflux, environmental and occu-
pational exposure, and alcohol.[1] Despite tremendous progress
in the treatment and research of the disease, the disease’s
survival rate and quality of life are still not optimistic.[2,3] With
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the development of tumor molecular genetics, many scholars
predict the prognosis of tumors using genetics.[4] Studies
have shown that the up-regulation and down-regulation of
the expression of immune-related genes in tumor cells may be
correlated with tumor prognosis. Identifying patients with
high risk scores enables more targeted clinical treatments.
The availability of large amounts of genomic data makes
statistical modeling a promising approach to predicting patient
prognosis.
This paper aims to find a differential immune gene model

related to prognosis to predict the survival rate of LSCC. The
interaction network between differential immune-genes and TF,
as well as the correlation between risk models and clinical
characteristics, are explored. Directions for follow-up research
are provided.
2. Materials and methods

2.1. Work flow

First, the differentially expressed immune genes were screened out
after sorting out the database. The COX regression model of
immune-related genes was constructed. Next, the survival
curve and the interaction network with transcription factors were
drawn, and finally, the risk value of the research samples was
evaluated and the correlation of clinical indicators was analyzed
(Fig. 1).

2.2. Download and organize the database

We downloaded and collected gene expression quantification
data and clinical data of LSCC from the TCGA database[5]

(http://portal.gdc.cancer.gov). We got the mRNA data set from
the GENECODE[6] (https://www.gencodegenes.org), perform
integration processing of transcriptome data and extract
corresponding clinically relevant information. Data sets of
immune related genes were obtained from the Immport[7]

(Https://www.immport.org) and TF data set from the Cistrome
database[8] (Https://cistrome.org).
2.3. Difference analysis of transcriptome genes and
immune-related genes

A Wilcox test was performed on the obtained database using R
software. Differentially expressed genes were then screened out.
The Pheatmap package in R software was used to draw
differential gene volcano maps and heatmaps. Among the
screened differentially expressed genes, the above method
was used to screen out differentially expressed immune-related
genes.
2.4. Screening of immune genes related to prognosis

COX regression analysis was performed on the differential
immune-related genes and clinical prognostic information to
screen out the immune genes related to prognosis. The forest map
is drawn using the R software’s survival package.

2.5. Transcription factors difference analysis

A total of 318 immune gene transcription factors were down-
loaded from Cistrome. The TF data set was analyzed via Wilcox
test using R software. The differentially expressed TF were
2

screened out among the different genes. The volcano map and
heat map of differential transcription factors were drawn.
2.6. Construction of regulatory networks of TF and
prognosis-related immune genes

The correlation between differentially expressed transcription
factors and prognosis-related immune genes was analyzed, and
their interaction regulatory network was drawn by Cytoscape
software.[9]
2.7. Construction of a prognostic-related immune gene
model

We selected the immune genes associated with prognosis
and calculated the patient’s risk value as

P
(ExpmRNA1-

n�coefmRNA1-n). “Exp” represents the expression of the gene,
and “coef” represents the correlation coefficient of the gene.
2.8. Drawing Kaplan–Meier survival curve and ROC curve

The survival curve stakes the high-risk group with the low-risk
group using the “survival” and “survminer” packages of the R
software, and the accuracy of the model is evaluated using the
ROC curve.

2.9. Drawing risk curve

The risk value curve shows the growth trend of the risk value,
and we draw a scatter plot with the increase of the patient’s risk
value as the x axis and the survival time as the y axis. The
expression of immune-related genes in the model is indicated by
a heatmap.
2.10. Independent prognosis analysis

An independent prognosis analysis using single and multi-factors
to determine whether risk score can be used as an independent
factor for predicting prognosis, including sex, age, stage, grade,
T, N stage, and risk score.

2.11. Clinical correlation analysis

The clinical data were transformed into binary variables to find
out the correlation between individual immune genes and risk
values involved in the construction of the model and the
corresponding clinical traits.
3. Results

3.1. Visualization of differential gene data

The obtained database contains 111 tumor tissues and 12 normal
tissues, and 5494 differentially expressed genes were screened
(P< .05, FC value ≥2, j logFC j>1). Of these, 4624 genes were
upregulated and 872 genes were down-regulated (Fig. 2A and B).
Among the screened differentially expressed genes, 432 differen-
tially expressed immune-related genes were intersected, includ-
ing 371 upregulated genes and 61 down-regulated genes (Fig. 2C
and D). Using the same method, 65 differentially expressed TF
were intersected among the screened differentially expressed
genes, including 10 upregulated TF and 55 down-regulated TF
(Fig. 2E and F). By COX regression analysis between differential
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Figure 1. Main workflow for the study.
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immune genes and clinical prognostic data (P< .05, FC≥2), 13
immune genes related to prognosis were screened out (P< .015).
Hazard ratio (HR)>1 is the prognostic risk factor, 0<HR<1 is
the prognostic protection factor, among them 5 protection
factors and 8 risk factors were used to draw the forest map
(Fig. 3A).

3.2. Interaction network of TF and prognosis-related
immune genes

The correlation between differential TF and 13 prognostic
immune genes was studied. All of the cor >0, indicating that the
TF and immune genes are all positively regulated. The interaction
network is shown in Fig. 3B
3

3.3. Prognosis related immune gene model

We selected 8 of 13 immune genes related to prognosis
(P< .015) for model construction (Table 1), among which risk
genes were RBP1, TLR2, AQP9, BTC, and STC2; protective
genes were EPO, ZAP70, PLCG1. We calculated the sample
risk value and drew the Kaplan–Meier survival curve (Fig. 4A).
Patients were grouped according to the median of the risk
value, with patients above the median classified as high-risk
and patients below the median classified as low-risk. The
survival rate of the low-risk group decreased (P< .001), and the
area under the ROC curve was AUG=0.889 (Fig. 4B), which
proved that the modified model had accurately evaluated the
prognosis.

http://www.md-journal.com


Figure 2. Volcano map and heatmap of differential genes (A, B). Differential immune genes (C, D) and differential TF (E, F): red represents upregulated genes, green
represents down-regulated genes. (Heatmap: The expression level of each differential gene in tissues). TF= transcription factor.
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Figure 3. (A) Forest map of prognosis-related immune genes: red represents prognostic risk genes, green represents prognostic protection genes. (B) Interaction
network of TF and prognosis-related immune genes: triangles represent TF, ellipse represents immune gene, red represents risk genes, green represents
protection genes. TF= transcription factor.

Table 1

Prognosis-related immune genes in the model.

ID Coef HR HR.95L HR.95H P value

RBP1 0.012 1.012 1.007 1.017 .000
TLR2 0.045 1.046 1.017 1.076 .002
AQP9 0.075 1.078 1.015 1.146 .014
BTC 0.580 1.787 1.245 2.563 .001
EPO –0.931 0.394 0.169 0.919 .031
STC2 0.038 1.039 1.005 1.074 .024
ZAP70 –0.228 0.796 0.574 1.102 .169
PLCG1 –0.256 0.774 0.661 0.906 .001

HR=hazard ratio.

Figure 4. (A) Kaplan–Meier survival curve: it indicates the relationship between risk grade and survival rate. (Red represents high risk, blue represents low risk). (B)
ROC curve: AUC=0.887. ROC= receiver operating characteristic.
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Figure 5. (A) Risk curve, (B) scatterplot of survival status, (C) differential expression of genes in high and low risk groups in the model.

Figure 6. (A) Univariate independent prognostic analysis. (B) Multivariate independent prognostic analysis. Gender: female=0, male=1.
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Figure 7. BTC (P= .037), STC2 (P= .044), and TLR2 (P= .045) showed the gene expression was positively correlated with T stage. AQP9 (P= .016) was negatively
correlated with grade. The risk score (P= .021) was positively correlated with Stage.

Sun et al. Medicine (2021) 100:2 www.md-journal.com
3.4. Risk curve

The patient’s risk value is sorted from low to high. The survival
status and survival time of the 2 groups of patients are
represented by scatter plots (Fig. 5B). The difference in
prognosis-related immune gene expression between the 2 groups
is represented by a heatmap (Fig. 5C).
7

3.5. Independent prognosis analysis

We performed univariate independent prognostic analysis of the
prognosis of LSCC by sex, age, stage, grade, T, N stage, and risk
scores (Fig. 6A and B): women have a better prognosis than men
(P= .011). High risk scores (P< .001) and lymph node metastasis
(P= .042) are independent risk factors for prognosis. After

http://www.md-journal.com
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multivariate regression analysis of all indicators, the risk score
(P= .004) and sex (P= .011) can still independently predict the
prognosis.

3.6. Clinical correlation analysis
The clinical data were transformed into binary variables to find
out the correlation between the individual immune genes in the
model and the clinical traits (Fig. 7). BTC (P= .037), STC2
(P= .044), and TLR2 (P= .045) showed the gene expression was
positively correlated with T stage. The gene expression in T III–IV
grade was higher than that in T I–II grade. AQP9 (P= .016) was
negatively correlated with grade and the expression of this gene in
Grade 3 and 4 was lower than that in Grade 1 and 2. The risk
score (P= .021) was positively correlated with Stage, the gene
expression level of Stage III and IV was higher than that of Stage I
and II.

4. Discussion
In the past 10 years, great progress has been made in the research
and treatment of LSCC.[1] However, treatment resistance will
increase the recurrence rate of LSCC, and patients undergoing
total laryngeal surgery have a worse quality of life.[4] This paper
screened out differentially expressed genes to provide insights for
subsequent research, including targets for immunotherapy. The
progression and metastasis of LSCC are related to the interaction
between tumor cells and surrounding cells, which is caused by the
change of adhesionmolecules between cells and cells.[10–12] There
is an inseparable connection between tumor cells and immune
cells for surveillance.[13] Some immune genes are differentially
expressed in normal tissues and tumor tissues, and some are
correlated with prognosis. Therefore, we screened these
differentially expressed immune genes, and then we can carry
out risk assessment for patients with LSCC.
Our analysis identified 8 prognostic-related immune genes to

construct a risk prediction model. Among them, TLR2 was once
considered to be amolecule that initiates the activation of NLRP3
inflammatory bodies and is considered to be related to asthma.
TLR2 deficiency can effectively inhibit airway inflammation
and reduce the production of related immunoglobulin (Ig E) and
inflammatory cells.[14,15] AQP9 is upregulated in a variety of
cancer tissues, and some scholars conducted in vitro cell
experiments on prostate cancer, knocking out AQP9 gene and
found to accelerate the apoptosis of androgen-independent
prostate cancer cells.[16,17] Some scholars have found that silent
HOTAIR may down-regulate STC2 by competitively binding to
miR-206, thereby inhibiting the biological function of head and
neck squamous cell carcinoma.[18] Inhibition of STC2 is also
thought to hinder the proliferation, invasion, and metastasis of
glioblastoma cells.[19] EPO is considered to be related to tumor
proliferation, metastasis, and drug resistance.[20] There are EPO
receptors in most tumor cells, but there are studies saying that
there is no specific reason to believe that EPO has a role in tumor
development, and its control of tumor cell proliferation is very
gentle.[21] In our study, EPO as a protective factor of LSCC its
role still needs to be proved by follow-up experiments. RBP1 is
considered to be related to bladder cancer, tongue cancer, breast
cancer, and other cancers. It is reported that RBP1 affects retinoic
acid metabolism and leads to cell differentiation and tumor
progression by reducing retinol transport and preventing retinol
ester formation and nuclear retinoic acid receptor (RARs)
activity.[22] BTC is one of the least-known ligands among
endogenous EGFR ligands. BTC promotes wound healing better
by promoting cell migration, but it reduces receptor affinity and
8

attenuates the induction of EGFR phosphorylation, which is
thought to be related to cancer progression.[23] Some genes in our
model have been discovered and studied, but some genes still need
follow-up exploration and cell experiment support.
Research limitations: there is only one patient with distant

metastasis in this sample, and the extreme value will cause
inaccurate research results, so the risk score is not precise for
those patients with distant metastasis. The subsequent expansion
of the sample size will enable the risk model to more widely
predict the prognosis of various laryngeal cancer patients.
In summary, by mining the database, we constructed a

differential immune gene model related to prognosis and
estimated the survival rate of patients with LSCC. In the future,
we hope to verify and improve our results through clinical in vitro
or in vivo experiments.
5. Conclusions

In our study, the immune gene model related to prognosis
effectively predicts the prognosis of patients with LSCC. The
interaction network with transcription factor (TF) clearly
expresses its associated pathway, providing a direction for
follow-up molecular research and laying a molecular foundation
for immunotherapy.
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