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Abstract: Drug use disorders caused by illicit drug use are significant contributors to the global
burden of disease, and it is vital to conduct early detection of people with drug use disorders
(PDUD). However, the primary care clinics and emergency departments lack simple and effective
tools for screening PDUD. This study proposes a novel method to detect PDUD using facial images.
Various experiments are designed to obtain the convolutional neural network (CNN) model by
transfer learning based on a large-scale dataset (9870 images from PDUD and 19,567 images from
GP (the general population)). Our results show that the model achieved 84.68%, 87.93%, and 83.01%
in accuracy, sensitivity, and specificity in the dataset, respectively. To verify its effectiveness, the
model is evaluated on external datasets based on real scenarios, and we found it still achieved high
performance (accuracy > 83.69%, specificity > 90.10%, sensitivity > 80.00%). Our results also show
differences between PDUD and GP in different facial areas. Compared with GP, the facial features
of PDUD were mainly concentrated in the left cheek, right cheek, and nose areas (p < 0.001), which
also reveals the potential relationship between mechanisms of drugs action and changes in facial
tissues. This is the first study to apply the CNN model to screen PDUD in clinical practice and is also
the first attempt to quantitatively analyze the facial features of PDUD. This model could be quickly
integrated into the existing clinical workflow and medical care to provide capabilities.

Keywords: drug use disorders; machine learning; clinical screening; feature recognition; deep
learning; image visualization

1. Introduction

A drug use disorder, including drug abuse and drug dependence, is the persistent use
of drugs despite substantial mental, physical, or behavioral harm. These disorders lead
to adverse consequences, more commonly caused by illicit drugs (including stimulants,
depressants, and hallucinogens), physiological withdrawal symptoms, and the inability
to reduce or stop consuming drugs [1]. Drug use disorders caused by illicit drug use
are significant contributors to the global burden of disease, and directly led to 20 million
disability-adjusted life-years (DALYs) in 2010—accounting for 0.8% of global all-cause
DALYs [2]. The Global Burden of Disease Study showed that 35 million suffered from drug
use disorders and required treatment services, and 750,000 people died as a result of illicit
drug use in 2017 [3]. Therefore, it is vital to recognize the early signs of drug use disorders,
and provide early intervention before addiction takes hold, which is essential to ensure the
most robust chances of successful recovery.

With the increase in patients using illicit drugs, primary care clinics and emergency
departments (EDs) are facing challenges. Less than 20% of primary care physicians claimed
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to have sufficient expertise to identify illegal drug use and provide treatment suggestions
for patients with drug use disorders [4]. ED physicians usually make diagnosis and
treatment decisions based on the patient’s self-reported substance use. However, studies
have shown that patients tend to deny or underreport illicit drug use [5]. Routine illicit
drug testing methods were adopted by clinicians to assess patients’ addictions and perform
further treatment [6]. However, within a short time frame, these tools were easily tampered
with, or results were faked [7]. In busy primary care practices, the high time cost of
screening prevented it from being integrated into the clinical workflow [8]. Due to the
disadvantages of traditional illicit drug testing, it is necessary to try new detection methods.

People with drug use disorders (PDUD) can be recognized and diagnosed by physi-
cians based on the presence of multiple physical, psychological, emotional, behavioral
symptoms and signs in clinical practice. Among them, physical signs could be an important
and feasible target for detecting PDUD in clinical screening. Related research indicated
that people with severe drug use disorders might have apparent physical signs, especially
facial features, such as flush cheeks or redness around the mouth and nose, facial acne,
and sudden weight loss, which could be easily detected [9]. However, most PDUD lack
these strong indicators, and in early clinical screening, they are more likely to be ignored.
Therefore, for better practice in clinical screening, facial feature detection technology for
PDUD using convolutional neural networks (CNN) is meaningful. CNN has an advantage
over other machine learning algorithms in feature learning and has made breakthroughs
in computer vision. It can automatically extract features based on an end-to-end model
without manually transforming features. The aim of this study was to detect and classify
facial images of PDUD and the general population (GP) by CNN to assist clinical screening.

Related Works

Although some research has been completed on the detection of PDUD using deep
learning, the relative research on drug use has provided new ideas. Snorting illicit drugs
could cause permanent damage to a person’s nose [10]. Some illegal drugs, such as cocaine,
act as powerful stimulants that suppress appetite and lead to undernourishment for a long
period of time [11]. Rapid weight loss could cause the body to begin consuming muscle tis-
sue and facial fat, accelerating biological aging, and leading to face distortion [12,13]. Thus,
abnormalities in some/whole face areas might also be indicators of PDUD. A previous
study has pointed out that a significant increase in facial asymmetry in methamphetamine
abusers [14].

Deep learning has been used actively in medical imaging, such as disease detection,
medical image segmentation. As traditional methods reach their performance limits on
images, CNN have started to dominate because of their good results on varying image
classification tasks [15]. Shankar [16] proposed a deep learning algorithm based on the
assessment of color fundus photographs to predict diabetic retinopathy (DR) progression
in patients, and the clinical trial showed its potential in early identification of patients
at the highest risk of DR, allowing timely referral to retina specialists and initiation of
treatment. William [17] trained a CNN model to improve breast cancer detection on
screening mammography, and it achieved an area under the curve (AUC) of 0.927 in the
training dataset. The model could accurately locate the clinically significant lesions and
base predictions on the corresponding portions of the mammograms. It was also effective in
reducing false positives and false negatives in clinical screening. In the end-to-end training
method, CNN models can directly convert input data into an output prediction without
constructing complicated hand-craft features, and the parameters of the intermediate layers
are automatically learned, and feature extraction is done during the training process. In this
paper, a large-scale image dataset was prepared, and a CNN model with higher accuracy
for screening patients with drug use disorders was proposed, making it promising for
clinical applications.
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2. Materials and Methods
2.1. Study Design and Procedure

Our study consisted of three main processes, as shown in Figure 1. First, 2416 images
and 256 videos of 71 PDUD, and 103 videos of 103 GP were collected. PDUD were collected
from a mobile health (mHealth) app (detailed information of the app can be found in
Appendix A). The time range of the data in the mHealth app was from 30 October 2017 to
31 January 2020. The videos of GP were collected from the Internet. Video data captured
a frame every 3 s and was saved as an image. Second, the images of PDUD (10,447) and
the GP (21,666) in the dataset were preprocessed to obtain a clear facial image, and invalid
or blurred ones would be removed. Third, to eliminate external distracting information,
such as the background, clothes, or accessories, face cropping was performed on them to
remove the images of face occlusion. To facilitate the batch processing of the CNN model,
all images were resized to 224 × 224 pixels. After the above preprocessing, the images of
PDUD (9870) and the GP (19,567) were merged (Figure 2). Based on the 70/30 principle,
these images were shuffled and randomly divided these images into a training dataset
and a test dataset. The CNN model was trained in the training dataset and calculated the
accuracy, sensitivity, and specificity in the test dataset (Appendix B Figure A1).
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Before considering using the model for clinical prediction, it is essential that its perfor-
mance be empirically evaluated in datasets that were not used to develop the model [18].
Therefore, external validation datasets were prepared to evaluate the trained model. An-
other nine videos of nine PDUD and 50,000 images of 50,000 GP were collected, among
which the PDUD data were provided by the local administrative department of Jinan City,
Shandong Province, China, and the GP data were collected from the public database [19].
The videos of PDUD also underwent a similar video processing flow. After the above video
processing, the images of PDUD and GP were 1925 and 50,000, respectively. Those images
were filtered out, which were unclear or blurred images, and when preprocessing was
complete, there were 1677 images of PDUD and 50,000 images of GP, respectively. The
external validation datasets included validation 1 dataset and validation 2 to validation
7 datasets. For the validation 1 dataset, the data distribution was consistent with the
training/test dataset, which was used to evaluate the performance of the trained model
in the face of new data. In addition, considering the prevalence of drug use disorders
in the clinic, the number of images in the validation 2 dataset was calculated as the re-
quired minimum sample number based on the prevalence in China (1.80%, power = 0.90,
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α = 0.05) [20]. Moreover, to further evaluate the performance of our trained model under
the real-world scenario, they expanded the 1.5, 2, 2.5, 3, and 5 times based on the sample’s
number in the validation 2 dataset, and obtained the validation 3–7 datasets, respectively
(Figure 3). With reference to the number of images required in each validation dataset,
they were randomly selected from these images (51,677) of PDUD and GP. Finally, the
performance of the trained model was evaluated on these seven validation datasets. The
above preprocessing of images was completed by the Dlib library, and the sample size was
calculated by PASS version 11.0 [21–24].
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2.2. CNN Construction and Training

CNN models were trained in the training dataset and tested in the test dataset to
extract valid facial information from a large sample of images. Since the labels of the
dataset had binary labels, the task was designed as a binary classification.

To find the appropriate model architecture, we analyzed the mainstream CNN models
with transfer learning: Vgg-19, Inception, and Resnet-18 [25–27]. Then, the attention
technique and the pre-trained model were introduced for training to improve the accuracy
of the CNN model. The attention technique was used to make our CNN learn and focus
more on the important information of images [28]. A pre-trained model was a saved
network that was previously trained on a large dataset, typically on a large image dataset
similar to the training target [29]. Therefore, a pre-trained Resnet-18 model in MS-Celeb-
1M was chosen, which was a database for large-scale face recognition [30]. In addition,
we tried different freezing layers configurations to compare the performance of models
during transfer learning. The configurations include: (1) Training a CNN from scratch;
(2) freezing all the layers but training the last fully connected layer; and (3) freezing all
the layers but training the last five ones. Next, the training of the CNN model involved
multiple hyperparameters, and the performance of the CNN models on the test dataset
could be improved by adjusting different parameters. To obtain better parameters, different
experiences were designed to adjust various parameters, while avoiding over-fitting and
under-fitting problems on the dataset (Table 1). The adjusted strategy included: (1) Different
learning rates (LR); (2) whether to use batch normalization (BN); (3) whether to use a pre-
trained model; (4) whether to initialize the weights in the layers of the models. Moreover,
the optimization algorithms stochastic gradient descent (SGD) and adaptive moment
estimation (Adam) were applied to select better training algorithms, respectively [31]
(Detailed training information can be found in Appendices B and C).

Table 1. Experiments settings of CNN models with different parameters adjusted strategy.

Experiment Backbone Learning Rate Batch
Normalization Pre-trained Weight Initialization

Exp a-1 Vgg-19 0.1 # # #
Exp a-2 Vgg-19 0.01 # # #
Exp a-3 Vgg-19 0.01 • # #
Exp a-4 Resnet-18 0.1 • # #
Exp a-5 Resnet-18 0.01 • # #
Exp a-6 Resnet-18 0.1 • # •
Exp a-7 Inception 0.01 • # #
Exp a-8 Inception 0.1 • # #
Exp a-9 Resnet-18 + Attention 0.1 • # #

Exp a-10 * Resnet-18 0.1 • • #
a—experiment, •—with parameter, #—without parameter, *—best experiment.

When the loss of the models on the training dataset no longer decreased, the training
ended. By comparing the accuracy of models with different parameters on the test dataset,
the model with the best accuracy was chosen as the final CNN model. The sensitivity and
specificity of the test dataset were calculated to evaluate the model comprehensively. In the
external validation datasets, the best-performance model was used to calculate the accuracy,
sensitivity, and specificity of the seven external validation datasets. The entire code of
image analysis was done with open-source Python 3.6, and the construction of the CNN
networks was implemented based on the PyTorch 1.3 [32] (Appendix B Algorithm A1). All
networks were trained on an NVIDIA GeForce GTX 2080Ti.

2.3. Quantitative Analysis of Facial Features and Visualization

The interpretability of the CNN model is useful to explain why it predicts what
it predicts. The feature map referred to the result of output captured by the filter on
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the output of the previous layer of the network. The gradient weighted class activation
mapping (Grad-CAM) technique was applied to visualize the high-dimension information
of the CNN model [33]. Then we quantitatively analyzed whether there were significant
differences in features between PDUD and the GP in each facial area. The analysis process
that automatically counted the number of facial features in different facial areas in the input
images was constructed. The complete analysis process was divided into the following
six steps (Figure 4). First, a facial mark detector was applied to produce 68 coordinates
that were mapped to the structure of the face, and then the entire face was divided into
six different areas: The left and right eyes, the nose, the left and right cheeks, and the
mouth (Figure 4B and Appendix B Figure A2). The image with heatmap as the input
data was converted into a binary image. In the binary image, the heatmap area tended
to be white, and the other positions tended to be the opposite black. (Figure 4C). In the
fourth step, the Gaussian Blur operation was performed on the binary images with a
Gaussian kernel size of 3 × 3, and then the threshold operation was performed on the
binary images. Finally, the contours in the binary images were marked, which were the
facial features (Figure 4D). The contours those length or width were less than 10 pixels
would be discarded because they were too small to be valid facial features. In the fifth step,
the number of times each facial feature appeared in the six facial areas was counted, and the
proportion of different areas were calculated (Figure 4E). The sixth step shows the result of
the demonstration (Figure 4F). The above steps were carried out by OpenCV-Python [34].
Finally, the characteristics of PDUD and the GP in different facial areas were compared by
the chi-square test using SPSS version 22.0 (IBM Corporation, Armonk, NY, USA).Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 19 
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3. Results
3.1. CNN Model Training and Performance

After excluding 2676 images because of the lack of clear or complete facial images, the
training dataset consisted of 6871 PDUD images and 13,734 GP images, and the test dataset
consisted of 2999 PDUD images and 5833 images of the GP (Figure 2).

For the three models, the Resnet-18 achieved a better result, and it was only trained in
the last five convolutional layers (Table 2). Compared with Vgg-19 and Inception, there was
an increase of 2–23 percentage points in Resnet-18. Therefore, Resnet-18 was the suitable
architecture in this study. In addition, the results showed that both attention technique and
pre-trained model would help Resnet-18 to achieve better performance, with an increase
of about 4 and 10 percentage points, respectively (Appendix B Table A1). Therefore, the
pre-trained model had more advantages for transfer learning. Regarding the different
optimization algorithms, our results show that SGD was better than Adam in improving
the model scores (Appendix B Table A2).

Table 2. Results of CNN models with freezing layers on the test dataset.

CNN Model From Scratch (%) Only Fully
Connected (%)

The Last Five
Convolutional Layers (%)

VGG-19 51.03 58.53 51.02
Inception 52.13 53.84 59.90
Resnet-18 60.43 60.97 74.63

Then, in the 10 experiments which aimed to adjust the parameters of the CNN model
to improve the accuracy of the test dataset, the best accuracy of each experiment was
51.03%, 51.25%, 61.23%, 79.72%, 81.64%, 60.43%, 79.13%, 50.55%, 78.88%, and 84.68%
(Table 1, Appendix B Table A1). Finally, the Resnet-18 model with the best accuracy of
84.68% was selected, and the parameters included the learning rate of 0.1, using batch
normalization technology, and using the pre-trained model in the MS-Celeb-1M dataset
(Figure 5). Moreover, regarding the test dataset, the sensitivity and specificity of the model
were 87.93% and 83.01%, respectively (Table 3 and Appendix B Figure A1).

Table 3. Results of CNN model on test dataset and external validation datasets.

Dataset TP a, n (%) FN b, n (%) FP c, n (%) TN d, n (%) ACC e (%) SEN f (%) SPE g (%)

Test dataset 2637 (29.86) 362 (4.10) 991 (11.22) 4842 (54.82) 84.68 87.93 83.01
Validation 1 dataset 991 (27.53) 209 (5.81) 378 (10.50) 2022 (56.17) 83.69 82.58 84.25
Validation 2 dataset 11 (0.15) 2 (0.02) 749 (10.37) 6460 (89.45) 89.60 84.62 89.61
Validation 3 dataset 16 (0.15) 4 (0.04) 1136 (10.49) 9678 (89.33) 89.48 80.00 89.50
Validation 4 dataset 22 (0.15) 4 (0.03) 1456 (10.08) 12,962 (89.74) 89.89 84.62 89.90
Validation 5 dataset 27 (0.15) 5 (0.02) 1805 (10.00) 16,218 (89.82) 89.98 81.82 89.99
Validation 6 dataset 32 (0.15) 7 (0.03) 2156 (10.00) 19,471 (89.87) 90.02 82.05 90.03
Validation 7 dataset 39 (0.10) 6 (0.02) 3567 (9.88) 32,478 (90.00) 90.10 86.67 90.10

a TP—true positive, b FN—false negative, c FP—false positive, d TN—true negative, e ACC—accuracy, f SEN—sensitivity, g SPE—specificity.
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(Vgg-19, learning rate 0.01, without batch normalization, without pre-trained, without weight initialization). Exp-3 was
experiment-3 (Vgg-19, learning rate 0.01, with batch normalization, without pre-trained, without weight initialization).
Exp-4 was experiment-4 (Resnet-18, learning rate 0.1, with batch normalization, without pre-trained, without weight
initialization). Exp-5 was experiment-5 (Resnet-18, learning rate 0.01, with batch normalization, without pre-trained,
without weight initialization). Exp-6 was experiment-6 (Resnet-18, learning rate 0.1, with batch normalization, without
pre-trained, with weight initialization). Exp-7 was experiment-7 (Inception, learning rate 0.01, with batch normalization,
without pre-trained, without weight initialization). Exp-8 was experiment-8 (Inception, learning rate 0.1, with batch
normalization, without pre-trained, without weight initialization). Exp9 was experiment-9 (Resnet-18 with attention,
learning rate 0.1, with batch normalization, without pre-trained, without weight initialization). Exp-10 was experiment-10
(Resnet-18, learning rate 0.1, with batch normalization, with pre-trained, without weight initialization).

According to the sensitivity and specificity of the test dataset, the minimum number
of samples was 13 images of PDUD and 7209 images of GP. Then we selected the corre-
sponding amount of data and prepared seven external validation datasets (Figure 3). The
performance of the model in seven groups external validation datasets was: The accuracy
was higher than 83.69%, the highest was 90.10%, the sensitivity was higher than 80.00%,
the highest was 86.67%, and the specificity was higher than 84.25%, the highest was 90.10%
(Table 3, Appendix B Figures A1 and A4).

3.2. Typical Facial Features of PDUD and Visualization

In the activation heat map on the images, colors highlighted these apparent facial
features extracted by the CNN model. In the examples of visualized images of PDUD, rows
A, B, and C, respectively, represent the output features in the cheeks, nose, and mouth
areas (Appendix B Figure A4). The concentration of facial features recognized by the CNN
model was different between PDUD and GP. The proportions of the GP in the six facial
feature areas were similar (35.92% in left-eye, 43.31% in right-eye, 40.97% in mouth, 29.02%
in the nose, 34.36% in left-cheek, 35.47% of right-cheek). However, the recognizable facial
features of drug users were more distinctive and mainly concentrated in the nose (42.98%)
areas, left cheek (44.91%), and right cheek (44.85%), and these proportions were much
higher than that of the GP (p < 0.001) (Table 4).
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Table 4. Comparison of facial features in people with drug use disorders and the general population.

Facial Area
People with Drug Use Disorders General Population

Number Proportion (%) Number Proportion (%)

Left-eye 661 22.04 * 2095 35.92
Right-eye 786 26.21 * 2526 43.31

Mouth 936 31.21 * 2390 40.97
Nose 1289 42.98 ** 1693 29.02

Left-cheek 1347 44.91 ** 2004 34.36
Right-cheek 1345 44.85 ** 2069 35.47

Note. * refers to the difference between the people with drug use disorders and the general population was
significant (p < 0.001), and there is a higher proportion of the general population; ** refers to the difference
between the people with drug use disorders and the general population was significant (p < 0.001), and there is a
higher proportion of the people with drug use disorders.

4. Discussions

This study developed and validated an image-based CNN model for screening PDUD.
As the most popular CNN architecture in computer vision, the Resnet network showed
higher performance with the simple, but effective residual block. Freezing the last five
layers also benefited transfer learning and reduced computation time. In addition, the atten-
tion technique and pre-trained model in transfer learning were introduced in experiments.
Overall, the pre-trained model contributed more to the final scores than the attention
module. Considering that the attention mechanism module still needed iterative training
to extract the related feature information, but the pre-trained model already contained
rich facial information, which also enabled the model to quickly extract facial feature cues
of PDUD. Therefore, the Resnet-18 with a pre-trained model was selected as the transfer
learning scheme. Based on this, the model achieved a high accuracy of 84.68% on the test
dataset by fine-tuning parameters.

The external validation datasets were inspired by the authors of [37], and thus, based
on real scenarios. These scenarios were built to evaluate the performance of the model,
and the prevalence of PDUD in them was consistent with that in the real scenario. The
results showed that our CNN model still maintained a better score, which meant that this
model was promising in practical clinical screening. The rapid screening efficiency, simple
operation process, and low medical cost enable our model to be quickly integrated into the
existing clinical workflow and medical care. The related study found that most primary
care physicians were not yet ready to prepare for drug abuse [38]. Our method can be
applied to primary care clinics to provide screening services for patients, especially when
patients first visit the clinic. The screening can be done prior to the medical encounter or in
the waiting room. In addition, our model can also be flexibly deployed on mobile apps.
The screening can be done through the patient portal while the patient is at home, and the
results can be integrated into the electronic health record to assist primary care physicians
in providing appropriate preventive care. This not only alleviates the discomfort of patients
during face-to-face screening, but also protects individual privacy. This electronic screening
was also supported by patients [8]. On the other hand, our model can be embedded in
the admission system of ED to provide the capability to detect drug use disorders quickly.
In the routine emergency treatment process, the newly acquired screening capability can
help doctors know the patient’s drug use condition and determine further intervention or
referral to drug use treatment.

The visualization of the feature maps of our CNN model showed that drug use
affected the face of the patients, which was consistent with previous case report studies [39].
The statistical results showed that the significance of PDUD in the nose and cheek areas
revealed the potential relationship between drug use patterns and mechanisms of action
of drugs and changes in facial tissues, which is the first quantitative analysis of facial
features in the related studies of PDUD. On the one hand, the characteristics of the nose
area suggested that this may be related to specific drug use patterns. Snorting, sniffing
(intranasal delivery), or smoking drugs, is a drug use pattern often chosen by drug users
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to avoid injection use. Because the mucosa inside the nose is easily accessible, the drugs
are quickly absorbed in the form of powder, liquid, or aerosol, which can irritate or infect
the nasal tissue [40]. Frequent snorting, sniffing, or smoking illicit drugs will cause a lack
of oxygen and nutrients in the nasal passages. The death of nasal tissue cells can cause
damage to the nose of drug users, resulting in changes in the facial area [41]. Therefore,
our model captures this local feature. On the other hand, the facial features of PDUD in the
cheek areas were directly related to the rapid loss of facial fat caused by illicit drug use,
which is consistent with previous research [11,42]. The inhibitory effect of drugs on human
appetite can lead to malnutrition, and the distribution of superficial fat on the face is mainly
on the medial cheek fat and middle cheek fat [9]. Therefore, this feature of the change in
facial fat distribution caused by drug use was also extracted and recognized by our model.
The discovery of these facial features provides ideas for basic medical research, including
mechanisms of drug action, facial anatomy characteristics, and physiology mechanism of
PDUD.

There are several limitations to this approach. Limited by our research data, our
study did not meticulously categorize PDUD in terms of the two attributes of illicit drug
type and the time of suffering from drug use disorders. Moreover, the image information
collected through the mHealth app would be affected by the hardware of mobile devices.
The stability of the mHealth app will be optimized in further study. Nevertheless, our work
is highly innovative in related fields with high feasibility and accessibility, especially in
detecting and analyzing facial features in PDUD.

5. Conclusions

Drug use disorders continue to attract attention—however, there is a lack of simple
and efficient tools in clinical screening, especially in primary care clinics. This paper
is, to the best of our knowledge, the first study to apply the CNN model using transfer
learning to screen PDUD by using facial images. Large-scale datasets were prepared,
and various experiments were designs to optimize this model. The performance of this
model was evaluated in real scenarios, and the results maintained high accuracy, sensitivity,
and specificity. Therefore, this study is promising for clinical practice, which would help
clinicians find potential PDUD and provide timely intervention and target treatment. This
is also the first study to quantitatively analyze the facial features of PDUD. This contributes
to the exploration of facial anatomy characteristics and physiological mechanisms of PDUD.
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Abbreviations

PDUD people with drug use disorders
GP the general population
CNN convolutional neural networks
DALYs disability-adjusted life-years
EDs emergency departments
DR diabetic retinopathy
AUC area under the curve
mHealth mobile health
LR learning rates
BN batch normalization
SGD stochastic gradient descent
Adam adaptive moment estimation
Grad-CAM gradient weighted class activation mapping

Appendix A.

Appendix A.1. The Detailed Information of the App

The app was developed for PDUD and professional social workers of community drug
treatment agencies by our team. The app’s registered users were PDUD who were from
Qingyang District, Chengdu City, Sichuan Province, China. The social workers recruited
PDUD who met the following criteria: (1) Currently undergoing community detoxification
or community rehabilitation treatment; (2) had no severe physical disabilities or mental
diseases; (3) had no difficulty in using smartphones; (4) willing to use the functions of our
mHelath app and complete the informed consent document. During the study period, they
voluntarily used this app and regularly uploaded their photos and videos data to record
their daily lives, and these data could assist social workers in better assess the health status
of PDUD. To facilitate social workers to better assess the status of PDUD, PDUD were
encouraged to upload the images without makeup. This app was only used to collect data,
and the CNN model did not run on the app in this study.

Appendix B.

Appendix B.1. Model Architecture Analysis and Selection

The Vgg is a classical CNN architecture that utilizes small 3 × 3 filters to replace
large ones. This helps it to decrease the number of parameters while keeping perfor-
mance. The Vgg-19 consists of 16 convolutional layers with three fully connected layers
and the same five pooling layers. The Inception replaced the 5 × 5 convolution with
two 3 × 3 convolutions to decrease computational time and increase speed. The Resnet
provided skip connections to solve the problem of the vanishing/exploding gradient. The
Resnet group 2–3 convolutional layers as a single block called Resnet block and skip con-
nection skipped training from a few Resnet blocks and connect directly to the output. Each
Resnet block is two layers in the Resnet-18, and there are four groups Resnet blocks in the
Resnet-18. In the study, the three architectures were be used as the backbone in transfer
learning. The mini-batch size was set to 32, and used the mini-batch gradient descent
method to calculate model error and update the model’s parameters. Due to the imbalance
of samples in the training dataset and test dataset, the resampling technique was used
to rebalance the class distributions of images in the two categories to avoid the model
over-fitting (Figure A5) [43].

Appendix B.2. The Adjusted Strategy of Model Training

Because the CNN models used stochastic gradient descent for optimization algorithm
training, the LR was an important parameter that controls how much to change the model
in response to the estimated error each time the weights are updated. LR that are too small
may cause a long training process and become stuck, whereas a value too large may result
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in skipping the ideal minimum or an unstable training process (Figure A6). We chose 0.10
and 0.01 as the initial value for the LR and compared the training speed and accuracy on the
dataset. Moreover, during the model training process, the parameter LR was dynamically
adjusted. The LR decayed with a multiplicative factor of 0.10 was applied after every ten
epochs. Therefore, the model’s parameters were updated with a larger learning rate in the
early stage of training, and a lower learning rate in the later stage can help converge the
optimization process. BN was designed to automatically standardize the inputs to a layer
in a deep learning neural network for each mini-batch. BN had the effect of stabilizing
the learning process and accelerating the model’s training process, and it can improve the
performance of the CNN model. The accuracy of the three models with/without BN on
the dataset was compared. The aim of weight initialization was to prevent layer activation
outputs from exploding or vanishing during a forward pass through a deep neural network.
At the beginning of training the model, the weights of each layer in the network were
initialized with random numbers, which caused the loss gradient to be too large or too
small during the training process, which meant that the accuracy of the model was difficult
to keep improving as the training time increases. The Kaiming Initialization was chosen as
the model initialization method. Compared with the random initialization weight in the
layer, the Kaiming Initialization method ensured that the loss of the model continues to
decrease during the training process. Finally, the cross-entropy function was configured as
the loss function for models.

Appendix B.3. The Optimization Algorithms Analysis

In the training process, the Adam and SGD (with momentum 0.90) algorithms were
chosen as the optimizer to reduce the loss and accelerate the convergence speed of three
CNN models. The accuracy of models with different optimizers on the test dataset was
also compared.

Appendix B.4. The Data Augmentation of Images

During the training process, three data augmentation techniques were applied to the
images to improve model robustness and avoid over-fitting the model, which included
image color jitter, image flipping, and image standardization. The brightness, contrast, and
saturation of the images in the dataset were randomly changed. Then, the images randomly
with 0.50 probability were horizontally flipped. Finally, a random affined transformation
was applied to the images. (Figure A7).

In order to better understand the entire training process, the pseudocode was provided
in Algorithm A1.
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Accuracy is the number of correctly predicted data by the model out of all the data.

Accuracy =
TP + TN

TP + FP + FN + TN
.

Sensitivity refers to the proportion of actual PDUD that are correctly detected by the
model, reflecting the model’s ability to detect patients with drug use disorders.

Sensitivity =
TP

TP + FN
Specificity refers to the proportion of actual general individuals that are correctly

detected by the model, which reflects the ability of the model to exclude non-PDUD.

Speci f icity =
TN

FP + TN

Algorithm A1. The pseudocodes of model training.

Input: load CNN model name MODEL, mini-batch size N, pre-trained config CONFIG, optimizer
function OPTIM, loss function LOSS, data path PATH, training iteration EPOCH
1 model = LoadModel(MODEL)
2 if CONFIG has pre-trained parameters then
3 Load pre-trained parameters
4 if CONFIG need freeze some layers then
5 Set requires_grad = False
6 model.to(‘cuda:0’)
7 if CONFIG has optimizer parameters then
8 Set parameters of optimizer (include Adam or SGD)
9 optimizer = OPTIM(learning_rate=0.1/0.01)
10 if CONFIG need adjust learning rate then
11 Set lr_scheduler to adjust learning rate
12 if CONFIG has more fine-tuning setting then
13 Add other fine-tuning setting (e.g. Batch Normalization)
14 criterion = LOSS()
15 if PATH is valid then
16 Prepare train data loader
17 train_loader = DataLoader(batch_size=N)
18 Prepare validation data loader
19 valid_loader = DataLoader(batch_size=N)
20 for an epoch in EPOCH do
21 for traing data in train_loader do
22 train batch-size training data
23 zero gradients buffers
24 calculate training loss
25 backpropagate the error
26 update weight
27 if log training history then
28 Log accuracy and loss of each epoch in history
29 Test the trained model in validation data set
30 model.eval()
31 for validation data in valid_loader do
32 calculate the best accuracy
33 Save the trained model
34 Save procedure history
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Figure A4. Visualization of facial features of the people with drug use disorders. The heatmap in
the figure represents the facial features extracted by the CNN model. (A) The heatmap indicates the
feature on the cheek area. (B) The heatmap indicates the feature on the nose area. (C) The heatmap
indicates the feature on the mouth area.
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Learning rates that are too small can cause the training process to be too slow, making
it difficult to reach the minimum point of the loss function. Whereas, learning rates that
are too large can result in the minimum point of loss function being skipped, making the
training process unstable.
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Table A1. Results of 10 experiments of CNN model on the test dataset.

Experiments The Best Accuracy of the Experiment (%)

Experiment-1 51.03
Experiment-2 51.25
Experiment-3 61.23
Experiment-4 79.72
Experiment-5 81.64
Experiment-6 60.43
Experiment-7 79.13
Experiment-8 50.55
Experiment-9 78.88

Experiment-10 84.68

Table A2. Results of the model with different optimization algorithms on the test dataset.

CNN Model The Best Accuracy of the Experiment (%)

VGG-19 + Adam 51.02
VGG-19 + SGD 61.23

Inception + Adam 54.99
Inception + SGD 79.13

Resnet-18 + Adam 71.61
Resnet-18 + SGD 79.72

Appendix C.

Appendix C.1. Convolutional Neural Network

A convolutional neural network (CNN) is an implementation of a neural network for
machine learning that specializes in processing large-scale data, such as images, which is
widely used in medical images applications. The typical CNN usually consists of input,
feature extraction and classification, and output. Among them, feature extraction is the core
component. It includes the convolutional layers, pooling layers, and non-linear activation
units. Each convolutional layer contains various filters called kernels. The filter is a matrix
of integers that are used on a subset of the input pixel values, the same size as the kernel.
Each pixel is multiplied by the corresponding value in the kernel, and a single value
is added to the result to simply represent the grid unit (such as a pixel) in the output
channel/feature map [44].
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