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While Next-Generation Sequencing (NGS) can now be considered an established analysis technology for re-
search applications across the life sciences, the analysis workflows still require substantial bioinformatics exper-
tise. Typical challenges include the appropriate selection of analytical software tools, the speedup of the overall
procedure using HPC parallelization and acceleration technology, the development of automation strategies,
data storage solutions and finally the development of methods for full exploitation of the analysis results across
multiple experimental conditions. Recently, NGS has begun to expand into clinical environments, where it facil-
itates diagnostics enabling personalized therapeutic approaches, but is also accompanied by new technological,
legal and ethical challenges. There are probably as many overall concepts for the analysis of the data as there
are academic research institutions. Among these concepts are, for instance, complex IT architectures developed
in-house, ready-to-use technologies installed on-site aswell as comprehensive Everything as a Service (XaaS) so-
lutions. In this mini-review, we summarize the key points to consider in the setup of the analysis architectures,
mostly for scientific rather than diagnostic purposes, and provide an overview of the current state of the art
and challenges of the field.
© 2017 Kulkarni, Frommolt. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Next-Generation Sequencing (NGS) has emerged as a standard tech-
nology for multiple high-throughputmolecular profiling assays. Among
these are transcriptome sequencing (RNA-Seq), whole-genome and
whole-exome sequencing (WGS/WXS) for instance for genome-wide
association studies (GWAS), chromatin immunoprecipitation or meth-
ylated DNA immunoprecipitation followed by sequencing (ChIP-Seq
or MeDIP-Seq), as well as a multitude of more specialized protocols
(CLIP-Seq, ATAC-Seq, FAIRE-Seq, etc.). NGS is actually a subordinate
concept for a number of comparatively new technologies. This review
is focused on the analysis of data generated by the most widely
used Illumina sequencing machines. Other technologies include the Se-
quencing by Oligonucleotide Ligation and Detection (SOLiD) method
(Applied Biosystems), the 454 sequencing (Roche) and IonTorrent
(ThermoFisher) machines as well as sequencers of the third generation
manufactured by Oxford Nanopore and Pacific Biosciences. All these
technologies are capable of generating tremendous amounts of infor-
mation at base-level resolution, within relatively short time, and at
low cost. These recent developments have turned the methods used in
research projects into systems-wide analysis tools on organisms and
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diseases, which has revolutionized the paradigms followed in the life
sciences in general. The appropriate selection of the right approaches
to the analysis of the data is therefore a key discipline of this new era.
In particular, there is a big need for clever ways to organize and process
all the data within reasonable time [26] and in a sustainable and repro-
ducible way (Fig. 1). Across most research projects as well as in many
clinical environments, NGS analysis workflows share a number of
steps which are the same for many use cases. Scientists around the
globe have therefore established highly standardized analysis pipelines
for basic NGS data processing and downstream analysis. The analysis
workflows must be highly standardized, but at the same time flexible
enough to also do tailored analyses and quickly adopt novel analysis
methods that are developed by the scientific community.

For academic institutions, there are a number of good reasons to
make investments into their own data analysis infrastructure instead
of relying on commercial out-of-the-box solutions. First, academic insti-
tutions are strongly interested in having full control over the algorithms
that are used for the analysis of their data. Second, the commercial solu-
tions which do exist are either less flexible regarding their extension
with additional analysis features or lack functionality and scalability to
organizemultiple analyses frommany laboratories and very diverse re-
search projects at a time. Third, the issue of ownership and access per-
missions to the data can be very important for confidential research
data and patient data. This is a strong argument to not bring the data
twork of Computational and Structural Biotechnology. This is an open access article under
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Fig. 1. Overview of the most important challenges in the design and implementation of NGS analysis workflows and suggestions how these challenges can be addressed.
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beyond the institution's firewall, e.g. by giving them to external sup-
pliers following an Everything as a Service (XaaS) model. The require-
ments regarding reproducibility, validation, data security and
archiving are particularly high where NGS technology is being used
for diagnostic purposes. Finally, a data analysis infrastructure developed
in-house provides improved flexibility in the design of the overall archi-
tecture and allows, for instance, the quick integration of novel scientific
methodology into bioinformatics pipelines. On the downside, an
in-house data analysis infrastructure requires significant investments
regarding personnel, time and IT resources.

The optimal way to setup NGS analysis workflows highly depends
on the number of samples and the applications for which data process-
ing needs to be pipelined. The diversity of challenges in the setup of
such a system are reflected by the fact that over the last years, a whole
research field has emerged around new approaches to all aspects of
NGS data analysis. For a small research laboratory (b20 scientists)
with a very narrow research focus, the setup may require analysis
pipelines for highly specialized scientific questions at a maximum of
flexibility. In contrast, an academic core facility typically needs to pro-
cess data from dozens of laboratories covering multiple research fields
at a sample throughput in the thousands per year. Key features of a suc-
cessful analysis workflow system in such an environment are therefore
resource efficiency in data handling and processing, reproducibility, and
sustainability.

2. Data Processing

The unique challenge, but also the big chance in the NGS analysis
field lies in the tremendous size of the data for every single sample an-
alyzed. The raw data typically range in dozens of gigabytes per sample,
depending on the application. For whole-genome sequencing, the size
of the raw data can be even up to 250 GB (Fig. 2). Given sufficient com-
putational resources, the overall workflows can be streamlined and
highly accelerated by establishing centralized standard pipelines
throughwhich all samples analyzed at an academic institution are proc-
essed. State-of-the-art version control on theunderlyingpipeline scripts
greatly improves the reproducibility of NGS-based research results in
such an environment. A commonly used system for both software
development and version control is git: the software version used for
a particular analysis can, for instance, be controlled by tracking the ID
of the latest git commit before the analysis has started (https://github.
com).

A very basic decision is whether to build the data processing
pipelines up from scratch or whether to leverage one of the existing
frameworks for large-scale NGS analysis pipelining. Among the most
prominent of these are the frameworks GenePattern [32] and Galaxy
[12]. Both are open source platforms for complex NGS data analyses
operated on cloud-based compute clusters linked to a front-end web
server which enables facilitated user access. They can be used to run
computational biology software in an interactive graphical user inter-
face (GUI)-guidedway andmake these tools accessible also to scientists
without extensive skills in programming and on a UNIX-like command
line. They offer many off-the-shelf pipeline solutions for commonly
used analysis tasks, which can however bemodified in a flexible and in-
teractive way. Other publicly available analysis workflow systems in-
clude QuickNGS [7,40], Chipster [15], ExScalibur [5], and many others
(Table 1). Regarding the setup of the overall architecture, the daily
operation and the choice of the particular tools, especially in custom-
ized pipelines, a user of any of these systems still heavily relies on the
help of experts with IT and computational biology background. Thus,
the decision whether a data analysis infrastructure is build up from
scratch or based on one of the aforementioned frameworks is mostly
a trade-off between flexibility and the necessary investments at all
levels.

2.1. Typical Steps in an NGS Analysis Pipeline

Raw data are usually provided in FastQ, an ASCII-based format con-
taining sequence reads at a typical length of up to 100 base pairs. Along-
side with the sequences, the FastQ format provides an ASCII-coded
quality score for every single base. After initial data quality checks
and filtering procedures, the first step in most analysis workflows is
a sequence alignment to the reference genome or transcriptome of
the organism of origin. For de novo sequencing of previously
uncharacterized genomes, a reference-free de novo genome assembly
is required. These are the most data-intensive and time-consuming

https://github.com
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Fig. 2.Usage of resources for large-scale analysis of Next-Generation Sequencing data in our local Core Facility: (a) Averagefilesystem space used for storage of NGS data at different levels
of the analysis for themost important NGSapplications (light grey:WGS;mediumgrey:WXS, dark grey: amplicon-based genepanel sequencing; dark red:RNA-Seq, light red:miRNA-Seq,
green: ChIP-Seq). (b) Percentage of the analysis runs for several applications. On average, our pipelines are processing between 1000 and 1500 samples per year. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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step of the overall procedure and many mapping algorithms have been
developed with a focus on both accuracy and speed (e.g. [10,19,20,37]).
The de facto standard format used for the output of these tools is the Se-
quence Alignment and Mapping format (SAM) and, in particular, its bi-
nary and compressed versions BAM [21] and CRAM. All subsequent
analysis tasks typically build upon these formats. Among the down-
stream analysis steps are, for instance,
Table 1
List of publicly available bioinformatics workflow systems and comparison of the features they

Tool Web page GUI Comma
line

Biokepler http://www.biokepler.org Yes No

Bpipe Sadedin, Pope & Oshlack, 2012
https://github.com/ssadedin/bpipe

No Yes

Chipster Kallio et al., 2011
http://chipster.csc.fi

Yes No

ClusterFlow http://clusterflow.io No Yes

Dagr https://github.com/fulcrumgenomics/
dagr

No Yes

Galaxy Giardine et al., 2005
https://usegalaxy.org

Yes No

GenePattern Reich et al., 2006
http://software.broadinstitute.org/cancer/software/genepattern

Yes No

Kronos Taghiyar et al., 2017
https://github.com/jtaghiyar/kronos

No Yes

Loom https://github.com/StanfordBioinformatics/loom Yes Yes

Moa https://github.com/mfiers/Moa No Yes

NextFlow http://www.nextflow.io No Yes

PipEngine https://github.com/fstrozzi/bioruby-pipengine No Yes

QuickNGS Wagle, Nikoli  & Frommolt, 2015
http://bifacility.uni-koeln.de/
quickngs/web

Partial Yes

Rubra https://github.com/bjpop/rubra No Yes

SnakeMake Köster & Rahmann, 2012 
https://bitbucket.org/johanneskoester/
snakemake/wiki/Home

No Yes

Toil https://github.com/BD2KGenomics/toil No Yes
• the quantification of reads on eachmolecular feature of the genome in
order to analyze differential gene expression or exon usage in RNA-
Seq data (e.g. [4,23,38]),

• comparative analyses of the read coverage between a sample with a
specific pulldown of epigenomic marks and an “input control” with-
out the pulldown in ChIP-Seq, MeDIP-Seq, CLIP-Seq, FAIRE-Seq or
ATAC-Seq data (e.g. [3,44]),
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• comparative analyses of the genomic sequence with that of the
organism's reference sequence in order to obtain a list of potentially
disease-causing mutations in whole-genome or exome sequencing
data or targeted amplification/capture-based sequencing of disease
gene panels [1,6]. Further downstream steps include linkage analyses
in genome-wide association studies (GWAS).

Downstream of these secondary analyses, statistical evaluation of
gene clusters, networks or regulatory circuits can be providedwith spe-
cialized approaches and methodology.

2.2. Choosing Appropriate Algorithms to Assemble a Pipeline

The most difficult and time-consuming part of the work in the
setup of a new analysis pipeline is the appropriate selection of the
right tools from the many existing ones. A reasonable selection cri-
terion for a particular analysis algorithm is, for instance, its perfor-
mance in published or in-house benchmarking studies (e.g. [9]
[36] [43]) because the quality of the results should be quantified
in a way that makes the pipeline comparable to alternative
workflows. The DREAM challenges have enabled highly competitive
and transparent evidence for the efficiency and accuracy of several
analysis tasks, e.g. for somatic mutation calling in a tumor context
[11]. The results of these competitions and benchmarking studies
do therefore form a good starting point for the development of an
in-house analysis strategy. It should, however, be accompanied by
benchmarking studies based on data simulated in silico, but also
on experimental validation of results obtained from NGS studies,
e.g. by quantitative realtime PCR (qRT-PCR) or traditional low-
throughput Sanger sequencing. The particular selection of parame-
ters to the algorithms should be part of these considerations. Anoth-
er very important feature of any tool that is embedded into a high-
throughput analysis pipeline is the quality of its implementation
and sustainability of development. In a large-scale production envi-
ronment involving NGS data, it is crucial to have the workflow run-
ning fast and smoothly in almost all instances. The tools may not
crash in any off-topic use cases and must use the CPU power avail-
able in an efficient way. Despite the complexity of these require-
ments, there are still many degrees of freedom in the actual
selection and combination of analysis tools, and there can be a
vast number of combinations of algorithms which are appropriate
for the particular requirements.

2.3. Acceleration and Parallelization

In a large-scale data processing environment, the speedup of the en-
tire analysis workflow can be an important issue, especially if the com-
putational resources are scarce. There has been a multitude of scientific
contributions aiming to speed up the overall procedure, e.g. using opti-
mized parallelization in an HPC environment. For parallelized read
mapping, the input data are typically split into small and equally-sized
portions. The alignment is then carried out in parallel either by making
use of array jobs [7] or by distributing the data across multiple threads
using OpenMP or across multiple compute nodes using the message
passing interface (MPI) [29]. This enables a significant reduction of the
processing time and has been adopted in many NGS analysis pipelines
(e.g. [7,18]). However, a significant overhead caused by the time-
consuming split and merge procedures are inherent in this scatter-
and-gather approach. Furthermore, for downstream analysis, e.g. vari-
ant calling from aligned read data, the data are often split into one pack-
et per chromosome. This usually leads to load imbalances, another well-
known issue in parallel computing: the compute jobs receive different
amounts of data to process and delays are caused by the waiting times
until the last process has finished. This is also the case for readmapping
because the time to align each read with a seed-and-extend approach
can vary. In the worst case, the resources used by a computation job
with unbalanced load are blocked and mostly remain in an idle state
until all processes are finished.

As a consequence of these overheads and load imbalances, widely
used NGS analysis pipelines do in fact show only a two- or three-fold
speedup, although the increase of the resource usage compared to se-
quential data processing is a multiple of this. Alternative strategies in
data distribution can reduce load imbalances in thus far that they
scale almost linearly with the number of cores [16]. Advanced
parallelization paradigms beyond MPI or OpenMP involve the Map-
Reduce programming model with an open source implementation in
the Hadoop framework which has been adopted, for instance, for se-
quence alignment [2,30]. Given its distributed storage and processing
strategy, its built-in data locality, its fault tolerance, and its program-
ming methodology, the Hadoop platform scales better with increasing
compute resources than does a classical architecture with network-
attached storage [35].

The speedup achieved by parallelization is paid by an increased allo-
cation of resources. The prevalent issues with overheads during the
scatter-and-gather steps and with load imbalances make the usage of
these resources very inefficient. To better use given resources and to
avoid limitations of scalability, modern accelerator hardware architec-
tures such as GPGPUs have been subject to research efforts in the field
of bioinformatics [17,22,24] in order to improve the usage of existing
hardware beyond parallelization. It has been demonstrated that these
approaches do in fact outperform the widely used parallelization para-
digms, but they have not received enough attention to set a true shift
of paradigms in motion.

Finally, any efforts towards the increase of automation in all kinds of
high-throughput analyses pay off in a reduced need for resources, work-
ing time as well as overall time line. The existing solutions mostly rely
on file-based information supply regarding the sample names, repli-
cates, conditions, antibodies, species in an analysis (e.g. [5,34]). A partic-
ularly high degree of automation can be achieved if experimental meta
data are modeled in appropriate databases and the reference data are
organized systematically [40].

2.4. Workflow Portability

If a workflow has been made publicly available, it can only be
adopted by other users if its installation on a different system can be
completed without having to deeply dig into the source code of the
software. Thus, in order to increase flexibility and usability of an NGS
analysis workflow, it needs to be easy to install and execute across dif-
ferent platform distributions. Compatibility and dependency issues fre-
quently occur in such cases. Recent advancements involve Docker
(https://www.docker.com), which bundles an application and all its de-
pendencies into a single container that can be transferred to other ma-
chines to facilitate seamless deployment. To increase flexibility, a
workflow should be extendable in a way that users can plug-and-play
their own analysis scripts into existing pipelines. A highly efficient ap-
proach can be taken by having the overall pipeline controlled by a script
running in a Linux shell (e.g. the Bourne Again Shell) which provides a
very powerful toolbox for file modification and analysis. Especially if
parts of a pipeline have to be repeated at a later time point, it can be
very efficient to organize dependencies between analysis result files
by the GNU autoconf and automake concepts.

3. Hardware Infrastructure

Given the above considerations on parallel data processing and ac-
celeration, an efficient NGS analysis pipeline obviously has to be built
upon a non-standard hardware. The IT backbone of a platformoperating
on thousands of samples per year must rely on a multi-node compute
cluster with exclusive access to at least part of the compute nodes.
This is usually either operated by the core facility itself or by a general
IT department of the host institution. In addition, cloud-based solutions

https://www.docker.com
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for storage as well as for computational resources are on the rise follow-
ing an Infrastructure as a Service (IaaS) paradigm. For instance, the
Illumina BaseSpace is a solution for cloud-based data storage which
can be combined with cloud computing based on the BaseSpace Apps
or AmazonWeb services (AWS). In order tomeet their customer's secu-
rity concerns, some suppliers do now offer to process all data only in
nearby computing centers located at least on the same legal territory. Fi-
nally, any considerations on using a cloud-based solution or a local ar-
chitecture are again a trade-off between flexibility and the amount of
investments needed at all levels. One advantage of cloud-based solu-
tions is that a significant fraction of publicly available data from large-
scale consortia is immediately available on the cloud (Section 4.1).

Apart from the actual data processing, considerations on
parallelization also apply to storage technologies in a file-based
as well as a database environment. In NGS data processing, there
are basically three kinds of storage volumes which typically play
a role:

• HPC-accessible storage: For HPC-basedNGS raw data analysis, the pure
size of the data first requires that the HPC-accessible storage is of sig-
nificantly high capacity, usually at least dozens of terabytes.Moreover,
storage volumes used in typical NGS data processing procedures re-
quire high availability and fast concurrent access bymultiple process-
es at a time. This is usually achieved by a storage area network based
on fibre channel or iSCSI with direct access from each of the nodes in a
cluster. To ensure data consistency in the presence ofmultiple concur-
rent accesses, all nodes are providing information on directory struc-
tures, file attributes and memory allocations to a meta data server
which coordinates the caches and locks on the file system.

• Long-term storage (high availability): After processing has finished,
large files usually have to be kept at permanent availability in order
to enable scientists to use them either for downstream analysis or
for visualization. At this stage, there is no need for using a file system
allowing multiple concurrent accesses, but the system can rely on a
standard network attached storage (NAS), e. g. by mounting it to a
web server for visualization.

• Long-term storage (low availability): Once a research project has been
finished or published, immediate access to the data is no more need-
ed, but typically the data need to be saved for a further period of time.
Conventional compression can reduce the size of the raw data (FastQ
files) to approximately 25%. A comparatively cheap approach is to
compress the raw data and archive them on a tape which can be re-
trieved at a later time point. This approach ensures that there is no
loss of information. Given a highly standardized pipeline with state-
of-the-art version control, all results can be reproduced by processing
the raw data again through the original pipeline.

In order to squeeze the highest possible information out of a large re-
source of data, the data are ideally structured in awaywhichmakes them
accessible for high-level analyses. Many NGS analysis architectures are
therefore equipped with powerful back-end databases used for storage
of the processeddata at a high-level structure. The approaches and frame-
works to store, query and analyze genomic variation can basically be split
into those based on traditional relational databases (e.g. [7,40]) and Not-
Only-SQL (NoSQL) databases. An early implementation of a scalable data-
base system for queries and analyses of genomic variants based onNoSQL
solutions was based on HBase which is employing Hadoop MapReduce
for querying across a commodity cluster based on the Hadoop HDFS dis-
tributed file system [27]. Furthermore, it has been shown that the key-
value data model implemented in HBase outperforms the relational
model currently implemented in tranSMART [41]. NoSQL centers around
the concept of distributed databases, where unstructured data may be
stored across multiple processing nodes or even multiple servers. This
distributed architecture allows NoSQL databases to be horizontally scal-
able as more hardware can be added with no decrease in performance.
4. Data Availability and Exploitation

4.1. Data Availability

Over the past decade, international large-scale consortia have
employed NGS for the characterization of the human genome, its varia-
tion, dynamics, and pathology. For instance, the currently ongoing
100,000 genomes project of the British National Health Service (NHS)
pursues the goal to sequence the genomes of 100,000 individuals in a
medical care context with the goal to establish a population-scale ge-
nome database with clinical annotations [28]. The Cancer Genome Atlas
(TCGA) research network has conducted multi-OMICS analyses in mul-
tiple large-scale studies on all major human cancer types with N11,000
patients included [39]. The Encyclopedia of DNA Elements (ENCODE) and
the Roadmap Epigenomics Project aim to establish a large-scale map of
the variation and dynamics of human chromatin organization. The 4D
Nucleome initiative aims to establish a spatiotemporal map of the states
and organization of the cellular nucleus in health and disease. The
amounts of data obtained in these collaborative efforts are orders of
magnitude higher than ever before. Beyond these large-scale consortia,
an ever increasing amount of data is generated in thousands of small on-
going research projects. ArrayExpress, for instance, currently contains N
10,000 records on research projects involving RNA-Seq data. The entire-
ty of these data reveals a highly diverse genomic landscape of the
human genome and the data are hardly used in a combined way.
Thus, there is a tremendous gap between the amount of data that is
available and the efficiency and completeness of its exploitation to
gain the best scientific benefit from it. In the next years, this gap has
to be bridged by new intelligent approaches to structure the data and
combine them with data from locally acquired experiments.

4.2. Data Security

The ability of large genomic datasets to uniquely identify individuals
has been demonstrated in the past [14]. Maintaining privacy and confi-
dentiality is thus of critical importance in the data management prac-
tice. Enforcing permission to access genomic data and storing meta
data pertaining to individuals in a barcode (pseudonymization) may
help protect the identity of the subjects to some extent. Local system
administrators need to be informed about the location of sensitive
data and potential members who are allowed to access it, such that
the security of the system is constantly checked to tackle potential
breaches and hacking attempts.

4.3. Machine Learning in Genomic Medicine

The complexity of genomic variation, dynamics and pathology can-
not be modeled with a limited, human-readable number of statistical
variables. Machine learning methods which have been highly effective
in the analysis of large, complex data sets, are becoming increasingly
important in genomic medicine. Apart from classical machine learning
tasks in biology, e.g. in the field of DNA sequencing pattern recognition,
similar algorithms can also operate on data generated by any OMICS
assays, e. g. genomic variation based on whole-exome sequencing,
gene expression data based on RNA-Seq or epigenomic data from chro-
matin analysis assays like ChIP-Seq. Pattern recognition algorithms on
these data can be used to distinguish between different disease pheno-
types and identify clinically relevant disease biomarkers.

The ultimate goal of bioinformatics architectures in medical geno-
mics will be to adopt methodology from the field of machine learning
to the analysis of processed NGS data in order to predict clinically rele-
vant traits from molecular data. Early applications of supervised learn-
ing methods to molecular data enabled the prediction of cancer
subtypes in acute leukemias based on weighted votes of informative
genes [13]. Other studies employed support vector machines for the
prediction of clinically relevant traits, e.g. for the classification of the
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primary tumor site from ametastatic specimen [31] or the prediction of
post-operative distant metastasis in esophageal carcinoma [42]. State-
of-the-art drug discovery pipelines could be significantly improved by
deep neural networks without any knowledge of the biochemical prop-
erties of the training features [25]. In infection medicine, sequencing of
bacterial isolates from patients in an intensive care unit (ICU) can lead
to the discovery of multiple novel bacterial species [33], and the predic-
tion of their pathogenicity has been carried out using machine learning
trained on a wide range of species with known pathogenicity pheno-
type [8]. These early examples demonstrate that molecular data are
generally suitable to predict clinically relevant phenotypes in yet un-
classified specimens, but they all do not operate on highly structured
data in sustainable databases. The infrastructures for NGS analysis and
storage established in themeantime are suitable to performdatamining
applications in a much more systematic, comprehensive and scalable
way than previously achieved.

In the presence of massive amounts of data, machine learning tech-
niques require theoretical and practical knowledge of the methodology
as well as knowledge of the medical application field. Since new tech-
nologies for generating large genomics and proteomics data sets have
emerged, the need for experts which can apply and adapt them to big
data sets will strongly increase. In an ideal world, the information
from which the algorithms are learning should not be limited to intra-
mural databases, but shared between multiple centers in the same
country or world-wide.

5. Summary and Perspectives

Despite an enormous progress of the field over the past decade, the
setup of NGS data analysis workflows is still challenging, in particular, in
a core facility environment where the target architecture must be able
to crunch data from thousands of samples per year. Although there
are now de facto standards for the basic steps in data processing, there
is still a multitude of parameters to tweak, leaving behind a lot of
work for the scientists working on these pipelines. As most institutions
have made significant investments into the lab, IT and software infra-
structure over the past 10 years, the basic procedures are now
established at the world's major research institutions. Following up to
the era of data acquisition, there is a strong need to also arrive in the
era of data exploitation. International efforts to combine genomic data
from multiple sites require strong efforts in data structuring and net-
working, and these topics are nowadays still in their early infancy. The
next decade will bring mankind huge progress with the adoption of
big data paradigms into genomic medicine to the benefit of patients.
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