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Abstract

It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms
genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs)
on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver,
subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different
mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on
average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different,
independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were
regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic
direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent
regulation, including SNPs at 39 and 59 untranslated regions (P = 1.8461025 and 4.761024, respectively) and SNPs that are
synonymous-coding (P = 9.961024). SNPs that are associated with complex traits more often exert a tissue-dependent effect
on gene expression (P = 2.6610210). Our study yields new insights into the genetic basis of tissue-dependent expression
and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously
anticipated.
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Introduction

It has become clear that human genetic variants, such as single

nucleotide polymorphisms (SNPs), can in cis affect the expression

of nearby genes [1], [2]. Many loci exist that contain genetic

variants that affect gene expression (expression quantitative loci,

eQTL, usually assessed by investigating single nucleotide poly-

morphisms (SNPs) and expression probes that are within 250 kb

up to 1 Mb apart). These cis-eQTL analyses have been performed

in many different human tissues and cell types, including

lymphoblastoid cell lines (LCL) [3], [4], liver [5]–[7], blood [8],

[9], brain [10], [11], adipose tissues [6], [8], skin [12], [13] and

primary fibroblasts [12]. However, considerable heterogeneity of

cis-eQTL effects is possible between different tissues: A recent

study reported that the proportion of heritability due to gene

expression attributable to cis-regulation differs between tissues

(37% in blood and 24% in adipose tissue) [14]. By comparing the

overlap of significant cis-eQTL at a predefined threshold, estimates

on the tissue-dependence of cis-eQTL were between 30% (liver,

adipose tissues) and 70–80% (LCLs, fibroblasts, T cells) [8], [9],
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[15], [16]. However, due to statistical power issues, it is likely that

the tissue-dependency of cis-eQTL has been overestimated by

studies solely assessing the overlap of cis-eQTL between tissues

based on a certain threshold. Realizing this problem, Ding et al.

used a refined statistical method to estimate the percentage of

overlap by adding a power parameter to the model [12]. They

reported that only 30% of cis-eQTL in LCLs were not shared with

fibroblast cis-eQTL. Similarly, a recent study by Nica et al. [13]

examined the tissue-dependence of cis-eQTL in three human

tissues (LCL, skin and fat) in a continuous manner by quantifying

the proportion of overlap of cis-eQTL from the enrichment of low

P-values. They observed that 29% of cis-eQTL appear to be

exclusively tissue-dependent, and also observed that the effect sizes

of 10–20% of the cis-eQTL present in multiple tissues differ per

tissue type. These observations are in line with a large-scale

transcriptomic analysis of 46 human tissues, which found that

while only 6.0% of genes were ubiquitously expressed across all the

assessed tissues, 3.1% genes were only expressed in a single tissue

[17].

To gain a better understanding of this subtle regulation of

tissue-dependent regulation and to address the question of how

genetic variants mediate tissue-dependent expression, we com-

pared cis-regulation between whole peripheral blood from a large

cohort of 1,240 individuals and four smaller primary human

tissues (liver, subcutaneous adipose tissue (SAT), visceral adipose

tissue (VAT) and skeletal muscle) obtained from a set of 85

subjects. We first applied a robust sampling procedure to estimate

accurately how often genes showed different cis-eQTL effects

between tissues. We then investigated in what way genes are

differently associated with SNPs in different tissues. Finally, we

assessed various functional properties for the SNPs involved in

tissue-dependent cis-regulation and their association with complex

traits.

Results

Cis-eQTL Mapping in Five Primary Tissues
For this study, we collected data for four different tissues from a

set of 85 unrelated obese Dutch subjects. We successfully collected

data on 74 liver samples, 62 muscle samples, 83 subcutaneous

adipose tissue (SAT) samples and 77 visceral adipose tissue (VAT)

samples (for 48 individuals all four tissues were available). The fifth

tissue, blood, was collected from a different group of 1,240

unrelated Dutch individuals (Table S1). The gene expression levels

in all five tissues were profiled using the same Illumina

HumanHT12 v3 platform (see Materials and Methods). After

normalization, we further removed strong expression differences

between these tissues by removing the 50 principal components

from this dataset and using the residuals for further analysis

(described in [18] and Materials and Methods, Figure S1). We first

performed cis-eQTL analysis in each of these datasets separately,

by testing the correlation between SNPs and probes that were

mapping within 1 Mb distance. At a false-discovery rate (FDR) of

0.05 level, we identified a non-overlapping set of 195,078 probe-

SNP pairs that were significant in at least one of the tissues under

study: 4,700 probe-SNP pairs were significantly associated in liver,

7,161 pairs significantly in SAT, 5,323 pairs significantly in VAT,

1,971 pairs significantly in muscle, and 190,278 pairs significant in

blood (Figure S2). Owing to the much larger sample size, 182,569

probe-SNP pairs (93.6%) were solely detected in blood, while only

601 probe-SNP pairs (0.31%) were significant in each of the five

different tissues (Figure S3). Although a previous study showed that

the heritability of gene expression levels are higher in blood (37%)

compared to adipose tissue (24%) [14], we believe that the large

difference in the detected probe-SNP pairs between blood and

non-blood tissues is due to statistical power issues that result from

substantial sample size differences. As we had initially run cis-

eQTL analyses in each of the tissues separately, we subsequently

conducted a weighted Z-score meta-analysis across the four non-

blood tissues and detected 23,878 probe-SNP pairs at FDR of

0.05. Out of these, 23.2% (5,550 out of 23,878 probe-SNP pairs)

had not been identified in any of the single-tissue analyses (Figure

S4). In total, the single-tissue analyses and meta-analysis yielded a

non-overlapping set of 200,629 significant probe-SNP pairs,

corresponding to 103,968 unique expression altering SNPs

(eSNPs) and 11,618 probes (eProbes) that represent 8,561 unique

genes (eGenes) (Figure S2).

Cis-eQTL Effects Differ per Tissue Type
To assess the tissue-dependency of the cis-eQTL, we compared

the Spearman correlation of each probe-SNP pair between tissues.

However, due to the small sample sizes of the non-blood datasets

we had very limited statistical power to determine whether there

were cis-eQTL effect differences between non-blood tissues. We

therefore confined ourselves to comparisons between the large

blood dataset and each of the smaller non-blood tissues. To correct

for sample size differences, we employed a resampling procedure,

permitting us to derive an empirical distribution of association Z-

scores (calculated based on the Spearman correlation) of each

probe-SNP pair in blood of the same sample size as in non-blood

tissues (see Materials and Methods; Figure S5). We observed that

18,456 pairs (9.2% of 200,629 probe-SNP pairs) showed a

significantly different Z-score between blood and at least one of

the non-blood tissues at P,6.2361028 (corresponding to a

conservative Bonferroni-corrected P,0.05), implying a discordant

association between blood and non-blood tissues. The remaining

182,173 probe-SNP pairs, which we called ‘‘concordant associa-

tion’’, had similar association Z-scores between the tissues under

study (Figure S2). The ‘‘discordant associations’’ accounted for

15.4% of the eSNPs (15,974 out of 103,968 eSNPs), 28.7% of the

eProbes (3,330 out of 11,618 eProbes), and 34.1% of the unique

eGenes (2,919 out of 8,561 eGenes) (Table S2 and Figure S2). We

further assessed for each probe-SNP pair, whether the discordance

was detected between blood and multiple non-blood tissues, or

only between blood and one specific non-blood tissue. We

observed that 14,388 probe-SNP pairs (78.0% of the 18,456

discordant probe-SNP pairs) only showed a discordant effect

between blood and one specific non-blood tissue. Only 125 probe-

SNP pairs (corresponding to 31 eProbes) showed a discordant

Author Summary

Gene expression can be affected by genetic variation, e.g.
single nucleotide polymorphisms (SNPs). These are called
expression-affecting SNPs or eSNPs. Gene expression levels
are known to vary across different tissues in the same
individual, despite the fact that genetic variation is the
same in these tissues. We explored the different mecha-
nisms by which genetic variants can mediate tissue-
dependent gene expression. We observed that the genetic
variants that associated with complex traits are more likely
to affect gene expression in a tissue-dependent manner.
Our results suggest that complex traits are even more
complex than we had anticipated, and they underline the
great importance of using expression data from tissues
relevant to the disease being studied in order to further
the understanding of the biology underlying the disease
association.

Mechanisms Underlying Tissue-Dependent cis-eQTL
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association in all four comparisons, suggesting similar regulation in

the four non-blood tissues but markedly different regulation in

blood (Figure S6). As such these results reveal there are

considerable differences in the genetically determined regulation

of gene expression between liver, SAT, VAT and muscle tissues,

even though the RNA from these tissues had been derived from

the same individuals at was collected at exactly the same time.

To ensure that our sampling procedure was robust, we used the

same procedure to assess how often our method incorrectly

concluded that a probe-SNP Spearman correlation differed

between two independent eQTL datasets in the same peripheral

blood tissue: We used the 1,240 blood samples as discovery set and

used an independent set of 229 blood samples as validation whose

expression was profiled using Illumina H8-v2 chips, [18], [19], see

Methods and Materials. In this analysis, our method incorrectly

deemed that 0.45% of the probe-SNP pairs showed a significant

difference at the previously used P,6.2361028 level (Figure S7).

In our comparisons between blood and non-blood tissues we had

observed that 9.2% of the probe-SNP pairs showed a discordant

effect, which is substantially higher and indicates that the number

of discordant associations that we identified when comparing

different tissues are not expected by chance (Fisher’s exact test:

OR = 20.6 and P,102300). We also assessed whether imputation

accuracy differences between datasets might confound some of the

results, but did not find evidence this to be the case (see Materials

and Methods).

Properties of eSNPs
For the significant 200,629 probe-SNP pairs, we observed that

for 146,480 pairs (73.0%) the eSNPs were located within 250 kb

distance of the eProbe while 54,149 probe-SNP pairs (27.0%)

mapped between 250 kb and 1 Mb apart. Consistent with a

previous study [15], we observed that eSNPs at a larger distance

from the probes tend to have smaller effects (Figure S8). However,

we realize that due to extensive LD many different SNPs are

usually significantly correlated with one single cis-eQTL probe. To

address this, we performed step-wise conditional analyses in each

tissue type to ascertain whether there were multiple SNPs that

independently affected the expression levels of the same probe. We

observed this for 26.8% of the eProbes in the large blood dataset

(Table S3), (where for 2,794 out 10,443 eProbes we had detected

multiple independent eSNPs): We observed that the secondary,

tertiary and quaternary eSNPs usually map further away from the

probe (Wilcoxon test P = 2.25610266, Figure S9), potentially

reflecting some regulatory elements such as enhancers that usually

reside further away from genes. In the non-blood tissues, we lacked

statistical power to detect many secondary and tertiary effects

(Table S3).

Interestingly, there was a very high overlap between the

discordant eProbes (detected in our comparison across tissues) and

the eProbes with multiple independent effects in blood (detected in

the aforementioned analysis that solely used blood samples). Out

of the 10,443 eProbes in blood, 2,528 eProbes had discordant

association and 7,915 eProbes had concordant association. We

observed that 47.5% of the discordant eProbes had multiple

independent eSNPs present in blood (1,202 out of 2,528); whereas

only 20.1% of the concordant eProbes had multiple independent

eSNPs (1,592 out of 8,219, Fisher’s exact test P = 3.85610281).

This observation suggests that for eProbes: 1) different independent

eSNPs can exist and 2) these independent eSNPs can exert an

effect in one tissue while they do not exert an effect in another

tissue.

We subsequently analyzed the most significant eSNP per eProbe

per tissue and the top eSNP per eProbe from the meta-analysis of

four non-blood tissues. In total, we ended up with 13,603 probe-

SNP pairs (12,549 top eSNPs, that were affecting 11,575 probes

pairs) these six analyses. Among them, 2,612 probe-SNP pairs

(19.2%) showed a discordant effect among tissues at

P = 6.2361028 level (genome-wide test level), accounting for

2,466 (19.7%) unique eSNPs.

We found that the top eSNPs with discordant effect had a

significantly higher minor allele frequency (MAF) than the

concordant top eSNPs (Wilcoxon test P = 8.27610221). The

eSNPs at a smaller distance from the eProbe (#250 kb) were more

likely to show a discordant effect compared to the eSNPs at larger

distance (250 kb–1 Mb distance, OR = 1.62, P = 3.6610222,

Figure S10). Although we acknowledge that the top eSNPs do

not necessarily reflect the true causal variants, we annotated the

functional properties of the top eSNPs to understand the potential

roles of the eSNPs (irrespective of whether these reflect concordant

or discordant eProbes). We observed that the most of the eSNPs

were located in intragenic regions (67.0%) and intronic regions

(14.9%), where their function often remains undetermined.

Interestingly, eSNPs with discordant effect were (compared to

concordant eSNPs) significantly enriched for synonymous-coding

SNPs (Fisher’s exact P value 9.961024), and more often mapped

in the 39 and 59 untranslated regions (UTRs, Fisher’s exact P

values 1.8461025 and 4.761024, respectively) (Figure 1).

As shown before, we observed that SNPs, associated with

complex traits and diseases, are more likely to be eSNPs [2], [6],

[8], [18], [19]. We subsequently analysed 1,954 trait-associated

SNPs (at P,561028, retrieved from the GWAS catalog per 16

September 2011) [20] and observed that 907 trait-associated SNPs

(46.4%) were eSNPs. Of these, 261 trait-associated eSNPs (28.7%)

showed discordant effects on gene expression, which is significantly

higher than what we observed for all 103,968 trait- and non-trait-

associated eSNPs (15.4% discordant, Fisher’s exact test

P = 1.10610233) and also significantly higher than if we compare

this to only the 12,549 top eSNPs (19.7% discordant, Fisher’s

exact test P = 2.6610210).

Four Categories of Tissue-Dependent Cis-Regulation
As we have shown above, discordant eProbes are more likely to

be influenced by multiple independent eSNPs. However, solely

assessing the discordance of a single SNP-probe pair does not

provide an extensive landscape of the tissue-dependent genetic

determinants of gene expression. To gain further insight into this,

we created ‘association profiles’ for the discordant eProbes and

compared these across tissues. An association profile refers to the

association Z-scores of all tested SNPs within 1 Mb distance of the

eProbe under study (see Materials and Methods), and takes into

account multiple SNPs and linkage disequilibrium. We created

such association profiles for 2,007 discordant eProbes 52 (521

eProbes from liver, 708 eProbes from SAT, 526 eProbes from VAT,

and 252 eProbes from muscle, Figure S2).

Upon inspection of these association profiles for the discordant

eProbes, we identified four main different categories of tissue-

dependent genetic regulation of gene expression. If the association

profiles for one single eProbe did not correlate at all between two

tissues, we further checked whether the eProbe was significant in

both tissues: If the probe had a significant association in one tissue

but not in the other, we deemed this ‘‘specific cis-regulation’’. If

instead the eProbe was significant in both tissues, but was associated

to different (unlinked) eSNPs in the different tissues, we deemed it

‘‘alternative cis-regulation’’ between tissues. For those association

profiles where two tissues showed a correlation, we checked the

direction and the effect size of allelic effect on gene expression. If

the allelic direction was the same and the effect size was different,

Mechanisms Underlying Tissue-Dependent cis-eQTL
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we concluded the eProbe belonged to the category ‘‘different effect

size’’. If the allelic direction was instead opposite, the probes had

tissue-dependent regulation with an ‘‘opposite allelic direction’’

(see Materials and Methods). We discuss each of these four

categories in detail below and in Figure 2 and Figure 3.

Specific regulation. Specific cis-regulation refers to a gene

that is cis-regulated in only one specific tissue. We found this type of

regulation is a common phenomenon as it accounted for on average

33.2% of the discordant eProbes (Figure 2). One well-established

example is the SORT1 gene at the 1p13 cholesterol locus, to which

SNPs map that affect low-density lipoprotein cholesterol (LDL-C)

and the risk of myocardial infarction (MI) in humans [21], [22].

Recently, it was shown that the functional variant rs12740374 alters

the binding site for C/EBP transcription factors and consequently

alters the hepatic expression of the SORT1 gene [23]. Our data

replicated this specific cis-regulation in liver (Figure 3A). The

association Z-score for rs12740374 with SORT1 expression

variation in liver was 8.24 (N = 74, P = 1.41610215) but in blood

we observed no effect (Z-score = 0.07, N = 1,240, P = 0.8), nor did

we observe any associations in SAT, VAT or muscle, and the

association profiles for this gene show no correlation between

different tissues (all spearman correlation P values.0.39). Thus, in

our data, rs12740374 only exerts an effect on SORT1 gene

expression in liver, although we did observe that SORT1 was

expressed abundantly in all tissues.

Alternative regulation. Alternative regulation between

tissues refers to a gene that is cis-associated with a SNP in a

particular tissue and associated with a different, independent SNP in

another tissue. Such an alternative cis-regulation is also a common

phenomenon, as we found it applied to on average 14.5% of the

Figure 1. Functional Properties of eSNPs with tissue-dependent effect and concordant effect. The bar plot shows the frequency of the
eSNP per function property. The eSNPs were annotated using the web-based tool of SNP Annotation and Proxy Search (SNAP; http://www.
broadinstitute.org/mpg/snap/), based on the HapMap CEU population panel (release 22) and genome build 36.3. The asterisks indicate the
significance of Fisher’s exact test by comparing the eSNPs with concordant effect and with discordant effect, as given in the legend.
doi:10.1371/journal.pgen.1002431.g001

Mechanisms Underlying Tissue-Dependent cis-eQTL
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probes with tissue-dependent regulation (Figure 2). One particular

example is the trans-membrane gene TMEM176A, also known as

hepatocellular carcinoma-associated antigen 112. The expression of

TMEM176A was associated with intronic SNP rs714885 in liver

(N = 74, P = 5.761026) but with the 19.5 kb upstream SNP

rs6464104 in blood (N = 1,240, P = 5.076102132) (Figure 3B).

These two SNPs are unlinked variants (r2 = 0.002 and D9 = 0.054

based on the HapMap phase II CEU panel). We observed the same

alternative association for different probes of TMEM176A in an

independent liver eQTL dataset (profiled using a custom ink-jet

microarrays [7] and in the aforementioned independent blood

eQTL dataset that was profiled using Illumina HumanRef-8 v2

BeadChips) (Table S4) [18], [19]. This clearly shows that 1)

multiple, unrelated variants can sometimes affect exactly the same

gene, and 2) these independent variants sometimes only exert an

effect on the gene expression in a particular tissue.

Different effect size. The different effect size refers to a

common phenomenon that a gene is associated with the same SNP

with alleles that have the same direction of effect but with a

different magnitude in different tissues (Figure 2). For eProbe that

showed this, we observed a significantly positive correlation

between the association profiles of the tissues. We observed it

applies to on average 47.9% of the probes that show tissue-

dependent regulation (Figure S2), in line with a previous report

[13]. One example is the O-6-methylguanin-DNA-

methyltransferase (MGMT) gene that plays an important role in

DNA repair and which suppresses tumor development [24]. We

observed a cis-eQTL for MGMT across each of the five tissues.

However, the effect size in blood was substantially smaller than

that in SAT tissues (Figure 3C).

Opposite allelic direction. Surprisingly, we observed that

some genes were associated with the same SNPs in different tissues

Figure 2. cis-regulation of gene expression between tissues. The associated probe-SNP pairs were classified to be concordant or discordant
between tissues. The small pie plot shows the proportion of probes that have only concordant association (red part) or at least one discordant
association (blue part). The probes with discordant association were under tissue-dependent regulation and we characterized four different
mechanisms: specific regulation, alternative regulation, different effect size and opposite effect sizes. Their proportions are shown in the large blue
pie plot. The concordant cis-regulation and the four different mechanisms are illustrated by the correlation between SNP genotypes (AA, AG and GG)
and gene expression levels in two tissues: brown dots represent the expression of a gene in tissue 1 and purple dots the expression of a gene in
tissue 2.
doi:10.1371/journal.pgen.1002431.g002

Mechanisms Underlying Tissue-Dependent cis-eQTL
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Figure 3. Case examples for tissue-dependent cis-regulation. (A) The liver-specific regulation of the SORT1 gene. (B) The alternative
regulation of the TMEM176A gene in blood and liver. (C) The cis-regulation for the MGMT gene had different effect sizes in blood and SAT. (D) The cis-
regulation for the DDT gene show opposite allelic direction between blood and liver. For each gene, the left panel shows the cis-eQTL association
profile in the corresponding tissue (liver or SAT, in blue) vs the association profile in blood (red). The x-axis is the genome position based on genome
build 36.3 (in Mb). The y-axis at the left is the association strength in terms of Z-score. The Z-score in blood has been weighted by the square root of
the sample size, corresponding to the compared tissue. The dashed green line indicates the significance level of association at FDR 0.05. We use the
absolute Z-scores to show the association in (A–C), but use the Z-scores in (D) for a better illustration of allelic direction. We assigned the association
Z-scores in blood a negative value. If the allelic direction in SAT is the same as that in blood, the Z-score in SAT is negative too; otherwise, the Z-score
in SAT is positive. The black line shows the recombination rate at this locus based on the HapMap II CEU panel and the scale is indicated on the right-
hand y-axis. The green line with arrow at the bottom shows the genome position of the gene and the arrow indicates the transcription direction. The
right panel shows the correlation of the Z-scores between two tissues. The r-value indicates the correlation coefficient of the Pearson correlation.
doi:10.1371/journal.pgen.1002431.g003

Mechanisms Underlying Tissue-Dependent cis-eQTL
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but with alleles having an opposite effect on the gene expression

between tissues. For a probe under this regulation, we then also

observed a strong negative correlation between its association

profiles across different tissues. This ‘‘opposite allelic direction’’

mechanism accounted for on average 4.4% of the probes under

tissue-dependent regulation (Figure 2), which is much less common

than the three previous mechanisms. However, this is still much

more often than would be expected by chance, as determined by a

comparison between two blood datasets in which we found the

allelic directions were nearly always identical (Figure S7). One

striking opposite allelic direction was observed to D-dopachrome

tautomerase (DDT), which showed completely opposite effects

between blood and liver (Figure 3D). Consistently, we found this

opposite effect in the independent liver [7] and blood

dataset,(H8v2), even when different probes were assessed. The

minor allele rs5751777-C was associated with higher expression in

liver (P = 9.95610222 in the discovery set and P = 2.866102211 in

the validation set), but with lower expression in blood

(P = 3.986102119 in the discovery set and P = 4.37610224 in the

validation set) (Table S5). Strikingly, this opposite allelic direction

was also observed when comparing liver with SAT, VAT and

muscle, tissues that were all obtained from exactly the same set of

individuals (Figure S11).

Another notable gene with an opposite allelic direction is

ORMDL3. Although its function remains unclear, genetic variants

near ORMDL3 are associated with various immune-related

diseases, including asthma, type 1 diabetes, Crohn’s diseases,

ulcerative colitis and primary biliary cirrhosis [25]–[29]. ORMDL3

had a genome-wide significant cis-eQTL in blood and its

association in SAT was showing near-genome-wide significance

(Figure S12). All disease-associated SNPs in this locus showed

association in cis with the expression level of ORMDL3 (Table S6),

including the functional variant rs12936231 that has been

implicated to play a causal role in chromatin remodeling [30].

The risk alleles for asthma and preventive alleles for other

autoimmune diseases showed consistent up-regulation in blood

(and were also reported in LCLs) [25], [30]. However, to our

surprise, the effect in SAT was completely reversed, leading to

down-regulation.

Although we have only provided a few examples here, these

observations indicate that conclusions drawn about mechanistic

up- or down-regulation from a single tissue cannot necessarily be

translated to other tissues, as they may sometimes lead to

completely different conclusions depending on the tissues studied.

In the supplementary material (Tables S7, S8, S9, S10 and Figures

S13, S14, S15, S16), we have summarized the observed tissue-

dependent regulation for 156 genes that have been reported to be

associated with complex traits at P = 561028 (based on the genes,

mentioned in the Catalog of Published Genome-wide Association

Studies, as of 16/09/2011). Some of these plots also show that the

genetic regulation of gene expression is sometimes even more

complicated than what we have described here: some genes can

have multiple cis-eQTL that were either shared or specific to the

tissues, e.g, the association of MTMR3 gene that was associated

with lung cancer [31], Nephrophaty [32], and inflammatory bowel

disease [33], [34] (Figure S17).

The four categories of tissue-dependent cis-regulation we have

observed can be explained by two molecular models: 1) the tissue-

dependent use of the same causal variant, i.e., the same eSNPs tag

the same causal variant that is activated differentially by tissue-

dependent factors; 2) the tissue-dependent causal variants, i.e., the

same or different eSNPs tag different causal variants upon the

tissues under study. The extent of the linkage disequilibrium (LD)

between the causal variants and tag eSNPs, and the direction of

effect of the regulatory factors (e.g., stimulating or suppressing the

expression) and the size of their effects could lead to the

observations of different categories (Figure 4).

Discussion

Gene expression levels are partly determined by genetic

variation, and eQTL mapping in different cell types and tissues

has identified many cis-eQTL. However, the effect of cis-eQTL is

strongly dependent upon the studied tissue. In this study, we

compared the genetic architecture of gene expression regulation in

blood and four non-blood primary tissues. We detected that the

majority (71.3%) of the detected probes under genetic control

(eProbes) show a concordant association across tissues. However, the

remaining 28.7% of the eProbes show discordant, tissue-dependent

regulation. Strikingly, many of those discordantly associated eProbes

are affected by multiple, independent eSNPs. We followed up the

genes under tissue-dependent regulation and identified four

different mechanisms: specific regulation, alternative regulation,

different effect size, and opposite allelic direction. We are the first

to provide a comprehensive landscape of the different mechanisms

of tissue-dependent cis-regulation. Of the four mechanisms

identified, the opposite allelic direction mechanism, where alleles

can have opposing effects on gene expression between tissues is of

particular interest: Although this mechanism is less common than

the other three, it has important implications for inferring the

transcriptional effects of alleles from other tissue data, especially on

the susceptibility risk alleles for complex diseases. The use of

different tissues could result in completely the opposite conclusion!

This finding highlights the great importance of investigating

disease-relevant tissues in order to correctly characterize the

functional effects of disease-associated variants.

We observed that SNPs at various transcriptional regulatory

regions more often than expected exert tissue-dependent regula-

tion, although most of the eSNPs were located at intergenic and

gene intronic regions where functions remain undefined. Howev-

er, we must emphasize that the causal variants remained

undefined. Furthermore, because of the LD structure, although

the same eSNPs can be associated with the expression of the same

gene in different tissues, this does not necessarily mean that the

same regulatory variants act in the different tissues. We have

proposed two molecular models and suggested that tissue-

dependent cis-regulations can be explained by the tissue-depen-

dent use of the same causal variants or by the use of different

tissue-dependent causal variants. Further fine-mapping and

functional analyses are needed to identify the causal variants and

to understand how they are used in different tissues due to the

limited resolution of cis-eQTL mapping: It is known that the size of

regulatory cis-elements generally is only a few base pairs (i.e., the

binding sites of transcription factors or microRNAs), whereas the

size of linkage disequilibrium blocks is generally in a range of 10–

100 kb [35]. Furthermore, as the molecular models that we have

proposed are quite simple, we cannot exclude other molecular

mechanisms acting in these processes, e.g., the competition of

different regulatory factors and binding sites in different tissues, or

the role of tissue-specific methylation [36], [37] and chromatin

remodeling [38], etc.

It is well known that trait-associated SNPs are more likely to

have effects on gene expression but, to our surprise, we found that

they are also more likely to exert tissue-dependent effects. This

observation adds an extra layer of complexity to complex traits.

We acknowledge that our study has some limitations: We

compared cis-regulation between peripheral blood and four rather

small non-blood tissues. We lacked statistical power to compare

Mechanisms Underlying Tissue-Dependent cis-eQTL
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the cis-regulations between two non-blood tissues well. Secondly,

the identified discordant eQTLs are determined by the limited

tissues that we studied Thirdly, although we corrected for

substantial expression differences across samples by employing

principal component analysis, it is still possible that some of the

observed tissue-dependent cis-regulation can be due to the tissue

heterogeneity (i.e. different proportions of cell types per tissue).

Likewise it is also possible that some of the identified discordant cis-

eQTL could be due to differences in the base-line expression

between tissues. However, we observed this to be the case for both

concordant and discordant cis-eQTL when investigating the

original (non-PCA corrected) expression data (see Table S11).

Nevertheless our results indicate that natural genetic varation

can affect gene expression levels in complex ways. Further analyses

using different tissues and specific cell types and using larger

sample sizes are required to gain a deeper understanding of the

genetic variation of gene expression and to gain better insight into

the full complexity of disease.

Figure 4. Molecular models of tissue-dependent cis-regulation. The observed tissue-dependent cis-regulations can be explained by two
molecular models: (A) the tissue-dependent use of the same causal variants, or (B) the use of tissue-dependent causal variants. The ovals indicate the
two regulatory factors (e.g., transcription factors) that play regulatory roles in different tissues (brown in tissue 1 and purple in tissue 2). These factors
can recognize the same or different cis-elements (the yellow region). The genetic variants are shown as SNPs with A/G alleles. The SNPs in red are
causal variants and the SNPs in blue are tag SNPs. The red line between them indicates the linkage disequilibrium. The arrows indicate the effect of
regulatory factors, here the up arrows represent expression stimulators and the down arrows expression suppressors. The size of the arrows indicates
the size of the differences between the expression of A and G alleles, i.e., the cis-eQTL effect size.
doi:10.1371/journal.pgen.1002431.g004
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Materials and Methods

Genotyping and Expression Profiling on Liver, Muscle,
and Adipose Fat Tissues from the Same Population

Subjects. From April 2006 to January 2009, 85 morbidly

obese Dutch subjects (23 male and 62 female subjects) with a body

mass index (BMI) between 35 and 70 were included in the study.

They all underwent elective bariatric surgery at the Department of

General Surgery, Maastricht University Medical Centre. Patients

with acute or chronic inflammatory diseases (e.g., autoimmune

diseases), degenerative diseases, reported alcohol consumption

(.10 g/day), and/or using anti-inflammatory drugs were

excluded. The average age of the subjects was 43.9 with a range

of 17 and 67 years. This study was approved by the Medical

Ethical Board of Maastricht University Medical Centre, in line

with the guidelines of the 1975 Declaration of Helsinki. Informed

consent in writing was obtained from each subject personally. The

subject information was provided in Table S1.

Genotyping. Venous blood samples were obtained after

8 hours fasting on the morning of surgery. DNA was extracted

from this blood using the Chemagic Magnetic Separation Module

1 (Chemagen) integrated with a Multiprobe II Pipeting robot

(PerkinElmer). All samples were genotyped using Illumina

HumanOmni1-Quad BeadChips that contain 1,140,419 SNPs.

Genotyping was performed according to standard protocols from

Illumina.

RNA profiling in four tissues. Wedge biopsies of liver,

visceral adipose tissue (VAT, omentum majus), subcutaneous adipose

tissue (SAT, abdominal), and muscle (musculus rectus abdominis) were

taken during surgery. RNA was isolated using the Qiagen Lipid

Tissue Mini Kit (Qiagen, Crawley, West Sussex, UK, 74804).

Assessment of RNA quality and concentration was done with an

Agilent Bioanalyzer (Agilent Technologies, Santa Clara, USA).

Starting with 200 ng of RNA, the Ambion Illumina TotalPrep

Amplification Kit was used for anti-sense RNA synthesis,

amplification, and purification according to the protocol

provided by the manufacturer (Ambion, Austin, USA). 750 ng of

complementary RNA was hybridized to Illumina HumanHT12

BeadChips and scanned on the Illumina BeadArray Reader. Raw

probe intensity data for these samples was extracted using

Illumina’s BeadStudio Gene expression module v3.2 (No

background correction was applied, nor did we remove probes

with low expression).

Genotyping and Expression Profiling on Blood
Subjects. The genetical genomics samples for blood were

collected from unrelated Dutch individuals in four studies: 324

healthy individuals were collected in the University Medical

Centre Utrecht, 414 amyotrophic lateral sclerosis (ALS) patients

were collected in the University Medical Centre Utrecht, 49

ulcerative colitis (UC) patients from a part of the inflammatory

bowel disease (IBD) cohort of the University Medical Centre

Groningen, and 453 patients with chronic obstructive pulmonary

disease (COPD) were collected with the NELSON study. All

samples were collected after informed consent and approved by

local ethical review boards. Individual sample information is

provided in Table S1.

Genotyping and imputation. DNA from all samples was

hybridized to oligonucleotide arrays from Illumina. 324 healthy

individuals and 414 ALS patients were genotyped using the

Hap370 platform. The 453 COPD patients and 49 UC patients

were genotyped on the 610-Quad platform. Because the subjects

with liver, muscle, adipose fat tissues were genotyped using more

intensive genotyping platform Illumina HumanOmni1-Quad

BeadChips, we further used program IMPUTE v2 to impute the

genotypes of SNPs that presented in Omni1-Quad chips but not

directly genotyped on Hap370 and 610-Quad platform [39]. The

reference panel for imputation was the CEU population from

HapMap release 22. The directly genotyped SNPs were coded as

0, 1 or 2, while the imputed SNP dosage values were called at a

0.95 confidence level, ranging between 0 and 2. In this way, we

obtained the genotype of the same set of 1,140,419 SNPs for all

five tissues under study.

RNA profiling. Anti-sense RNA was synthesized, amplified

and purified using the Ambion Illumina TotalPrep Amplification

Kit (Ambion, USA) following the manufacturers’ protocol.

Complementary RNA was hybridized to Illumina HumanHT-12

arrays and scanned on the Illumina BeadArray Reader. Raw

probe intensity data for these samples was extracted using

Illumina’s BeadStudio Gene expression module v3.2 (No

background correction was applied, nor did we remove proves

with low expression).

Genotyping and Expression Profiling in an Independent
Blood Dataset of 229 Samples

Subjects. To ascertain whether our method for identifying

tissue-dependent cis-eQTL was robust, we compared the large

peripheral blood with an independent blood eQTL dataset that

comprised 229 samples. We have described this cohort in previous

studies [9], [18]. In brief, this study comprised 111 English celiac

disease patients, 59 Dutch amyotrophic lateral sclerosis patients

and 59 Dutch health controls. The peripheral blood (2.5 ml) was

collected with the PAXgene system (PreAnalytix GmbH, UK).

Genotyping and imputation. The samples were genotyped

using the Illumina (Illumina, San Diega, USA) HumanHap300

platform. We further used IMPUTE v2 to impute the genotypes of

all HapMap II SNPs. The reference panel for imputation was the

CEU population from HapMap release 22. The directly

genotyped SNPs were coded as 0, 1 or 2, while the imputed

SNP dosage values were called at a 0.95 confidence level, ranging

between 0 and 2.

RNA profiling. Anti-sense RNA was synthesized amplified

and purified using the Ambion Illumina TltalPrep Amplification

Kit (Ambion, USA) following the manufacturers’ protocol.

Complementary RNA was hybridized to Illumina HumanRef-8

v2 arrays (further referred to as H8v2) and scanned on the

Illumina BeadArray Reader.

Normalization and PCA Correction
The raw expression intensities from five tissues were jointly

quantile normalized and log2 transformed. We further applied a

principal component analysis (PCA) on expression correlation

matrix and observed that genes are differentially expressed among

different tissue types (Figure S1). We argue that the dominant

principal components (PCs) will primarily capture sample

differences in expression that reflect physiological or environmen-

tal variation (e.g., tissue type and phenotype difference) as well as

systematic experimental variation (e.g. batch and technical effect).

In order to target the difference in the genetic variation of

expression among tissues, we removed the global variation in

expression among tissues by using the residual expression for each

probe in each tissue after removing 50 PCs (identical to what we

have described before [18]). Our previous analysis on the same

dataset showed that the number of significantly detected cis-eQTL

probes increased two-fold when 50 PCs were removed from the

expression data (see Figure S7 in ref [18]). For the independent

blood dataset with 229 subjects, we followed the same quantile

normalized and PCA correction.

Mechanisms Underlying Tissue-Dependent cis-eQTL
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Population Stratification and SNP Quality Control
We tested population stratification between the two cohorts

using the program PLINK (http://pngu.mgh.harvard.edu/,
purcell/plink/strat.shtml). This program uses complete linkage

agglomerative clustering, based on pair-wise identity-by-state (IBS)

distances. The fact that all the individuals from both cohorts were

clustered together indicates there was no population stratification.

We also checked the allelic frequencies between the two cohorts by

treating the 85 individuals with four tissue samples as cases and the

1,240 individuals for blood samples as controls. For the imputed

SNPs, we used the genotype with highest probability as the

discrete genotype for QC purposes. We removed SNPs that

showed significant differences in allele frequency at P,0.01. Then

the SNPs were quality controlled for minor allelic frequency .5%,

a call rate .95% and an exact Hardy-Weinberg (HWE) P

value.0.001. To make certain on the directions of the allelic effect

on gene expression (up-regulating or down-regulating), we further

removed SNPs with two types of transversion alleles (A/T and G/

C) and confined our analysis to SNPs with transition alleles (A/G

or C/T) and other types of transversion alleles (A/C or G/T). This

quality control resulted in 710,035 SNPs for further analysis.

eQTL Discovery
In order to detect cis-eQTLs, analysis was confined to those

probe-SNP combinations for which the distance from the probe

transcript midpoint to SNP genomic location was #1 Mb. For

each probe-SNP pair, we used Spearman correlation to detect

association between SNPs and the variations of the gene

expression in liver, SAT, VAT, muscle and blood, respectively.

We calculated the Spearman correlation coefficient and corre-

sponding P values and subsequently transformed this into a Z-

score. To maximize the power of eQTL discovery in non-blood

tissues, we further performed meta-analysis for four non-blood

tissues that combines the association signals across the four non-

blood tissues under study. An overall, joint P value was calculated

using a weighted (square root of the dataset sample number) Z-

method. Please see the ref [40] for a comprehensive overview of

this method.

To correct for multiple testing, we controlled the false-discovery

rate (FDR) at 0.05: the distribution of observed p-values was used

to calculate the FDR, by comparison with the distribution

obtained from permuting expression phenotypes relative to

genotypes 100 times. At FDR = 0.05 level, the significance P

value threshold was 1.3761025 for significantly associated probe-

SNP pairs in liver, 2.0761025 for significant association in SAT,

1.5461025 for significant association in VAT, 5.6461026 for

significant association in muscle, 4.861024 for significant

association in blood and 1.1061024 for significant association in

the meta-analysis of four non-blood tissues. For these significant

probe-SNP pairs, we termed the corresponding SNP, probe and

genes as expression SNP (eSNP), regulated probe (eProbe) and

regulated genes (eGenes), respectively.

Conditional Regression Analysis to Detect Independent
eSNPs

Due to the linkage disequilibrium among the tested SNPs, we

usually found numerous eSNPs for each eProbe. In order to detect

independent eSNPs, we performed conditional regression analysis

for the eProbes per tissue type. For each eProbe, we first regressed out

the main effect of the top eSNP. We then subjected the residuals to

eQTL mapping to detect potential secondary, independent eSNPs.

We again controlled the false discovery at 0.05 by running 100, as

described before in the method section ‘‘eQTL discovery’’. If

secondary eSNPs were present, we repeated the entire procedure

to detect tertiary eSNPs by regressing out both the primary and

secondary effect (using appropriate multivariate regression anal-

ysis). This procedure was repeated until no significant associations

were detected any more.

Sampling Approach to Identify Tissue-Dependent eQTL
Comparing blood and non-blood tissues. For each of the

200,629 probe-SNP pairs that was significantly associated at FDR

0.05 level, we further assessed whether the detected Z-scores

differed per tissue. We used the Z-scores in blood as a reference

because the blood samples were independent from other tissue

samples and the sample size was much larger. To correct for the

sample size difference, we, out of the 1,240 blood samples,

randomly selected without replacement the same number of

samples for the comparison with liver (N = 74), SAT (N = 83),

VAT (N = 77) and muscle (N = 62). For a certain probe-SNP pair,

we re-calculated the association Z-score in blood for the selected

sample size. The sampling procedure was repeated 100 times. We

subsequently fitted a generalized extreme value distribution

(GEVD) for the Z-scores of 1006 sampling procedures in blood.

GEVD is a flexible model with three parameters: location (c), scale

(b) and shape (a). GEVD can resemble different distributions with

different settings of parameters. For example, when a= 0, it

resembles the Gumbel types of distributions (Type I); when a.0, it

resembles the Frechet types of distributions (Type II); when a,0, it

resembles the Weibull types of distributions (Type III). Therefore,

fitting the GEVD can permit us to estimate realistic distribution of

the Z-scores of this certain probe-SNP pair in blood (Figure S3). We

then assessed the deviation of the Z-score of the same probe-SNP

pair in the other four tissues from the estimated GEVD in blood and

computed P value for the difference of Z-scores between tissues. We

did this analysis in R (version 2.10.1) using the package evd:

Functions for extreme value distributions (version 2.2–4). This

analysis was done for each of the 200,629 probe-SNP pairs and

between blood and each of four non-blood tissues. Considering the

possible dependence of the eQTL effect among tissues, the

significance was controlled at the conserved Bonferroni-corrected

0.05, corresponding to a P value of 6.2361028 (0.05/200,629

probe-SNP pairs/4 tissue comparisons). The probe-SNP pairs with

a P#6.2361028 were called ‘‘discordant associations’’, while probe-

SNP pairs with P.6.2361028 were called ‘‘concordant

associations’’. The expression profiling in all five tissues used the

same platform. Therefore, the discordant association cannot be

explained by the hybridization efficiency. Because all of the tested

SNPs were directly genotyped in non-blood tissues but most of them

were imputed in blood, we further checked whether the discordance

was caused by the imputation. We did not observe that imputation

accuracy might confound our results: 69.3% of the discordant

eSNPs were imputed in blood whereas 68.0% of the concordant

eSNPs were imputed in blood (Fisher’s exact test P value = 0.60).

We also assessed whether there was heterogeneity in effect present

when comparing the different subgroups of phenotypes. We did not

find evidence this to be the case (see Table S6 in ref [18]).

Comparing two independent blood datasets. To further

validate the tissue-dependent effect we had detected, we compared

the cis-eQTL effects between the blood dataset HT12 and H8v2,

using the same sampling procedure as described above. Because of

the difference of expression platform, we could only make

comparisons for those probes that were present in both datasets.

We only investigated SNPs that showed similar allele frequencies

between the two blood datasets (SNPs with allele frequency

P,0.01 were excluded from analysis and as the H8v2 dataset

contained 111 celiac disease patients that were nearly all HLA-
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DQ2.2 or HLA-DQ2.5 positive we also excluded the HLA from

this analysis). After filtering we could compare 93,656 probe-SNP

pairs.

Enrichment for SNP Properties
The minor allele frequency (MAF) and function properties of

eSNPs were annotated by the web-based tool SNP Annotation and

Proxy Search (SNAP) (www.broadinstitute.rog/mpg/snap) [41],

using the CEU population panel from HapMap release 22. We

performed Fisher’s exact test to compare the enrichment between

eSNPs with a tissue-dependent effect on expression across tissues

and eSNPs with a static effect.

Cis-eQTL Analysis of Trait-Associated SNPs
To directly assess the effect of trait-associated SNPs on gene

expression, we confined our cis-eQTL analysis to 1,954 SNPs (with

alleles A/G) that were associated with complex traits at

P,5.061028 in the ‘Catalog of Published Genome-wide Associ-

ated Studies’ (per 16 September 2011) [20] and assessed the tissue-

dependency of eQTL effect across the tissues, following the same

analysis and permutation procedures. The cis-eQTL significance

threshold P values were set at P = 4.661023 in blood, 2.661024 in

liver, 2.561024 in muscle, 1.861024 in VAT and 3.261025 in

SAT, and 1.161023 for the meta-analysis of four non-blood tissue.

At these levels, a total of 2,990 probe-SNP pairs were significant in

at least one eQTL analysis.

Characterizing the Tissue-Dependent Mechanisms of Cis-
Regulation

To characterize the tissue-dependent mechanisms of cis-

regulation, we reasoned that comparing the association at a single

probe-SNP level cannot provide a complete picture of the tissue-

dependent genetic determinants of gene expression. To gain

further insight into the tissue-dependent cis-regulation, we

extended analysis for the eProbes with discordant cis-eQTL that

were determined by single probe-SNP comparison and compared

their whole association profiles across tissues. The association

profile refers to the set of the absolute Z-scores of all N number of

the tested SNPs within 1 Mb distance from the middle point of

probe under study: i.e., {|Z1|, |Z2|, |Z3|, … |Zn|}. Such a

profile can represent the combined association signals of the

multiple independent eSNPs and their linkage disequilibrium.

Most of the eProbes only showed significant association in blood

and were not significantly associated in the smaller non-blood

tissues. For those eProbes, we had limited statistical power to

determine whether the association in non-blood tissues is truly

absent or is not detected due to power issues. Therefore, we

confined our comparison of association profiles to the eProbes that

were significantly associated in non-blood tissues and compared

them to those in blood. To assess the similarity of association

profiles across tissues, we computed Pearson correlations coeffi-

cient (r) of the association profiles between two tissues. Because the

SNPs were likely in strong linkage equilibrium, there is strong

dependency among the Z-scores within the association profile. To

determine the empirical threshold for the significance of the

correlation between the association profiles and considering the

dependency of the SNPs, we performed permutation analysis by

randomly assigning genomes to the individuals per tissue type. We

thus obtained the association profiles per probe per tissue for the

permuted genotypes. These permuted association profiles retained

the same correlation structure among SNPs and the Pearson

correlation coefficient between the permuted association profiles

(r0) would mainly explain the correlation among SNPs. We

repeated this permutation 100 times and determined the empirical

threshold rthres = 0.21 at FDR 0.05 level using the model

(FDR = n0{r0$rthres}/n1{r$rthres), where r and r0 refer to the

Pearson correlation coefficient of real data and permuted data,

respectively; n refers to the number of probes where r$rthres and n0

refers to the average number of probes where r0$rthres from 1006
permutations.

Based on the correlation of association profiles between tissues,

we identified four different categories of tissue-dependent genetic

regulation of gene expression. If the association profiles for one

single probe did not correlate at all between two tissues (r,0.21),

we further checked whether the eProbe was significant in both

tissues: if the probe had a significant association in one tissue but

not in the other, we deemed this ‘‘specific cis-regulation’’; if instead

the eProbe was significant in both tissues, but was associated to

different (unlinked) eSNPs in the different tissues, we deemed it

‘‘alternative cis-regulation’’. For those association profiles where

two tissues showed a correlation (r$0.21), we checked the

direction and the effect size of allelic effect on gene expression:

if the allelic direction was the same and the effect size was

different, we concluded the eProbe belonged to the category

‘‘different effect size’’; if the allelic direction was instead opposite,

the probes had tissue-dependent regulation with an ‘‘opposite

allelic direction’’.

Differential Expression
For the probes with tissue-dependent cis-regulation, we assessed

whether they were also differential expressed between the tissues

where they showed different cis-regulation. To do so, we relied

upon the quantile-normalized expression intensity before any

removal of the first 50 principal components. For each discordant

eProbe, we used a Wilcoxon Mann-Whitney U test to assess the

differential expression between the tissues. We performed the

same analysis for a random set of concordant eProbes, equal in size

to the set of discordant eProbes. The significance of differential

expression was controlled at a Bonferroni-corrected P value 0.05

level.

Accession Numbers
Expression data for both blood tissue and four non-blood

dataset have been deposited in GEO with accession numbers

GSE20142 (1,240 peripheral blood samples, hybridized to HT12

arrays) and GSE22070 (subcutaneous adipose, visceral adipose,

muscle and liver samples). The expression data of the validation

blood eQTL dataset (229 samples) has been deposited in GEO

with accession number GSE203332.

Supporting Information

Figure S1 The effect of removing principal components from

expression data.

(PDF)

Figure S2 Flowchart for the analysis of the tissue-dependent cis-

eQTL across the five human tissues.

(PDF)

Figure S3 Overlap of the associated probe-SNP pairs across the

tissues.

(PDF)

Figure S4 Overlap of the associated probe-SNP pairs across the

single-tissue analysis and meta-analysis.

(PDF)
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Figure S5 Sampling procedure. We assessed the difference of

association strength between blood and four other tissues (liver,

SAT, VAT and muscle). As an example, for liver, we randomly

sampled 74 subjects out of the 1,240 blood subjects (making the

same sample size as for the liver tissue dataset) and re-measured

the association strength for each significantly associated probe-

SNP pair, in terms of Z-scores. This sampling procedure was

repeated 100 times. The histogram showed the Z-scores distribution

of a certain cis-eQTL in 74 blood subjects. We then assessed the

deviation of the Z-scores detected in liver (the red arrow) from the

distribution of Z-scoress in blood, by fitting the extreme value

distribution (EVD) (the red line). The same analysis was performed

for comparing blood with SAT, VAT and muscle, by randomly

sampling N number of blood subjects (N = 83 for the SAT sample

size; 77 for the VAT sample size, and 62 for the muscle sample

size, respectively).

(PDF)

Figure S6 The overlap of discordantly associated probe-SNP

pairs.

(PDF)

Figure S7 The comparison of Z-scores between two indepen-

dent blood datasets. The comparison of cis-eQTL effect was

confined to the set of 93,656 probe-SNP pairs that have been

tested in two independent blood datasets, e.g., a discovery set of

1,240 subjects profiled on the Illumina HT12 expression platform

(HT12) and a validation set of 229 subjects profiled on the

Illumina H8v2 expression platform (H8v2). The Z-scores of cis-

eQTL in the discovery set were the mean of Z-scores from 1006
taking a sample of 229 out of the 1,240 blood subjects. The gray

dots indicate the concordantly associated probe-SNP pairs

between the two blood samples. The red dots indicate the

discordantly associated probe-SNP pairs (the false-positive tissue-

dependent association). The black line is the diagonal line.

(PDF)

Figure S8 The probes-SNP distance for associated probe-SNP

pairs. The distance was calculated by the base pair position (bp) of

SNPs minus the bp position of the middle point of the probes.

(PNG)

Figure S9 Probe-SNP distance for 2,794 eProbes in blood with

multiple independent eSNPs.

(PDF)

Figure S10 The discordant probe-SNP pairs vs. the probe-SNP

distance. The histogram shows the number the probe-SNP pairs

with different distance. The numbers on each bar show the total

number of probe-SNP pairs and the percentage of pairs with

discordant association. The 262 table for Fisher’s exact test is

shown.

(PDF)

Figure S11 The direction of allelic effect of rs5751777 on DDT

expression. The correlation between the genotype of rs5751777

and the expression intensity of DDT gene (residual variance after

50 PCs removed) in five tissues. Each dot represents one subject,

red for females and blue for males. The X-axis represents the

genotypes and the Y-axis represents the expression rank of the

probes.

(PDF)

Figure S12 The opposite association of ORMDL3 gene between

blood and SAT. The x-axis is the genome position based on

genome build 36.3 (in Mb). The y-axis at the left is the association

profiles in terms of Z-scores. The Z-scores in blood, represented as

the red dots, has been weighted by the square root of the sample

size, corresponding to the compared tissue. The blue dots

represent the Z-scores in SAT. The dashed green line indicates

the significance level at FDR 0.05. For a better illustration of allelic

direction, we assigned the association Z-scores in blood a positive

value. If the allelic direction in SAT is the same as that in blood,

the Z-scores in SAT are positive too; otherwise, the Z-scores in SAT

are negative.

(PDF)

Figure S13 The association profiles of the selected trait-

associated genes that show discordant association between blood

and liver. The x-axis is the genome position based on genome

build 36.3. The y-axis at the left is the association profiles in terms

of the Z-score. The Z-score in blood, represented as the red dots or

orange dots. The red dots refer to the Z-scores that have been

weighted by the square root of the sample sizes, corresponding to

the compared tissue. For the clarity of subtle effect in blood, the

weak association in blood was shown as orange dots if the Z-scores

have not been weighted by the sample size, i.e., the Z-scores

reported in 1,240 subjects. The blue dots represent the Z-scores in

liver. The dashed green line indicates the Z-score 3.49,

representing the significance level in blood at FDR 0.05. The

right panel shows the correlation of the absolute association Z-

scores between two tissues. The rho-value indicates the correlation

coefficient of the Pearson correlation.

(PDF)

Figure S14 The association profiles of the selected trait-

associated genes that show discordant association between blood

and SAT. The x-axis is the genome position based on genome

build 36.3. The y-axis at the left is the association profiles in terms

of the Z-score. The Z-score in blood, represented as the red dots or

orange dots. The red dots refer to the Z-scores that have been

weighted by the square root of the sample sizes, corresponding to

the compared tissue. For the clarity of subtle effect in blood, the

weak association in blood was shown as orange dots if the Z-scores

have not been weighted by the sample size, i.e., the Z-scores

reported in 1,240 subjects. The blue dots represent the Z-scores in

SAT. The dashed green line indicates the Z-score 3.49,

representing the significance level in blood at FDR 0.05. The

right panel shows the correlation of the absolute association Z-

scores between two tissues. The rho-value indicates the correlation

coefficient of the Pearson correlation.

(PDF)

Figure S15 The association profiles of the selected trait-

associated genes that show discordant association between blood

and VAT. The x-axis is the genome position based on genome

build 36.3. The y-axis at the left is the association profiles in terms

of the Z-score. The Z-score in blood, represented as the red dots or

orange dots. The red dots refer to the Z-scores that have been

weighted by the square root of the sample sizes, corresponding to

the compared tissue. For the clarity of subtle effect in blood, the

weak association in blood was shown as orange dots if the Z-scores

have not been weighted by the sample size, i.e., the Z-scores

reported in 1,240 subjects. The blue dots represent the Z-scores in

VAT. The dashed green line indicates the Z-score 3.49,

representing the significance level in blood at FDR 0.05. The

right panel shows the correlation of the absolute association Z-

scores between two tissues. The rho-value indicates the correlation

coefficient of the Pearson correlation.

(PDF)

Figure S16 The association profiles of the selected trait-

associated genes that show discordant association between blood

and muscle. The x-axis is the genome position based on genome
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build 36.3. The y-axis at the left is the association profiles in terms

of the Z-score. The Z-score in blood, represented as the red dots or

orange dots. The red dots refer to the Z-scores that have been

weighted by the square root of the sample sizes, corresponding to

the compared tissue. For the clarity of subtle effect in blood, the

weak association in blood was shown as orange dots if the Z-scores

have not been weighted by the sample size, i.e., the Z-scores

reported in 1,240 subjects. The blue dots represent the Z-scores in

muscle. The dashed green line indicates the Z-score 3.49,

representing the significance level in blood at FDR 0.05. The

right panel shows the correlation of the absolute association Z-

scores between two tissues. The rho-value indicates the correlation

coefficient of the Pearson correlation.

(PDF)

Figure S17 Association profiles of MTMR3 in blood and liver.

The x-axis is the genome position based on genome build 36.3 (in

Mb). The y-axis at the left indicates the association Z-score. The Z-

scores in blood, represented as the red dots, have been weighted by

the square root of the sample size, corresponding to the compared

tissue. The blue dots represent the Z-scores in SAT. The dashed

green line indicates the Z-scores 3.49, representing the significance

level in blood at FDR 0.05. The right panel shows the correlation

of the absolute association Z-scores between two tissues. The r-value

indicates the correlation coefficient of the Pearson correlation.

(PDF)
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