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Abstract
While the serotypes of Streptococcus pneumoniae are known to compete dur-
ing colonization in human hosts, our knowledge of how competition occurs
is still incomplete. New insights of pneumococcal between-type competition
could be generated from carriage data obtained by molecular-based detection
methods, which record more complete sets of serotypes involved in co-carriage
than when detection is done by culture. Here, we develop a Bayesian estimation
method for inferring between-type interactions from longitudinal data record-
ing the presence/absence of the types at discrete observation times. It allows
inference from data containing co-carriage of two or more serotypes, which is
often the case when pneumococcal presence is determined by molecular-based
methods. The computational burden posed by the increased number of types
detected in co-carriage is addressed by approximating the likelihood under
a multi-state model with the likelihood of only those trajectories with mini-
mum number of acquisition and clearance events between observation times.
The proposed method’s performance was validated on simulated data. The
estimates of the interaction parameters of acquisition and clearance were unbi-
ased in settings with short sampling intervals between observation times. With
less frequent sampling, the estimates of the interaction parameters became
more biased, but their ratio, which summarizes the total interaction, remained
unbiased. Confounding due to unobserved heterogeneity in exposure could be
corrected by including individual-level random effects. In an application to
empirical data about pneumococcal carriage in infants, we found new evidence
for between-serotype competition in clearance, although the effect size was
small.
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1 INTRODUCTION

A recurrent theme in research of Streptococcus pneumoniae (the pneumococcus) is whether and how pneumococcal
serotypes interact with each other.1-8 As pneumococcal conjugate vaccination has led to serotype replacement, it is evi-
dent that between-serotype competition exists.9 However, the mechanisms by which different serotypes compete remain
poorly understood.10,11

The way pneumococcal serotypes interact with each other during colonization (carriage) in human hosts has often
been studied in longitudinal settings.2-7 Using multi-state models, it has been possible to infer from longitudinal data
whether and to what extent different serotypes compete by inhibiting acquisition or enhancing clearance of colonization
of one another. In such models, the possible combinations of types with which a host can be simultaneously colonized
define the model’s states, whereas the transitions between these states represent events of acquisition and clearance.
With these definitions, interactions in acquisition and clearance can be quantified in terms of ratios between appropriate
transition rates. Competition in acquisition is quantified by reduced rates of acquiring a new serotype in presence rela-
tive to absence of other types, whereas competition in clearance is characterized by higher rates of clearing a serotype
in presence relative to absence of other types. Based on estimates of such rate ratios, various studies have concluded
that competition in acquisition is likely.2-6 By contrast, only a few studies have also found evidence for competition in
clearance.4,7

Nevertheless, previous findings of between-serotype interactions may have been biased by the suboptimal sensi-
tivity of culture-based methods for detecting pneumococcal presence.6,7 While culture-based methods seldom detect
co-carriage of more than two types, it is common for molecular-based methods to discover co-carriage of three or more
types. Cross-validation of samples using both methods suggests an underdetection by culture-based methods when
multiple types are present.12-14 Previous studies have suggested that underdetection of co-carriage may have biased
estimates of between-type interaction in the direction of stronger competition.6,7 Molecular-level data may provide a
more accurate picture of serotype co-occurrence but have not yet been used for the purpose of estimating between-type
interaction.

In principle, inference of between-serotype interactions from molecular-level longitudinal data is not different from
analyzing culture-level data. It is still possible to define rate ratios of acquisition and clearance as measures of inter-
actions. However, estimation of these measures becomes more computationally demanding when the data only record
the states of the underlying dynamics at discrete observation times. For instance, when observing the host to be in the
non-carriage state at one observation time and carrying some serotype(s) at the subsequent observation time, an estima-
tion method that considers the full likelihood based on the observed data must account for the many possible time points
at which acquisition(s) could have taken place. In addition, it has to take into account the possibility of one or more
serotypes being acquired and cleared successively for multiple times between the observations times. Exploration of all
possible trajectories of acquisition and clearance compatible with the observed data is hence computationally intensive.
To alleviate this computationally intensive task, previously developed estimation methods have restricted the model state
space to co-carriage states with up to two serotypes. Such simplification was justified in analyses of culture-level data, as
observation of co-carriage with more serotypes was rare. To analyze of molecular-level data with many observations of
co-carriage with two or more serotypes, this restriction of state space is no longer justifiable, and new approaches need
to be developed to handle such data.

In this article, we develop an estimation method that allows inference of interactions between pathogen types from
longitudinal data containing co-carriage of two or more types, as is often the case when common multi-strain pathogens
(eg, S pneumoniae, human papillomavirus, Plasmodium falciparum) are detected with molecular-based methods. The
new method tackles the computational task by restricting the likelihood function under a multi-state model to account
the likelihood of only those trajectories with a minimal number of transitions. The loss in accuracy resulting from
this likelihood approximation likely depends on sampling strategy and requires case-specific consideration. The arti-
cle is organized as follows. Section 2 specifies the model for multiple-type pneumococcal colonization dynamics. In
Section 3, we present an approximation of the likelihood function and embed it in a Bayesian estimation framework.
In Section 4, we validate the proposed Bayesian approximate likelihood-based (BALB) estimation method on simulated
data. In light of the motivating pneumococcal data set, we investigate various aspects of study design that may affect
the accuracy of estimation. In Section 5, we apply the new method to a molecular-level data set of pneumococcal car-
riage in infants to investigate between-type competition of pneumococcus. Finally, we conclude and discuss our findings
in Section 6.
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2 A MULTI-STATE MODEL OF MULTIPLE-TYPE PNEUMOCOCCAL
COLONIZATION DYNAMICS

We here specify a continuous-time multi-state model for the pneumococcal colonization dynamics of an arbitrary num-
ber of serotypes at the individual level. We assume a Markov model so that the transition rates are constant over
time. For the pneumococcal data set we consider in this work, the Markov assumption is justifiable as it consists
of infants in their first 18 months of life, during which the build-up of naturally acquired serotype-specific immu-
nity as well as cross-protection across types are limited.15,16 For simplicity, we also assume any seasonal effects to be
negligible.

The model’s state space is the set of possible combinations of a given number p of serotypes. Including the uncol-
onized state ∅, there are maximally 2p states possible. Models previously used to infer between-type interactions from
culture-based data contained no co-carriage states of more than two types and hence consisted maximally of 1 + p(p +
1)∕2 states.2-7 In this work, we allow co-carriage states with more than two types, in agreement with what was observed
in the pneumococcal data set of this study. In addition, some co-carriage states with more than two types that could
occur between the observed co-carriage states are included to the model state space, which will be further specified
in Section 3.

Except for allowing for more co-carriage states, other model assumptions (with regard to acquisition, clearance and
interaction between serotypes) are similar to previously developed multi-state models of pneumococcal colonization
dynamics.2,4,5,7 Transitions between the model states take place when individual serotypes are acquired or cleared. We
only allow acquisition and clearance of one type at a time so that the model accommodates only transitions between those
pairs of states that differ by one type (Figure 1). This does not impose a real restriction, as the probability of multiple
transitions occurring simultaneously is arguably negligible.

An uncolonized individual acquires type j at rate zi𝜆j, where 𝜆j is the per capita baseline acquisition rate
of type j and zi an individual-level parameter (“random effect”) indicating the level of exposure and/or predis-
position to pneumococcal colonization of individual i. An individual already colonized with one or more of the
other types acquires type j at rate kzi𝜆j. Hence, parameter k is the rate ratio for acquiring a type in presence
vs absence of any other types and describes the between-type interaction in acquisition, with k < 1 denoting
competition.

In a singly colonized individual, that is, in absence of any other types, clearance of type j occurs at a type-specific
baseline rate 𝜇j, whereas clearance in presence of other types occurs at rate h𝜇j. Hence, parameter h is the rate ratio for
clearing a type in presence vs absence of other types, describing the between-type interaction in clearance, with h > 1
denoting competition.

F I G U R E 1 Structure of the multi-state model. The depicted multi-state model describes the colonization dynamics of p = 2
pneumococcal serotypes at the individual level. This model has 2p = 4 states and 2p ⋅ p = 8 transitions. Shown are the baseline acquisition
rates, 𝜆1 and 𝜆2, the baseline clearance rates, 𝜇1 and 𝜇2, the random effect of individual i, zi, and the interaction parameters of acquisition and
clearance, k and h



984 MAN et al.

In summary, for a given individual i, the transition rate between any two model states, from x to y, is given by

Qi(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

zi𝜆j if x = ∅ and y = {j},
kzi𝜆j if x ≠ ∅, y = x ∪ {j} and j ∉ x,
𝜇j if y = ∅ and x = {j},
h𝜇j if y ≠ ∅, x = y ∪ {j} and j ∉ y,
0 if otherwise,

(1)

where ∅ denotes the uncolonized state, ∉ not contained by, and ∪ the union of the respective sets.
Arranging all transition rates of individual i in a matrix yields a transition rate matrix Qi, in which the (x, y) element

is the transition rate from state x to state y. By convention, each diagonal element of Qi is specified as the additive inverse
of the total transition rate out of the corresponding state, that is, Qi(x) = −

∑
y≠x Qi(x, y).

3 A BALB ESTIMATION METHOD

In this section, we present a BALB method for estimating parameters of the multi-state model of Section 2, when carriage
states data D have been recorded from each study subject at a number of discrete observation times. Denote the vector
of unknown parameters by 𝜃 = (𝜆1,… , 𝜆p, 𝜇1,… , 𝜇p, k, h, z1,… , zm)T . For m study subjects, the parameters include 2p
baseline rates, 2 interaction parameters, and m random effects. The estimation method relies on an approximation of the
likelihood function p(D|𝜃) of the model parameters 𝜃.

Before writing the likelihood function based on the entire data set D, we specify how the contribution from one con-
secutive pair of observations from one individual is approximated. For a moment, for notational convenience, we use D
to denote this single pair of observations and Q to denote the transition rate matrix of the individual in question.

Suppose that we observe the individual to be in state xstart at time tstart and in state xend at the subsequent observa-
tion time tend, that is, D = {xstart, xend, tstart, tend}. The likelihood contribution p(D|𝜃) is given by the total probability of all
possible trajectories compatible with this observation, that is, of all paths of connecting states starting in state xstart and
ending in state xend, with corresponding sojourn times summing up to ΔT = tend − tstart. Theoretically, this probability can
be evaluated by first determining the transition probability matrix exp(Q ⋅ ΔT) and then taking its (xstart, xend) element.
However, calculating the exact transition probability matrix amounts to computing a matrix exponential, which is com-
putationally intensive when the dimension of Q is high, that is, when many states are included in the model.17 This is the
case when many co-carriage states with more than two types are observed. Also any data augmentation approach would
be computationally demanding if all possible trajectories need to be simulated. To make the computation of the likeli-
hood computationally feasible, we approximate p(D|𝜃) by considering only the subset of all possible trajectories that are
compatible with the observation. Specifically, we only consider those trajectories that contain the minimum number of
transitions connecting state xstart to state xend. We thus include only those trajectories that contain exactly one transition
for each type that is in xstart but not xend, or vice versa, and disregard any trajectory that involves successive acquisition
and clearance of the same type between observation times. In effect, when states xstart and xend differ with regard to the
status of n types, a minimum-transition trajectory contains exactly n + 1 states and n transitions. Note that, due to this
restriction to minimum-transition trajectories, the model state space is reduced to only those co-carriage states that show
up in a minimum-transition trajectory.

To enumerate all minimum-transition trajectories, let (D) and  (D) denote the collection of all minimum-transition
paths and the collection of all compatible sojourn times, respectively. As an example, suppose that D =
{xstart, xend, tstart, tend} = {∅, {1, 2}, 0, 2}. The corresponding collection of paths (D) consists of two paths: (∅, {1}, {1, 2})
and (∅, {2}, {1, 2}), while the corresponding collection of sojourn times  (D) consists of all positive triplets summing up
to ΔT, for example, (0.5, 0.5, 1.0) (Figure 2). The approximation of the likelihood contribution p̃(D|𝜃) is given by the like-
lihood of all minimum-transition trajectories, obtained by enumerating all combinations of paths and sojourn times in
(D) and  (D):

p̃(D|𝜃) = ∑
x∈(D)

∫t∈ (D)
p(x, t|𝜃)dt
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F I G U R E 2 Example of a minimum-transition trajectory. The depicted trajectory is one possible minimum-transition trajectory
corresponding to data D = {xstart, xend, tstart, tend} = {∅, {1, 2}, 0, 2}. The depicted path is (∅, {1}, {1, 2}), with sojourn times (0.5, 0.5, 1.0).
Legend: Solid vertical lines denote observation times; dashed vertical arrows denote transition times; thin horizontal lines denote
non-carriage; thick horizontal lines denote carriage

=
∑

x∈(D)
∫

ΔT

0 ∫
ΔT−t1

0
· · ·∫

ΔT−
∑n−1

r=1 tr

0
p(x, t1, t2,… , tn,ΔT −

n∑
r=1

tr|𝜃)dtn · · · dt2dt1

=
∑

x∈(D)
∫

ΔT

0 ∫
ΔT−t1

0
· · ·∫

ΔT−
∑n−1

r=1 tr

0
eQ(xn+1)(ΔT−

∑n
r=1tr)

n∏
r=1

eQ(xr)tr Q(xr, xr+1)dtn · · · dt2dt1. (2)

The integrand on the last line is the standard likelihood in multi-state models for a single trajectory, in which the
exponential terms account for sojourning in the visited states and the off-diagonal terms of matrix Q for the respective
transitions in between.18

Equation (2) can be simplified into the following expression, which is less computationally intense to evaluate (see
Supplementary Appendix A for verification):

p̃(D|𝜃) = ∑
x∈(D)

eQ(xn+1)ΔT

( n∏
r=1

Q(xr, xr+1)

)(
(−1)n∏n−1

r=1 Q(xr) − Q(xn)
+

n∑
r=1

e(Q(xr)−Q(xn+1))ΔT

(Q(xr) − Q(xn+1))
∏n

s=1,s≠r(Q(xr) − Q(xs))

)
. (3)

See Supplementary Appendix B for an analysis demonstrating the goodness of the approximation under reasonable
length of the sampling interval ΔT.

We now return to the general case in which D consists of an arbitrary number of individuals and observation times.
An approximation to the entire likelihood is obtained by multiplying the approximate likelihood contributions of all pairs
of consecutive observation times, that is,

p̃(D|𝜃) = m∏
i=1

ui−1∏
l=1

p̃(Dil|𝜃), (4)

where ui is the number of observation times of individual i, and Dil = {xi
l , xi

l+1, ti
l , ti

l+1} the lth consecutive pair of
observations of individual i.

Finally, the approximate likelihood function in Equation (4) is embedded into a Bayesian framework, in which statisti-
cal inference is enabled by estimating the posterior probability of the model parameters according to Bayes’ theorem. The
posterior probability p(𝜃|D), which is proportional to the product of the likelihood function p(D|𝜃) and the prior p(𝜃), is
approximated through the use of the approximate likelihood p̃(D|𝜃). The proposed estimation method was implemented
in the statistical software STAN (https://github.com/irene-man/), which performs Markov chain Monte Carlo simulation
with a Hamiltonian Monte Carlo scheme.

4 SIMULATION STUDY

4.1 Methods to compare

The BALB estimation method was validated on simulated data. As a benchmark, we compared its performance against
a naive method which imputes transition times midway between the consecutive observation times. With the imputed

https://github.com/irene-man/
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transition times, the naive method obtains the maximum likelihood estimates of the model parameters by means of Pois-
son regression (see Supplementary Appendix C for details of the naive method). Note that also the naive method makes
the assumption of minimum transitions.

In addition, we investigated how well BALB was able to adjust for bias due to unobserved heterogeneity in exposure
and/or predisposition to pneumococcal colonization. To do so, we considered two implementations of BALB, one with
individual-specific random effects (zi) and one without.

4.2 Simulated settings

We simulated longitudinal data sets according to the multi-state model of Section 2. Each data set consisted of 500 indi-
viduals with a follow-up of 20 months. The large number of individuals was chosen to ensure stable estimates, facilitating
identification of biases in the estimated parameter values. For each individual, the initial state at time 0 was non-carriage.
Data were simulated assuming the same baseline rates across all serotypes: 𝜆j = exp(−3.5) ≈ 0.030 per month (acqui-
sition) and 𝜇j = exp(−1.5) ≈ 0.22 per month (clearance). Roughly, in absence of interactions, these rates would yield a
prevalence of 12% for each serotype in the steady state. Parameters that were varied across simulated settings included
the number of types (p), the length of the sampling interval (ΔT), the interaction parameters (k and h), and the variance
of the individual-level random effects zi (𝛼).

4.2.1 BALB and naive methods in absence of heterogeneity in exposure

We compared the performance of BALB and the naive method in various settings in which there was no heterogeneity
in exposure. First, setting the number of types to 2, we varied the length of the sampling interval (ΔT = 0.5, 1, 2 months).
Then, fixing the sampling interval to 2 months, we varied the number of types (p = 2, 4, 7). For each combination of sam-
pling interval and number of types, we explored nine distinct pairs of parameter values for the two interaction parameters,
each chosen from (0.5, 1.0, 2.0). For the interaction parameter of acquisition k, these values correspond to competition,
independence and synergy, respectively, whereas for the interaction parameter of clearance h, they correspond to synergy,
independence and competition, respectively.

4.2.2 BALB under heterogeneity in exposure

We next investigated whether BALB was able to adjust for unobserved heterogeneity in exposure by including random
effects. Heterogeneity was realized by simulating individual-specific random effects zi using a gamma distribution with
mean one and variance 𝛼. We simulated settings with different values of 𝛼, that is, 𝛼 = 0.00001, 0.1, 0.2, 0.5, 1. In the
case with the variance as large as 1, the 20% of individuals with the largest random effects have at least 7.2 times higher
rates for type-specific acquisitions than the 20% of individuals with the smallest random effects. At the other extreme,
𝛼 = 0.00001 resembles the homogeneous case. All random effects zi and 𝛼 needed to be estimated from the data in order
to mimic the situation in which there is no external information (or incomplete information) on variation in exposure
levels or susceptibility to colonization across study participants. Throughout, the number of types was fixed at 2 and the
length of sampling interval fixed at 1 month. These settings of different values of 𝛼 were repeated for two combinations
of interaction parameters: (1) competition in acquisition and no competition in clearance (k = 0.5, h = 1) and (2) no
competition in acquisition and competition in clearance (k = 1, h = 2).

4.3 Prior distributions

We assumed the following prior distributions for the model parameters in BALB. The baseline acquisition and clear-
ance rates, 𝜆j and 𝜇j, were assumed to have gamma-distributed priors. The corresponding rate parameters were chosen
as the crude baseline rates, which were derived from the data (see Supplementary Appendix D for the derivation). The
corresponding shape parameters were fixed to a small value (0.00001) in order to be non-informative. For the interaction
parameters, we assumed uniform priors on the log scale with a symmetrical range around zero to allow as much compet-
itive as synergistic interactions, that is, log(k), log(h) ∼ Unif(−3, 3). The random effects were assumed to follow a gamma
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distribution with mean one and variance 𝛼 to ensure identifiability, that is, zi ∼ Gamma
( 1
𝛼
,

1
𝛼

)
, where 1

𝛼
is both the shape

and rate parameter. For 1∕𝛼, we assumed the following log-normal-distributed hyperprior: 1∕𝛼 ∼ Lognormal(0, 2).

4.4 Performance measures

To test the performance of the proposed method, for each setting we simulated 100 data sets, from which the model param-
eters were estimated. For the Bayesian methods, estimates are given as posterior means and 95% credible intervals (CIs).
For the naive method, estimates are given as maximum likelihood estimates and 95% confidence intervals (also abbre-
viated as CIs). To assess bias in the estimation of the baseline rates and the log-transformed interaction parameters, we
computed the difference between the true parameter values and the mean of the estimates across the 100 simulated data
sets. In addition, we also assessed the bias in the estimates of the log-transformed ratio of the two interaction parameters,
log(k∕h).

4.5 Results

4.5.1 Performance of BALB and the naive methods in absence of heterogeneity in exposure

With 2 types and a short sampling interval of 0.5 months, both the BALB and naive methods were able to estimate the
interaction parameters with little bias (Figure 3A, eTable 2 in Supplementary Appendix E). With increasing length of the
sampling interval, both methods led to biased estimation, except when there was no interaction in either acquisition or
clearance (Figure 3A-C, eTable 2). The interaction parameter in clearance log(h) was biased toward zero (no interaction),
while the interaction parameter in acquisition log(k) was either over- or under-estimated. Overall, estimates under BALB
were less biased than under the naive method. In particular, BALB was better in estimating the ratio of the two interaction
parameters log(k∕h) as the sampling interval became longer; in Figure 3, the estimates of BALB (green) stayed closer to
the dashed slopes containing the true parameter values than the estimates of the naive method (red). When increasing
the number of types, the biases under both methods remained at similar levels (Figure 3D-F, eTable 3). However, the
CIs became narrower. In some instances, the CIs even excluded the true parameter values due to precise but biased
estimation.

Regarding the estimation of the baseline rates, again, short sampling intervals (0.5 months) safeguarded against biased
estimation; longer sampling intervals induced larger bias, while increasing the number of types did not influence the bias
(eTables 4 and 5). The bias due to increasing length of sampling interval was comparable across the two methods. Of note,
longer sampling intervals led to systematic underestimation of both baseline rates by both methods. Such underestimation
is caused by the minimum-transition assumption, used in both the BALB and naive methods. When a complete carriage
episode is missed, the true trajectory cannot be captured by a minimum-transition trajectory, as it would require acqui-
sition and clearance of the same type. Both the numbers of acquisition and clearance events are then underestimated,
which in turn leads to an underestimation of the baseline rates.

4.5.2 Performance of BALB under heterogeneity in exposure

Next, we explored the ability of BALB to adjust for unobserved heterogeneity in exposure. In the setting with competi-
tion in acquisition but no interaction in clearance (k = 0.5, h = 1), BALB became increasingly biased in estimating the
interaction parameter of acquisition with increasing heterogeneity when random effects were not included in the anal-
ysis (Figure 4A, eTable 6). The bias was toward more synergy; when unobserved heterogeneity was sufficiently large
(𝛼 = 1), competition in acquisition was even erroneously indicated as synergistic. Including random effects, BALB was
able to correct for the unobserved heterogeneity. However, in the setting resembling homogeneity, the estimates of inter-
action in acquisition were slightly more biased toward stronger competition if random effects were allowed, likely due to
overfitting. It is also noteworthy that the estimates of the interaction parameter in clearance did not seem to be affected
by the amount of heterogeneity, which acts on the acquisition rates (Figure 4B, eTable 6). The other setting with com-
petition in clearance but no interaction in acquisition (k = 1, h = 2) gave the same qualitative results (Figure 4C,D,
eTable 6).
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(A) (B) (C)

(D) (E) (F)

F I G U R E 3 Estimates of BALB and the naive method in absence of heterogeneity in exposure. Estimates of the log-transformed
interaction parameters, log(k) and log(h), obtained by BALB (green) and the naive method (red), in settings in absence of heterogeneity in
exposure. The top row shows the settings with 2 types and increasing length of sampling intervals: (A) 0.5 months, (B) 1 month, and (C) 2
months. The bottom row shows the settings with 2-month sampling intervals and increasing number of types: (D) 2 types, (E) 4 types, and (F)
7 types. The vertical and horizontal dashed lines show the true values of log(k) and log(h), respectively. The dashed slopes through the
intersections show the isoclines of log(k∕h)

5 APPLICATION TO LONGITUDINAL PNEUMOCOCCAL CARRIAGE
DATA

5.1 Data collection

To further assess the performance of BALB, we analyzed a data set of pneumococcal carriage derived from 45 new-born
infants in the Netherlands. Each infant was followed from birth up to at most 18 months of age. Nasopharyngeal samples
were collected according to a decelerating sampling scheme in which samples were taken with 1-month intervals up to
8 months of age and subsequently at 10, 12, 15, and 18 months of age. Occasionally, additional samples were obtained
if the infant experienced a respiratory infection. Nine infants were vaccinated with the 7-valent and 36 infants with the
10-valent pnemococcal conjugate vaccine.

Carriage of S pneumoniae and of individual pneumococcal serotypes was determined using both conventional diag-
nostic culture and molecular methods. The presence of 21 pneumococcal serotypes was determined as follows. For 14
serotypes (3, 6C, 9N, 10A, 11A, 12F, 15A, 15BC, 16F, 19A, 19F, 22F, 23A, and 33F), presence was identified both with
molecular-based (qPCR) methods and culture. Carriage of the remaining 7 serotypes (17F, 21, 23B, 25F, 31, 35B, and
35F) was identified by culture only because no molecular-based method was available at the time of data collection.
Positivity is here defined as positive by either one of the two methods. Samples positive for S pneumoniae for which
the serotype could not be determined were assigned as non-typable (NT). Details of the detection methods are given
elsewhere.19
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F I G U R E 4 Estimates of BALB under increasing heterogeneity in exposure. Estimates of the log-transformed interaction parameters
log(k) (A, C) and log(h) (B, D) obtained by BALB with (blue) and without (green) random effects in settings with 2 types, 1-month sampling
interval and increasing amount of unobserved heterogeneity in exposure. The top row (A, B) shows the settings with competition in
acquisition and no competition in clearance (k = 0.5, h = 1). The bottom row (C, D) shows the settings with no competition in acquisition
and competition in clearance (k = 1, h = 2). The horizontal dashed lines show the true values of log(k) (left) and log(h) (right)

The data set comprises 538 samples, of which 109 (20% of 538) were additional samples obtained due to respiratory
infections. Co-carriage of up to 4 serotypes was determined. In total, 335 (62% of 538) of the samples were positive for at
least one serotype, among which 107 (32% of 335) were positive for multiple serotypes (see eFigure 1 in Supplementary
Appendix F for the distribution of the number of types in co-carriage). Pneumococcal carriage was heterogeneous across
the serotypes, ranging from 2.6% to 12.3% of the samples (eFigure 2 in Supplementary Appendix F). The proportion of
samples positive for S pneumoniae also varied across individuals; which was 43.5% among the 50% of the study participants
with the least carriage and 79.5% among the 50% of the study participants with the most carriage. This suggests the need
to adjust for heterogeneity in exposure (or likewise, in predisposition to pneumococcal colonization) across individuals
by including random effects.

5.2 Methods

We analyzed the pneumococcal data set with the naive method and with the BALB method, with and without random
effects. To ensure stable estimates, we assumed common baseline acquisition and clearance rates for the seven rarest
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F I G U R E 5 Estimates of BALB and the naive method for the pneumococcal application. Estimates of the log-transformed interaction
parameters log(k) and log(h) obtained by the naive method (red), BALB with (blue) and without (green) random effects. Using wider priors
for the variance 𝛼 of the random effects by increasing the standard deviation of its half-normal prior from 0.01, 0.1, 1 to 10 resulted in smaller
estimates of the interaction parameter of acquisition (blue circles more to the left)

serotypes (12F, 17F, 22F, 25F, 3, 31, and 9N) in all methods. For BALB, the same priors for the model parameters were
used as in the simulation study, except for 𝛼, for which a half-normal distribution was assumed. For the half-normal prior
distribution, we also explored the effect of increasing standard deviation (SD = 0.01, 0.1, 1, 10) while fixing the mean to
zero.

5.3 Results

The baseline rates estimated by the different methods were comparable, whereas the estimates of the interaction parame-
ters were quite divergent (eTable 8, Figure 5). While the naive method indicated competition in acquisition and synergy in
clearance, BALB with or without random effects suggested competition in clearance and synergy in acquisition. Similar
to the simulation study, using wider priors for 𝛼 in BALB with random effects led to smaller estimates of the interac-
tion parameter of acquisition, corresponding to less synergy (or more competition). Simultaneously, the estimates of the
interaction parameters of clearance became slightly smaller, corresponding to less competition.

The estimates of the log-transformed ratio of the two interaction parameters log(k∕h) were more consistent across the
different methods. The naive method yielded a large negative log-transformed ratio, indicating strong competition. The
estimates of BALB were closer to zero. BALB without random effects found a small but positive log-transformed ratio.
Allowing more heterogeneity across individuals turned the estimated log-transformed ratio to a negative value, indicating
competition.

6 DISCUSSION

In this article, we developed a new estimation method for inferring interactions between multiple types of the same
pathogen from longitudinal data. The new method was developed to accommodate inference of between-serotype inter-
actions from pneumococcal carriage data obtained using molecular-based detection methods, typically yielding increased
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levels of co-carriage as compared to traditional culture-based methods. Multi-state models have difficulty in dealing with
co-carriage states of more than two types due to the increased computational burden of exploring all possible acquisi-
tion and clearance events between discrete observation times. The new estimation method tackles the computational
task by approximating the likelihood function of the parameters in a multi-state model with the likelihood of trajecto-
ries with a minimum number of transitions. To facilitate estimation, the approximate likelihood function was embedded
in a Bayesian framework and implemented according to a computationally efficient Hamiltonian Monte Carlo scheme.
The performance of the resulting BALB estimation method was demonstrated in a simulation study. Moreover, by apply-
ing BALB to a pneumococcal carriage data set, we were able to shed new light on the extent and mechanism by which
pneumococcal serotypes compete during colonization.

Because the computational burden of inferring between-type interactions could already be high for models with only
co-carriage states up to two types, many previous methods have taken recourse to some form of approximation to mitigate
this burden. For example, methods based on data augmentation or maximum likelihood estimation have also relied on
the minimum-transition assumption.4,6 There are some approaches that relax this assumption but all previously consid-
ered multi-state models omit co-carriage states of more than two serotypes.2,3,5,7,20 By capping the number of co-occurring
serotypes to two, it is implicitly assumed that an individual already colonized with two types may not acquire any addi-
tional types before some are cleared first, which may induce a bias toward stronger competition. For the estimation
method here, we chose to keep the minimum-transition assumption in order to be able to relax the limitation on the num-
ber of co-occurring serotypes. This enables estimation of between-type interaction from molecular-based pneumococcal
carriage data. The loss in accuracy resulting from the minimum-transition assumption was found to be justified in our
specific application, given the comparatively frequent sampling in relation to acquisition and clearance of pneumococcal
serotypes.

We evaluated the performance of BALB using simulated data. As a benchmark, we used a naive estimation method
which simply imputes transition times midway between the observation times. Although the simple method is compu-
tationally undemanding, it may be more prone to bias as midpoint transitions may systematically shorten or lengthen
episodes of carriage or non-carriage relative to the true colonization history.

The simulation study also revealed under which circumstances BALB may perform suboptimally. Long sampling
intervals led to biases in the estimates of the model parameters; the baseline rates were underestimated, interaction in
clearance was biased toward no competition, and both competition and synergy in acquisition could be either over- or
underestimated. Nevertheless, the ratio of the two interaction parameters remained relatively unbiased even with long
sampling intervals. The underestimation of the baseline rates is due to missing of a portion of complete carriage episodes
between consecutive observation times, which cannot be accounted for by the minimum-transition assumption. It is less
clear what determines the direction of biases in the interaction parameters. Our hypothesis is that the rates of clearance are
more easily biased than the rates of acquisition, and likewise, the estimation of interaction in clearance is more difficult.
While the average duration of a carriage episode is around the same order of magnitude as the sampling interval, periods
of non-carriage are much longer, facilitating precise estimation of acquisition rates. As the ratio of the two interaction
parameters is more easily identifiable, it is conceivable that the method tends to compensate for the bias in the interaction
parameter of clearance with the interaction parameter of acquisition. More investigation is needed to substantiate this
hypothesis. While it would be ideal to estimate all parameters without bias, it could be sufficient to accurately estimate
the ratio of the interaction parameters in situations where the total amount of competition is more relevant. As we have
shown previously, the ratio of the interaction parameters in acquisition and clearance constitutes a natural summary
measure of the interactions in these two modes and contains predictive value for serotype replacement.7,21

The simulation study also showed that BALB was capable of adjusting for unobserved heterogeneity in exposure
or predisposition to pneumococcal colonization by including individual-specific random effects. In the context of the
motivating data on pneumococcal carriage in infants, exposure of pneumococcal carriage may be heterogeneous due
to differences in, for example, the number of siblings and attendance to daycare. When unadjusted for, unobserved
factors that increase the risk of carriage irrespective of type could induce spurious positive associations between differ-
ent serotypes, masking possible competition between serotypes.21 In the simulation study, adjustment for unobserved
heterogeneity by including random effects worked satisfactorily. However, it could be more challenging in reality.
Possible challenges include correct specification of the distribution of random effects and the mechanism through which
unobserved heterogeneity acts. Therefore, measuring and modeling possible confounders remain pivotal.

After validation on simulated data, the proposed estimation method was used to study interactions between pneumo-
coccal serotypes based on a data set of pneumococcal carriage obtained using molecular-based detection methods. In line
with previous results, which were all derived from culture-based data,1,2,4,6,7 we found evidence for competition between
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serotypes. Since the detection method that we used to determine the composition of co-carrying serotypes in samples is
more sensitive than the culture-based methods used in previous studies, we anticipated between-type competition to be
weaker than previously estimated.13 Nevertheless, the estimated effect size was surprisingly low. An additional explana-
tion is that the serotypes with strong competitive ability were already removed from the vaccinated study population, as
the vaccine targets serotypes that dominated in carriage, such as 6B, 14, 19F, and 23F, which are arguably also the strong
competitors.9,22,23 It was also surprising that competition was found in clearance and not in acquisition in this data set.
Although previous carriage studies have identified competition in acquisition to be the main mechanism, some of them
as well as experiments in mouse models have hinted on competition in clearance.4,7,8 More studies on other data sets are
needed to validate these results.

The analysis of between-type interactions on this data set has some shortcomings. Most importantly, the sample size
was small (45 individuals). To put this number into perspective, most other longitudinal carriage data sets used for esti-
mating pneumococcal interactions have consisted of more than a hundred subjects.2-7,20 In addition, at the time of data
collection, only 14 of the 21 serotypes could be identified by molecular-based methods. The seven remaining serotypes
were thus detected using culture-based methods only. The level of unobserved heterogeneity may also have complicated
identification of between-type interactions. Inclusion of random effects may have only been able to partly account for
this. Adjustment based on the collected background information of the study participants and seasonal effects could have
further strengthened the analysis.

In the future, the proposed method could be applied to other data sets to further elucidate interaction between
pneumococcal serotypes. In principle, the approach remains valid as long as the transition rates are constant between
observation times. For instance, it is possible to model type-specific interaction parameters, which may enable detec-
tion of possible differences in competitive ability across pneumococcal serotypes, a topic that has only been touched
upon in previous studies.2,6,7 When factors such as age, season, and medication use are relevant to pneumococcal
carriage,6,20 they could be included as covariates. While introducing more parameters may make the model more realis-
tic, it should be done with caution, as identification of the large number of parameters is challenging when the amount
of data is limited.

As methods to detect and characterize multi-strain pathogens will continue to improve and become more accessible,
we expect more opportunities to study the interactions between pneumococcal serotypes or strains of other pathogens,
such as the human papillomavirus and P falciparum.24,25 Existing statistical and computational methods may need to be
further refined to accommodate analysis of the resulting higher-resolution data. Whenever more accurate measurements
of pathogen types or strains are made at regular intervals that are sufficiently short to guarantee that repeated acquisition
and clearance in between measurements is unlikely, the inferential approaches based on minimum-transition trajecto-
ries like the one presented here can be used to study pathogen interactions. In turn, new knowledge of between-strain
interactions may help to better understand and improve the impact of key preventive and therapeutic interventions (eg,
vaccination and antibiotics) against multi-strain pathogens.10,26
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