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Insights into intrauterine growth 
restriction based on maternal 
and umbilical cord blood 
metabolomics
Georgios Moros1,2,6, Theodora Boutsikou3,6, Charalambos Fotakis2, Zoe Iliodromiti3, 
Rozeta Sokou3, Theodora Katsila2, Theodoros Xanthos4, Nicoletta Iacovidou3* & 
Panagiotis Zoumpoulakis2,5*

Intrauterine growth restriction (IUGR) is a fetal adverse condition, ascribed by limited oxygen 
and nutrient supply from the mother to the fetus. Management of IUGR is an ongoing challenge 
because of its connection with increased fetal mortality, preterm delivery and postnatal pathologies. 
Untargeted nuclear magnetic resonance (1H NMR) metabolomics was applied in 84 umbilical cord 
blood and maternal blood samples obtained from 48 IUGR and 36 appropriate for gestational age 
(AGA) deliveries. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) 
followed by pathway and enrichment analysis generated classification models and revealed significant 
metabolites that were associated with altered pathways. A clear association between maternal 
and cord blood altered metabolomic profile was evidenced in IUGR pregnancies. Increased levels 
of the amino acids alanine, leucine, valine, isoleucine and phenylalanine were prominent in IUGR 
pregnancies indicating a connection with impaired amino acid metabolism and transplacental flux. 
Tryptophan was individually connected with cord blood discrimination while 3-hydroxybutyrate 
assisted only maternal blood discrimination. Lower glycerol levels in IUGR samples ascribed to 
imbalance between gluconeogenesis and glycolysis pathways, suggesting poor glycolysis. The 
elevated levels of branched chain amino acids (leucine, isoleucine and valine) in intrauterine growth 
restricted pregnancies were linked with increased insulin resistance.

An emerging body of literature indicates that abnormal fetal growth is associated with increased risk of peri-
natal morbidity and mortality1–3. More specifically, intrauterine growth restriction (IUGR) is associated with 
chronic hypoxia and stress, leading to adverse endocrine axis reprogramming4,5. The aforementioned alterations 
predispose IUGR infants to impaired glucose homeostasis, insulin sensitivity and adipose tissue development, 
factors that are associated with coronary vascular disease, hypertension and diabetes mellitus in adulthood6,7.

IUGR results from the failure of the fetus to reach its intrinsic growth potential, due to maternal, fetal, or 
placental pathology8. The main cause of IUGR is placental insufficiency9, causing impaired transfer of nutrients 
to the fetus due to limited blood flow10.

The incidence of IUGR is approximately 8% in total population11. Different rates have been recorded in the 
literature depending on fetal intrinsic factors, as well as prenatal follow-up and optimal perinatal care12.

Considering that fetal growth along with gestational age at birth determine neonatal survival, as well as short 
and long-term complications1,13, it is critical to elucidate the underlying pathogenesis of IUGR and the respective 
implicated metabolic pathways.

Prenatal diagnosis of IUGR mainly relies on abnormal umbilical and uterine Doppler measurements that 
enable real time estimation of placental/fetal circulation, but do not permit early intervention. Diagnosis is also 
assisted by an ultrasound-estimated fetal weight below the corresponding 10th percentile for the gestational 
week14.
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Thus, it is essential to determine biomarkers framing the time of insult or maternal–fetal metabolic interac-
tion suggesting early intervention. Although several metabolites have been suggested in literature as putative 
biomarkers for IUGR screening, still none is generally applied in clinical practice15–18.

The current study presents a nuclear magnetic resonance (NMR) based untargeted metabolomic approach 
focusing on IUGR pathology with a twofold aim; (a) to provide explanatory models for IUGR pathogenesis 
and (b) to identify putative markers of prediction which can be validated at the early stages of pregnancy. Both 
umbilical cord and maternal blood from well-defined IUGR and appropriate for gestational age (AGA) cases 
were investigated in one of the biggest sample sizes compared to relevant studies.

Results
Assignment for 56 individual metabolites excluding the lipid and sugar regions is presented in Supplementary 
Table S1. Typical 1H-NMR spectra with characteristic annotations is presented in Fig. 1.

Exploratory analysis.  Principal component analysis (PCA) on NMR data was implemented in each of 
the four studied groups (IUGR cord and maternal samples, AGA cord and maternal samples) to assess sample 
homogeneity and pinpoint outliers. Several characteristics including maternal pathology, smoking habits, ges-
tational age, maternal age, maternal BMI, mode of delivery and gender were examined in each of the produced 
statistical models. Maternal pathology testing is shown in Supplementary Figs. S1–S4.

Six IUGR participants with gestational diabetes mellitus who presented increased glucose levels and one 
participant with thrombophilia with a distinct profile were excluded from further investigation from the IUGR 
group (maternal and cord samples). Furthermore, in umbilical cord blood samples (41 IUGR and 36 AGA), a 
discrimination trend was observed among IUGR and AGA samples based on the mode of delivery (Supplemen-
tary Fig. S5). Samples from vaginal deliveries presented higher lactate levels compared to those from cesarean 
sections, which necessitates the exclusion of their signals [1.33 (d) and 4.11 (q)] from further data processing. 
After removing the lactate resonances the impact of labor on blood metabolites was effaced, since no grouping 
was observed based on the delivery mode.

Investigation of IUGR‑AGA umbilical cord blood samples.  A general overview of the remaining 
cord blood samples (41 IUGR and 36 AGA) after the removal of lactate and methanol regions is presented in 
Fig. 2. AGA samples (blue circles) tend to cluster in the first quadrant, while IUGR samples (red circles) are more 
concentrated in the second, third and fourth quadrants. Figure 3a,b illustrate the OPLS-DA scores and loadings 
plot for the studied pair, respectively. Permutation testing with receiver operator characteristic (ROC) curves 
validated the OPLS-DA discrimination (Supplementary Fig. S6a).

Figure 1.   Typical 1H-NMR spectrum of serum after methanol extraction following cpmgpr pulse sequence 
with expanded regions; the region between 3.25 and 4.00 ppm is occupied by sugar resonances. Major 
metabolites are assigned over the spectrum peaks.
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As depicted in Fig. 3b, IUGR umbilical cord blood samples are characterized by higher levels of the branched 
chain amino acids (BCAAs) leucine, isoleucine and valine and the non-essential amino acid alanine. On the other 
hand, AGA samples are characterized by higher levels of the essential aminoacids phenylalanine and tryptophan. 
Moreover, glycerol is altered between the two test-groups, being elevated in AGA samples. Biomarker analysis 
(Supplementary Fig. S7) confirmed the above findings for the suggested metabolites between the two groups 
revealing a high Area Under the Receiver Operating Characteristic curve (AUROC).

Investigation of IUGR‑AGA maternal blood samples.  A similar data analysis process was followed 
among maternal samples. Figure 4 illustrates a trend of clustering among the second principle component of the 
PCA. More specifically IUGR samples (red circles) create a cluster among the 3rd and 4th quadrants while AGA 
samples (blue circles) among the 1st and 2nd quadrants. Figure 5a,b illustrate the OPLS-DA scores and loadings 
plot for the studied pair, respectively. Validation tests are presented in Supplementary Fig. S6b.

The metabolites assigned to the discriminatory bins of the loadings plot (Fig. 5b) along with significant 
AUROC (Supplementary Fig. S8), correspond to the essential amino acids leucine, isoleucine, valine and phenyla-
lanine, the non-essential amino acid alanine and the organic metabolites namely glycerol and 3-hydroxybutyrate.

Significant metabolites and altered pathways.  Table 1 presents the AUROCs for the discriminatory 
metabolites between test-groups. Univariate testing is presented in Table 2. 

Pearson correlation testing between the peak integral areas of the remaining lipids at 0.82 and 1.16 ppm with 
the BCAAs and the 3-hydroxybutyrate areas for 10 representative samples of each group (umbilical and maternal) 
probed to no significant correlation (weak to moderate values of the correlation coefficient) (Supplementary 
Tables S2 and S3). Interestingly, 6 out of 8 proposed metabolites were prominent in both umbilical cord blood and 
maternal group discrimination with high degree of statistical significance (AUROC > 0.75 and p-value < 0.05). In 
particular, higher levels were recorded for the branched chain amino acids BCAAs (leucine, isoleucine and valine) 
and alanine in IUGR groups, in contrast to the increased phenylalanine and glycerol levels in the AGA groups.

On the other hand, tryptophan contributed only to the umbilical cord blood discrimination, whereas 
3-hydroxybutyrate only to the maternal blood discrimination. Tryptophan showed increased levels in AGA 
umbilical cord blood samples and 3-hydroxybutyrate showed increased levels in IUGR maternal blood sam-
ples. Alanine is the most significant metabolite (AUROC = 0.871) for cord blood discrimination and isoleucine 
(AUROC = 0.812) for maternal discrimination.

Enrichment analysis provided the deregulated pathways due to the IUGR pathology. Supplementary Tables S4 
and S5 present the three most probably affected pathways in umbilical cord blood and maternal blood sample 
pairs respectively. Pathways with the higher number of hits and a p value lower than 0.05 (statistically significant) 
were selected as the candidate key pathways. The most significantly affected metabolic pathway in both pairs 
reflects the Valine, Leucine and Isoleucine Degradation.

Figure 2.   PCA scores plot among the umbilical cord blood samples set. IUGR and AGA samples are 
represented with red and blue circles, respectively. A = 8, N = 77, R2X(cum) = 0.642, Q2(cum) = 0.451 for pareto 
scaling and 95% confidence level. t[1]Eigenvalue:16.6, t[2]Eigenvalue:7.77.
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Discussion
A similar metabolic pattern was evident for the first time between maternal and umbilical cord blood in IUGR 
pregnancies. This finding may indicate common mechanisms underlying the IUGR condition which connected 
between mothers and fetuses and can pave the way for the identification of putative biomarkers in maternal 
blood targeting early IUGR screening.

Controversial information is evidenced in the literature concerning candidate metabolites for IUGR-AGA 
discrimination, with abnormal amino acid metabolism, glucose intolerance and limited insulin resistance being 
an important finding19.

IUGR off springs have altered protein expression profiles20 which may result in a reduced utilization rate of 
the BCAAs and alanine, leading to a consequent increase of their levels. This increase could also be explained 
by the observation that IUGR fetuses experience the same metabolic derangements with certain diseases, with 
urea cycle defects being the most relevant21.

Starving conditions promote protein degradation leading to the consequent increase of BCAAs. These 
are degraded in tissues, other than liver, yielding reduced NADH and FADH2 which facilitate the energy 
production22. IUGR is linked to reduced oxygen and nutrients supply through the placenta23 which could partly 
explain the observed BCAAs increase. Nutrient deficiency has also been proposed to describe the up-regulation 
of valine and isoleucine in the IUGR vs AGA groups16.

Figure 3.   (a) OPLS-DA scores for the umbilical cord blood samples, with A = 1 + 1 + 0, N = 77, 
R2X(cum) = 0.279, R2Y(cum) = 0.70, Q2(cum) = 0.559 for pareto scaling and 95% confidence level. Red circles 
denote IUGR and blue circles AGA samples. (b) Loadings plot demonstrate metabolites responsible for 
discrimination, 1: Isoleucine, 2: Leucine, 3: Valine, 4: Alanine, 5: Glycerol, 6: Tryptophan, 7: Phenylalanine.
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Moreover, increased levels of BCAAs have been associated with insulin resistance and future type 2 
diabetes24–26. Dessi et al.18 suggested that IUGR fetuses stimulate a number of adaptive mechanisms in order to 
save glucose and promote nutrition of the vital organs, resulting in down-regulation of insulin secretion. Herein, 
the observed increase of BCAAs in the IUGR group could be associated with insulin resistance of the fetus. 
Glucose intolerance or limited insulin adequacy in IUGR, may account for altered tricarboxylic acid (TCA) 
metabolic intermediates, such as alanine and leucine27.

In a previous type 2 diabetes metabolomic study26, the branched-chain keto acid (BCKA) 3-methyl-2-ox-
ovalerate, has been identified as one of the strongest predictors of impaired fasting glucose (IFG). This BCKA 
arises from the incomplete catabolism of BCAAs26,28 which primarily occurs in the mitochondria. High levels 
of the corresponding metabolite are also linked with the metabolic disorder of maple syrup urine disease that 
is caused by the deficiency of the branched-chain alpha-keto acid dehydrogenase complex, leading to the accu-
mulation of BCAAs28.

The glucose-alanine cycle describes the synthesis of glucose from alanine in the liver and the transport of 
glucose back to the muscles. Alanine serves as a precursor or regulator of glucose metabolism that is of critical 
importance in the nutrient-deprived IUGR, thus explaining the increased alanine levels found in the IUGR 
group22. Higher alanine levels were also found for IUGR having a birth weight between 3rd and 10th percentile29.

In our research, lower glycerol levels were observed in the IUGR group, signifying glycerol deprivation. Glu-
coneogenesis is a pathway describing glucose synthesis from lactate, pyruvate, glycerol and glucogenic amino 
acids30. In the liver, glycerol may be converted into glucose, meeting the required energy needs for cellular 
metabolism31. Glycolysis, a compensatory pathway that breakdowns glucose, is deregulated in conditions of lim-
ited insulin adequacy or resistance32. IUGR infants have insulin deficiency18 which partly explains poor glycolysis 
together with a continuous conversion of glycerol to glucose through gluconeogenesis. Also, lower glycerol levels 
in the IUGR groups could indicate an imbalance between triacylglycerol breakdown and re-synthesis during 
several metabolic reactions in a continuous flux between adipose tissue and liver.

In pregnant women with glucose intolerance, ketone body formation is favored against carbohydrate 
consumption33, resulting in the accumulation of 3-hydroxybutyrate. Furthermore, the observed increase of 
the ketogenic essential amino acids leucine and isoleucine, may also account for increased 3-hydroxybutyrate 
synthesis33. The metabolomic study of Powel et al.34 suggested 3-hydroxybutyrate is a predictor of IUGR com-
plication in maternal serum as well, however, with low predictive power.

Different brain serotonin synthesis has been associated with altered tryptophan levels16. Cosmi et al.35 in line 
with our observations indicated tryptophan as a candidate marker of IUGR pathology, but reported findings are 
different to our results regarding our observed up-regulation of valine and isoleucine and the down-regulation 
of phenylalanine. Of note, such outcomes refer to twin neonates and are deprived by limited sampling.

Paolini et al.36 found a lower fetal/maternal enrichment ratio for phenylalanine and leucine in IUGR com-
pared to normal pregnancies, suggesting an impaired transplacental flux. An altered placental metabolism or 
transport alongside with a higher catabolic condition has been also suggested to explain the lower phenylalanine 
levels in the IUGR samples16,37. The fetomaternal ratio for the essential amino acids is reduced in cases of small 
for gestational age (SGA) compared to AGA, as a result of fetal hypoxemia38. Finally, increased levels of BCAAs 

Figure 4.   PCA scores plot among the maternal blood samples set. IUGR and AGA samples are represented 
with red and blue circles, respectively. A = 8, N = 77, R2X(cum) = 0.666, Q2(cum) = 0.506 for pareto scaling and 
95% confidence level. t[1] Eigenvalue:22.7, t[2] Eigenvalue:6.3.
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and alanine in the maternal blood of IUGR vs AGA groups, is possibly explained due to the altered adaptation 
mechanisms of IUGR pregnancy with incomplete hormone production38,39.

Conclusions
In our study we interpreted the generated metabolomic data and attempted to correlate a fetal adverse condi-
tion with alterations in the metabolic profile as putative biomarkers. A similar metabolic profile was evident 
between maternal and umbilical cord blood in IUGR pregnancies, with seven out of 56 identified metabolites 
being responsible for discrimination. As an exception, tryptophan contributed only to cord blood discrimination 
while 3-hydroxybutyrate only to maternal blood discrimination.

Higher levels of the BCAAs, together with alanine were observed in the IUGR groups, in contrast to increased 
phenylalanine and glycerol levels for the AGA groups, indicating the crucial roles of amino acid metabolism, insu-
lin resistance and glycolysis pathway. The elevated levels of BCAAs in intrauterine growth restricted pregnancies 

Figure 5.   (a) OPLS-DA scores plot for maternal samples with A = 1 + 1 + 0, N = 77, R2X(cum) = 0.369, 
R2Y(cum) = 0.65, Q2(cum) = 0.566 for pareto scaling and 95% confidence level. IUGR are represented with 
red circles and AGA correspond to blue circles. (b) Loadings plot demonstrate the metabolites responsible 
for discrimination, 1: Isoleucine, 2: Leucine, 3: Valine, 4: 3-Hydroxybutyrate, 5: Alanine, 6: Glycerol, 7: 
Phenylalanine.
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were linked with increased insulin resistance. Although a number of clinical studies have facilitated metabolomics 
to elaborate on the IUGR condition, biomarkers that determine this condition early on, are still lacking. From 
our findings, the role of previously reported metabolites has been strengthened together with the significance 
of 3-hydroxybutyrate in IUGR maternal blood. The proposed metabolic signatures have to be validated at an 
earlier stage of pregnancy in order to obtain clinical impact as diagnostic and prognostic biomarkers for IUGR.

Methods
Ethical statement.  An approval (No. EE-2/26/06-06-2017) from the Aretaieio Hospital Review Board 
along with the Ethics committee was received before the experiments were started. All experiments were per-
formed in accordance relevant guidelines and regulations. Signed informed consent was obtained from the par-
ticipating mothers prior to enrollment.

Patient recruitment.  The study comprised 84 parturients giving consecutively birth to 48 IUGR (≤ 10th 
customized centile) and 36 AGA (between 10 and 90th customized centile) full-term infants (Supplementary 
Table  S6). Among IUGR pregnancies, 6 were complicated by gestational diabetes mellitus (GDM) and 1 by 
thrombophilia. Median gestational age for IUGR neonates was 273 (± 7  days) and median birth weight was 
2610 (± 263 g). Median gestational age for AGA neonates was 278 (± 6 days) and median birth weight was 3405 
(± 273 g). Diagnostic testing is presented in Supplementary Methods.

Sample collection and pretreatment.  Mixed arteriovenous blood was collected from the doubly 
clamped umbilical cord, reflecting fetal blood. Maternal blood was collected either at the first stage of labor in 
cases of vaginal delivery or before receiving anesthesia in cases of caesarean section, in fasting conditions; time 
between last food intake and sampling were at least 8 h. Samples allowed to clot at room temperature for 1 h and 
centrifuged at 1500×g for 10 min. Serum was collected in eppendorf tubes and transferred to − 80 °C till sample 
preparation.

Serum samples were thawed at room temperature and extracted according to Nagana Gowda et al.40 proto-
col. In particular, 250 μL serum samples were extracted with 500 μL methanol (1:2 v/v), vortexed and placed at 
− 20 °C for 20 min. Samples were centrifuged (11,000 rpm/ 4 °C) for 20 min to allow protein parts to precipitate. 
Supernatants placed to new eppendorf tubes and evaporated to dryness. Samples were reconstituted to 400 μL 
D2O and 150 μL phosphate buffer (0.2 M, Na2HPO4 2H2O and NaH2PO4, pH = 7.0). Then, 500 μL of each mixture 
with 50 μL of internal standard trimethylsilyl propionic acid sodium salt (TSP) (2.75 mM) were transferred to 
5 mm NMR tubes for 1H-NMR analysis.

Table 1.   Comparison of AUROCs for discriminatory metabolites among umbilical cord blood and maternal 
samples. Values in bold refer to metabolites presenting the higher AUROC.

Altered metabolite

AUROC

Umbilical cord blood Maternal blood

Alanine 0.871 0.792

Leucine 0.816 0.773

Isoleucine 0.795 0.812

Valine 0.785 0.786

Phenylalanine 0.779 0.75

Glycerol 0.835 0.751

Tryptophan 0.751 Non-significant

3-Hydroxybutyrate Non-significant 0.774

Table 2.   P-values and fold changes for significant metabolites among umbilical and maternal blood samples. 
a Positive values indicate metabolites determined in higher concentration in the AGA group whereas negative 
values indicate metabolites determined in higher concentration in the IUGR group.

Altered metabolite

Umbilical cord blood Maternal blood

p-value Fold changesa p-value Fold changesa

Alanine 6.47 × 10–9 − 0.47 3.76 × 10–6 − 0.54

Leucine 1.31 × 10–6 − 0.42 5.81 × 10–5 − 0.32

Isoleucine 6.39 × 10–6 − 0.44 8.76 × 10–7 − 1.07

Valine 4.77 × 10–6 − 0.47 7.18 × 10–6 − 0.48

Phenylalanine 3.05 × 10–5 2.42 9.73 × 10–5 0.41

Glycerol 1.59 × 10–7 0.45 1.84 × 10–4 0.26

Tryptophan 7.52 × 10–5 3.17 Not-significant Not-significant

3-Hydroxybutyrate Non-significant Non-significant 2.58 × 10–5 -0.50
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1H‑NMR spectroscopy.  All 1H-NMR spectra were acquired using a Varian 600  MHz spectrometer 
equipped with a triple resonance probe (1H, 13C, 15N), at room temperature (25 °C). The CPMG pulse sequence 
following water suppression was applied in all experiments since it provided better spectra in terms of S/N ratio 
compared to 1DNOE pulse sequence. In total, 128 transients were collected with 64 K data points and a relaxa-
tion delay of 5 s. Receiver gain was auto set 60 for all acquisitions. All 1H NMR spectra were referenced at TSP 
chemical shift (0.00 ppm) and processed at 0.3 exponential line broadening.

Data handling and metabolite assignment.  All 1H-NMR spectra were preprocessed with MestreNova 
(v. 10.1) software. Manual phase correction, automatic baseline correction and sinc apodization were applied to 
improve spectra resolution. Total area normalization and binning of 0.001 ppm were selected. Superimposed 
spectrum was constructed and peaks were manually aligned. The water region (4.68–5.00 ppm) was excluded 
together with the peak at 3.36 ppm attributed to methanol from protein precipitation procedure.

Peak assignment and metabolite identification were performed using 2D NMR experiments (gCOSY, zTOCSY, 
gHSQCad and gHMBCad) on a representative pool sample. Assignment of spectral peaks was assisted by Che-
nomx database (Chenomx Suite 7.6, Chenomx, Edmonton, Alberta, Canada), an in-house software (Metabo-
neer)41 and the online NMR databases HMDB42 and BMRB43. The metabolites 3-hydroxybutyrate, isoleucine as 
well as the 3-methyl-2-oxovalerate that presented low signal to noise ratio were further elucidated by spiking the 
reference pool sample and performing 2D gHMBCad NMR experiment (Supplementary Figs. S9, S10). To a step 
further we utilized two specialized software, the online platform Bayesil44 and ASICS45. Each software proposed 
a number of metabolites for every sample and provided quantitative results (Supplementary Datasets 1 and 2).

Statistical analysis and identification of discriminant metabolites.  Multivariate statistical analysis 
was employed to aligned spectra after Pareto scaling, using SIMCA software (v. 14.0, Umetrics, Umea, Sweden). 
At first, PCA was applied to provide a general insight (trends, clusters, outliers) of samples. OPLS-DA was 
applied next, to generate classification models. Model performance assessed through the R2Y (goodness of fit) 
and Q2 (goodness of prediction) values. Validation of discrimination was made through response permutation 
testing (999 permutations), analysis of variance (CV-ANOVA) and extraction of ROC curves.

Color coded loadings plots (s-line) attributed certain metabolites responsible for the discrimination pattern. 
MetaboAnalyst 4.046 was applied next to find significant metabolites discriminating umbilical cord blood and 
maternal groups. Biomarker analysis between IUGR-AGA pairs revealed candidate biomarkers (a cut off value 
of 0.75 for AUROC was selected) and used for enrichment analysis to provide altered metabolic pathways.

Data availability
Restrictions apply to the availability of raw data, since were used under license for the current study. Data are 
however available from the corresponding authors upon justified request.
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