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Introduction
Prostate cancer (PCa) susceptibility is a polygenic trait with 
moderate to high heritability and substantial racial disparity.1-5 
The disease prevalence in African Americans (AAs) is 1.5 
times that in European Americans (EAs).6 In the past 2 dec-
ades, over 400 PCa risk variants, most of which are single 
nucleotide polymorphism (SNP) variants, have been identified 
by regional linkage disequilibrium tests, genome-wide associa-
tion studies (GWASs), and/or the meta-analysis of multiple 
GWAS datasets.7-13 The marker sets consisting of all or a frac-
tion of these variants demonstrated moderate predictive 
strength for PCa occurrence. The area under curve (AUC) of 
the receiver-operating characteristic analysis of the estimated 
risk values and actual cancer statuses of individuals was encour-
aging, up to 0.72 in EA cohorts.12 The clinical utility of the 
genetic markers was implied by the observation that they could 

complement other predictors such as age and prostate specific 
antigen level in cancer screening.4,12

The polygenic risk score (PRS) that combined the effects of 
the identified risk variants proved to be compatible with the 
intra- and interpopulations stratification of PCa incidence 
rates.12,14 This result was robust for the statistical and genetic 
models used in the estimation and aggregation of the effects of 
risk alleles.14 However, it remains unknown whether the PRS 
is also a sufficiently informative metric with relevance to the 
molecular mechanisms of carcinogenesis in prostate. To inves-
tigate these issues, we performed an integrative analysis of the 
data generated by (deposited in) several genomic and/or tran-
scriptomic projects (databases), including the Genotype-Tissue 
Expression (GTEx, https://gtexportal.org/home/) and others. 
We hypothesized that the PRS related tumorigenic potential 
or property of prostate cells is, at least partially, determined by 
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the expression level of cancer-relevant genes and the activity of 
crucial cancer pathways and regulatory gene networks.

This research could provide unique biological insight into 
the relationship between PRS and PCa biology, and disparities. 
It is also imperative for conceiving the potential biological 
mechanisms that bridge cancer susceptibility and polygenic 
inheritance. Progress in revealing the mechanisms could facili-
tate the identification of more risk SNPs from those that dem-
onstrate moderately significant association with PCa 
occurrence.

Materials and Methods
Outline of data and analysis

Three representative GWAS datasets for prostate cancer were 
used to estimate the trait heritability contributed by the risk 
variants. The GTEx genotype and expression datasets were 
used to identify PRS genes, that is, the genes whose expression 
levels were associated with the polygenic risk score. The gene 
expression dataset of The Cancer Genome Atlas (https://
www.cancer.gov/about-nci/organization/ccg/research/struc-
tural-genomics/tcga) prostate adenocarcinoma (TCGA-
PRAD) project was used to identify a transcriptomic marker 
set from the top PRS genes for predicting the biochemical 
relapse (BCR) of malignant PCa after initial radical therapy. 
Five datasets deposited in the Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) were used to vali-
date the prognostic expression marker set. The GTEx geno-
type dataset, TCGA genotype dataset and 1000 Genomes 
dataset (https://www.genome.gov/27528684/1000-genomes-
project) were used to analyze the racial stratification of poly-
genic risk scores. The GTEx gene expression dataset was used 
to identify the differentially expressed genes between EA and 
AA prostate tissue.

Catalog of risk variants

The catalog of 269 risk variants for PCa occurrence was 
extracted from the Supplementary Information of a recent 
publication.12 The multi-ancestry effect estimates (odds ratios) 
of the risk variants adopted here were estimated by the trans-
ancestry meta-analysis of 142 GWAS datasets, which con-
tained 107 247 PCa cases and 127 006 controls in total. Among 
the participants of those GWASs, the men with European 
ancestry were predominant. The PRS constructed using the 
multi-ancestry weights was demonstrated to be a robust pre-
dictor for PCa incidence in both European and African ances-
try populations, with the performance being among the best 
PRS metrics.12,15,16

Data

GWAS datasets The datasets were generated by the Cancer 
Genetic Markers of Susceptibility (CGEMS), The Breast and 

Prostate Cancer Cohort Consortium (BPC3) and The 
Multiethnic Cohort Study (MEC) of prostate cancer.3,10,17,18 
The CGEMS cohort was a fraction of the participants of the 
PLCO Cancer Screening Trial, a large randomized controlled 
trial.19 These projects/experiments adopted the nested case-con-
trol design. Of MEC data, only African American (AA) samples 
were included in this study. The CGEM, BPC3 and MEC-AA 
cohorts contained 1157, 2578 and 2306 cases, and 1098, 4482 
and 2463 controls, respectively. The genotypes of variants were 
respectively measured with the Illumina SNP arrays 
HumanHap300v1.1 and -250Sv1.0 (0.56 million SNPs), 
Human660W-Quad_v1_A (0.58 million SNPs), and 
Human1M-Duov3_B (1.15 million SNPs).

GTEx data The V8 release of the GTEx project contained 
the genomic and transcriptomic data generated with whole 
genome platforms such as whole genome sequencing and 
RNA-seq.20 The digital gene expression levels were estimated 
with transcripts per million (TPM) values. The 866 subjects 
were shared by 35 partially overlapping tissue sets. The prostate 
set, in which the gene expression profiling of prostate speci-
mens were measured, contained 189 EA males, 27 AA males 
and 6 Asian-ancestry males. Our study focused on the EA and 
AA samples. In particular, a working prostate subset consisting 
of 97 “physically healthy” males (87 EAs, 10 AAs) selected 
from the prostate set was used to analyze the associations 
between gene expression levels and genetic variables, that is, 
PRS and ancestry groups (races). The members of the working 
prostate subset were those who died from suicide or mechanical 
causes, such as blunt force trauma or gun shooting, or reason-
ably healthy men who unexpectedly died from natural causes, 
such as myocardial infarction, with a terminal phase estimated 
at <1 hour. The relevant information was found in the 
DTHHRDY (death classification based on the 4-point Hardy 
Scale) and DTHFUCOD (first underlying cause of death) 
columns of the phenotype table of the GTEx samples.

1000 Genomes data: The phase-3 release data (version 5a) of 
the project were used in this study.

TCGA genotype data: The prostate cancer patients’ geno-
types were determined from blood specimens using the 
Affymetrix Genome-Wide Human SNP 6.0 Array, which 
contained 0.91 million SNP probes.

TCGA expression data The TCGA group performed RNA-
Seq experiments on an Illumina HiSeq platform and estimated 
the gene expression levels with TPM values using an expecta-
tion maximization method and RSEM software.21 Log2 trans-
formation on this dataset was performed preceding our 
analysis.

GEO data The authors of GSE5446022 performed RNA-
Seq experiments with the Illumina HiSeq 2000 platform and 
estimated gene expression levels with fragments per kilobase 
million (FPKM) values. The authors of GSE8404223 per-
formed microarray experiments using the Affymetrix Human 
Gene 2.0 ST array and preprocessed expression intensities 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ncbi.nlm.nih.gov/geo/
https://www.genome.gov/27528684/1000-genomes-project
https://www.genome.gov/27528684/1000-genomes-project
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using the robust multichip average (RMA) algorithm24 and 
log2 transformation. The authors of GSE2103225 performed 
microarray experiments using Affymetrix Human Exon 1.0 ST 
Array and preprocessed expression intensities using RMA and 
quantile normalization. We performed log2 transformation on 
the downloaded dataset, which contained transcript expression 
levels. For a gene with 2 or more transcript IDs, we chose the 
one with the largest interquartile range (IQR) for expression 
levels across samples as the representative. The raw data of 
GSE70768 and GSE70769 were generated by the same 
authors using Illumina HumanHT-12 V4.0 Expression 
BeadChip.26 We first downloaded the 2 matrices of the non-
normalized expression levels of the 2 cohorts and removed the 
columns for the samples that would not be used in our analysis. 
Then, quantile normalization and log2 transformation were 
applied. For a gene with two or more probes, we chose the one 
with the largest IRQ for expression levels across samples in the 
GSE70768 cohort as the representative. Finally, we homoge-
nized the 2 normalized expression matrices to have the same 
global 75% quantile.

A table summarizing the samples of the TCGA gene 
expression dataset and the GEO datasets can be found in our 
recent publication.27 The TCGA, GSE54460, GSE84042, 
GSE21032, GSE70768 and GSE70768 cohorts contain 366, 
95, 57, 89, 95 and 70 samples, respectively, and the correspond-
ing BCR percentages are 13.6%, 53.7%, 24.6%, 28.1%, 20% 
and 62.9%.

Methods
PRS calculation. The multiplicative model was used to calculate 
PRS values.28 For the ith test sample, the polygenic risk score 

was calculated by PRS xi
j

m

j ij�
��
�� , where the weight β j  is 

the log-odds ratio for the jth (risk) variant, m is the number of 
the SNP markers, and xij  is the dosage of the jth variant. (See 
Catalog of risk variants section).

Heritability estimation. The genetic data analysis software 
GCTA 1.91.729,30 was used to estimate the heritability ( h2 ) of 
PCa susceptibility contributed by the risk variants and the h2  
explained by whole-array SNPs. The GCTA implemented a 
linear mixed model, in which the binary phenotype of PCa 
occurrence (valued with 0 and 1) was considered as a quantita-
tive trait and the covariance matrix of individuals was realized 
with the SNP genotype-based genomic relationship matrix 
(GRM). Liability-scaled h2  was calculated according to the 
phenotype-scaled h2  and PCa prevalence, which was 0.14 in 
the EA population and 0.21 in the AA population.

PRS gene detection. A linear regression model (M-1) was 
used to detect the PRS genes whose expression levels were 
associated with PRS. The dependent variable was the log2 
transformed expression level. The exploratory variables 
included PRS, age, TRICSHD and DCOD. DTRICSHD 
denoted the interval between actual (or presumed) death, or 

cross clamp application, and the start of the GTEx procedure. 
DCOD was a categorical variable we defined to indicate 
whether the individual died from natural causes.

Expression disparity detection. A linear regression model 
(M-2) was used to detect the genes whose expression levels 
were associated with race groups. The dependent variable was 
log2 transformed expression levels. The exploratory variables 
included race, age, TRICSHD and DCOD.

Prognostic marker set evaluation. Support vector machine-
based leave-one-out cross validation (SVM-LOOCV) was 
used in this analysis. The predictive strength of a marker set for 
BCR was assessed with AUC and Fisher’s exact test P-value. 
The 2 performance metrics were calculated according to the 
predicted BCR statuses and decision values, that is, transcrip-
tomic BCR risk scores, of individual subjects, as well as their 
actual BCR statuses.

Feature wrapper. The feature wrapper proposed in the 
Reference27 was used to determine a prognostic marker set 
from the top PRS genes. The wrapper combined the model 
optimization of a regression analysis and a model validation 
step that was highly desired for avoiding overfitting. Redundant 
features were iteratively dropped according to their negative 
impacts on the expected prediction strength.

Software and application notes PLINK 1.931,32 and 
VCFtools33 were used to manipulate SNP data. Beagle 5.0 was 
used to impute the missed PCa risk variants (SNPs) in the 
GWAS and TCGA datasets. The LiftOver tool, run on the 
UCSC Genome Browser website (https://genome.ucsc.edu/), 
was used to convert genome coordinates between assemblies. 
Statistical/computational analysis was completed using the rel-
evant functions in the R packages “stats,” “01071” and “AUC” as 
well as our labor-owned R codes. In the implementation of the 
SVM() function, a radial kernel was used, the class weights 
were specified as the reciprocals of the ratios between the “1” 
samples and the “-1” samples in the training set, and defaults 
for the hyperparameter cost and gamma were held on. The 
p-value from one-tailed Fisher’s exact test was calculated in 
evaluating the finally identified marker set. BCR was treated as 
a binary endpoint and the time from the initial PCa diagnosis 
to relapse for a BCR+ sample and to the end of follow-up for a 
BCR- sample were not considered.

Results
Heritability

To facilitate understanding of the potential differences of her-
itability estimates between cohorts, we sought to perform 
genetic analysis on synthesized datasets, in which a SNP was 
identically genotyped by experiment or imputed by computa-
tion. We first homogenized the 3 GWAS datasets, that is, 
CGEMS, BPC3 and MEC-AA, by removing the SNPs that 
were missing in any one of them. Then, the SNP genotypes for 
240 risk variants that were in the GTEx dataset but not in the 
homogenized GWAS datasets were imputed using the 1000 

https://genome.ucsc.edu/
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Genomes dataset as the reference. The substitution of the gen-
otypes in the original data with the imputed genotypes occurred 
in 5 SNPs for CGEMS samples and 18 SNPs for MEC-AA 
samples (but not in BPC3 samples). In these SNPs, the mid-
quartile range of the imputation quality scores, that is, squared 
correlations between the dosages of minor alleles derived from 
the observed genotypes and the dosages from the imputed 
genotypes, was 0.718 to 0.981.

After homogenization and imputation, the datasets con-
tained 527,124SNPs (termed MK-WA) in autosomes. Prostate 
cancer heritability ( h2 ) contributed by the MK-WA or 253 
risk variants in autosomes was estimated using a mixed model 
in which the top 15 principal components of the MK-WA 
based GRM were included as covariables. In the CGEMS 
cohort, the h2  estimates were 0.761 ± 0.042 and 0.121 ± 0.021 
when MK-WA and risk variants were used, respectively. In the 
BPC3 cohorts, the 2 estimates were 0.345 ± 0.063 and 
0.111 ± 0.01, respectively. In the MEC-AA cohort, the corre-
sponding values were 0.251 ± 0.098 and 0.094 ± 0.014, respec-
tively. The very high h2  value estimated from MK-WA in the 
CGEMS cohort may be due to the possibility that the average 
similarity of genetic background among the individuals in the 
same phenotypic group (cancer or no-cancer) was higher than 
the similarity between individuals in different phenotypic 
groups, which we can’t assess using available data yet.

PRS genes and pathway analysis

Based on the information in the working prostate subset of the 
GTEx dataset (see the Data section), the genes that were unex-
pressed in at least half of the samples were filtered out. The 
remaining 18 126 genes were scanned using the regression 
model M-1. The typical L-shaped distribution (Figure 1A) of 
the p-values for the effects of PRS on gene expression levels 
indicated the substantial existence of differentially expressed 
genes. With a cutoff of P � ��� , we selected 540 PRS associ-
ated genes (termed PRS genes) (Supplemental Table S1). The 
absolute values of the partial correlations between PRS and the 
expression levels (adjusted for age, TRICSHD and DCOD) 
ranged from 0.27 to 0.41, and the false discovery rate (FDR) 
was estimated at 0.32 by the Benjamini-Hochberg procedure.

Functional enrichment analysis was performed using the 
DAVID tool/database.34 Twenty-six Kyoto Encyclopedia of 
Genes and Genomes pathways35 were overrepresented (P < .01, 
FDR < 0.1) by the 540 PRS genes (Figure 1B). The most sig-
nificant one (BH adj P-value = 5.4 × 10−5) of these pathways 
was “hsa03050::Proteasome,” which denotes the 26s proteas-
ome complex (https://www.genome.jp/pathway/hsa03050). 
The complex plays a central role in the second step of the 
2-steps ubiquitin-proteasome system (UPS) or protein degra-
dation pathway.36-38 For nearly all the 42 proteasome genes (11 
were in the PRS gene set), the partial correlations between 
expression levels and PRS were positive (Figure 2A). The “pro-
teasome signature” calculated by averaging the standardized 

expression levels of the 42 genes was positively correlated with 
the PRS (r = .32, P = .02; Figure 2B). While the second step 
(denoted by “hsa04120::Ubiquitin mediated proteolysis,” 
https://www.genome.jp/pathway/hsa04120) of the UPS was 
not overrepresented by the PRS gene set, the “ubiquitination 
signature” that aggregated the expression levels of the 128 
genes in hsa04120 also demonstrated significant positive cor-
relation with PRS (r = .27, P = .011: Figure 2C). As expected, 
the positive correlation between the two signatures was even 
stronger (r = .55, p = 3 × 10−8; Figure 2D).

Decreased proteasome function has been reported in a 
broad array of chronic neurodegenerative disorders (NDDs) 
and proteasome genes have been annotated to pathways for 
NDDs, including Alzheimer disease, Parkinson disease and 
others.39,40 This was clearly reflected by the spectrum of the 
pathways overrepresented by the PRS genes. However, for 
our research aim, a more important finding was the enrich-
ment of PRS genes in the pathway “hsa05215::Prostate can-
cer” (Figure 3). The fold enrichment score and P-value from 
Fisher’s exact test of independence were 3.6 and .004, respec-
tively. The involved PRS genes included GSK3B, MAP2K1, 
NRAS, CHUK, AKT2, MAPK1, MTOR, HSP90B1 and 
MAPK3. These 9 genes play roles in the cancer progression-
relevant parts, which are frequently hit by somatic mutations 
in prostate tumors, of the PI3K-Akt/RAS-MAPK/mTOR 
signaling pathways.25,41-45 The expression levels of these 
genes were also significantly correlated with the proteasome 
signature mentioned in the last paragraph (Figure 4). In par-
ticular, NRAS, AKT2, MAPK1 and MTOR have been 
added into the Cancer Gene Census by the Catalogue of 
Somatic Mutations in Cancer (https://cancer.sanger.ac.uk/
cosmic). While our analysis demonstrated a negative correla-
tion between the expression intensity of the AKT2 gene and 
PRS, previous studies in mouse models suggested both the 
oncogenic and tumor-suppressor roles of AKT2 in hepato-
cellular carcinoma.46,47

PRS genes as predictors of cancer progression

Given the PRS genes, their involvement in the prostate cancer 
pathway and the adhered substantial FDR, the following 2 
problems may be worth investigation to validate the observed 
associations, directly or indirectly, and to understand their 
potential roles in mediating PRS and PCa susceptibility. The 
first is whether the initiation and growth of tumors before 
developing to detectable cancer are related to the expression 
levels of the PRS genes. The second is whether the further pro-
gression potential of primary cancer cells is influenced by the 
expression profiles of those genes. Here, using an array of avail-
able datasets, we performed a study regarding the second prob-
lem. More specifically, we assessed the capacity of the expression 
profiles of the PRS genes in predicting the biochemical relapse 
of malignant prostate cancer (Gleason score ⩾7) after 
prostatectomy.

https://www.genome.jp/pathway/hsa03050
https://www.genome.jp/pathway/hsa04120
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
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Among the top 100 PRS genes (ranked according to the 
P-values, which were determined by the standardized effect 
sizes and an identical residual degree of freedom in the t-test 
used in the linear model analysis) for the associations between 
PRS and gene expression levels, eighty were included in the 
TCGA expression dataset. Based on the information of the 

TCGA cohort, we selected a transcriptomic prognostic marker 
set by refining the top PRS gene set. The marker set of 35 
genes (Supplemental Text S1) demonstrated prediction 
strength in the TCGA dataset and 4 of 5 external datasets 
(Figure 5), with AUCs ranging from 0.65 (in GSE70769) to 
0.8 (in GSE54460). It could be further condensed to a smaller 

Figure 1.  The association between the PRS and gene expression level in prostate tissue. The data from 87 healthy EA males in the GTEx cohort were 

used. (A) The distribution profile of the p-values for the effects of PRS on the gene expression levels of 18 126 expressed genes. The horizontal line 

indicates the expected probabilities of P-values falling within each of the 100 bins when the PRS vector is substituted with a randomly generated numeric 

vector of the same length in the regression analysis. (B) The KEGG pathways overrepresented by the 540 PRS genes whose expression levels were 

associated with PRS.
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marker set (18 genes, Supplemental Text S1), with a small loss 
in robustness (Supplemental Figure S1). The sizes (35 and 18) 
of the 2 prognostic marker sets were determined by visually 
finding the peak points of a spline curve. The curve depicted 
the dependence of AUC values (y-axis) on the numbers (x-axis) 
of temporally selected prognostic markers (genes) and was 
based on the iteratively updated results from running the fea-
ture wrapper (See the Method section)27 on the TCGA data 
(Supplemental Figure S2).

Regarding the analysis and results mentioned above, the fol-
lowing points are worth noting. First, because the primary 
objective of this study is to understand the biology for PRS in 

prostate cancer, we initiated the feature wrapping from top PRS 
genes such that the finally selected genes had a relatively strong 
relationship with PRS. The somewhat arbitrary cutoff “top 100” 
was specified in reference to our recent publication which shew 
that cancer progression could be well predicted with a transcrip-
tomic signature of 10 to 40 genes.27 Second, the poor and elu-
sive AUC value in the GSE84042 data may be partially due to 
the small size and high-class imbalance of the cohort (14 
BCR+ and 43 BCR− cases), or unknown confounding factor(s) 
adhering to the samples. As shown in the reference,27 most of 
the prognostic gene expression signatures identified in earlier 
studies lacked prediction strength in the data.

Figure 2.  The association between the PRS and the expression of the genes in the ubiquitin-proteasome system (UPS). (A) The distribution profile of 

partial correlations between PRS and the expression levels of 42 UPS genes. (B) The partial correlation between PRS and the proteasome signature that 

was calculated by averaging the standardized expression levels of the 42 proteasome genes. (C) The partial correlation between PRS and the 

ubiquitination signature that aggregated the expression levels of the 128 genes in the KEGG pathway “hsa04120::Ubiquitin mediated proteolysis.” (D) The 

correlation between the proteasome signature and ubiquitination signature.
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Racial disparities in PRS and gene expression

Previous publications showed that the difference in PCa inci-
dence rates between EA and AA was compatible with the 
interpopulations variation in PRS.12,48 To further evaluate the 
aptness of PRS in explaining the racial disparity in PCa, we 
specially tested a heuristic hypothesis ( H ) that the PRS genes 
whose expression intensity is positively (or negatively) corre-
lated with PRS tend to have higher (or lower) expression levels 
in AA samples than in EA samples. The data in the working 
prostate subset of the GTEx data (see the Data section) was 
used. Preceding that, a complementary analysis on race-related 
stratification in the PRS metric adopted in this study was per-
formed. As demonstrated in Figure 6A, in all 3 cohorts, that is, 
the 1000 Genome, GTEx and TCGA, the American males of 
African ancestry had higher PRSs than the European 
Americans (P < .01).

By running the regression model M-2 (See Methods sec-
tion), 593 differentially expressed genes (P < .01, FDR = 0.31) 
(disparity genes) between the EA and AA groups were identi-
fied (Supplemental Table S2). Four KEGG pathways were 
overrepresented (P < .01) by the disparity genes (Figure 6B). 
The top significant pathway (BH adj P-value = .002) was 
hsa04120::Ubiquitin mediated proteolysis, the only one with 
adj P-value < .1. As mentioned in the PRS genes and pathway 

analysis subsection, hsa04120 actually denotes the second step 
of UPS. The common enrichment of the disparity genes and 
the PRS genes with UPS represented a functional relevance of 
these 2 gene sets. However, most of the log2 fold changes (AA 
versus EA) in the expression of the 128 genes in hsa04120 were 
negative (Figure 6C). This was different from the distribution 
profile of the (partial) correlations between the expression lev-
els of proteasome genes and PRS shown in the Figure 2A. We 
compared the disparity gene set and the PRS gene set, finding 
an overlap of 23 genes. For those genes, a highly significant 
negative relationship between the AA-versus-EA fold changes 
and the correlations between expression levels and PRS was 
demonstrated (Figure 6D). This inverse pattern was also 
observed when we used to TCGA datasets to perform the 
same analyses (Supplementary Figure S3), although the 
involved genes were different. All results indicated that the 
hypothesis H  could hardly be supported by the analyzed data.

Discussion
To reveal the biological basis for polygenic inheritance in pros-
tate cancer, we carried out this comprehensive genomic analy-
sis. The specific results suggested the aptness and inaptness of 
PRS for explaining PCa susceptibility. First, the risk variant-
based heritability of the trait holds double-edged implications. 
On the one hand, the inaptness is implied by the fact that the 

Figure 3.  The involvement of PRS genes in prostate cancer-related pathways. The diagram of the KEGG pathway “hsa05215::Prostate cancer” was 

retrieved from the KEGG website. The use of the pathway map was approved by KEGG. The nine PRS genes involved in the pathway are marked with red 

stars. PKB/Akt, GSK3, IKK, MEK/ERK, HSP, Ras and mTOR are the alternative or family identifiers of the genes AKT2, GSK3B, CHUK, MAPK1/MAPK3, 

HSP90B1, NRAS and MTOR, respectively.
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risk variants contribute only 9.4% to 12% of the phenotypic 
variance, or 15.8% to 37.8% (derived from the heritability esti-
mates) of the variance that can be explained by the variants in 
a whole genome array of a half million SNPs. On the other 
hand, aptness is apparent in that the h2 estimates, although 
small, are statistically significant. In particular, the values are at 
least 5.7 times of their standard errors, and, therefore, the prob-
ability of zero-contribution of the risk variants to the trait is 
definitely less than 0.03 (1/5.72), as derived using Chebychev’s 
Inequality.49

Using the data of 87 physically-healthy EA males in the 
GTEx cohort, we identified 540 PRS genes whose expression 
levels are associated with PRS. While the false discovery rate of 
the gene set was high (~0.32), the functional enrichment analy-
sis demonstrated an encouraging result. The apparent relevance 
of the overrepresented pathways to prostate cancer, that is, the 
substantial involvement of the PRS genes in several PCa-
related canonical cancer pathways, suggests the aptness of the 
PRS for biologically explaining males’ susceptibility to the can-
cer. A novel finding in this analysis is the consistent positive 

Figure 4.  The correlation between the proteasome signature and the expression levels of the nine PRS genes that are involved in the KEGG pathway 

“hsa05215::Prostate cancer.” (A)-(I) Correlations between proteasome signature and the expression levels of AKT2, CHUK, GSK3B, HSP90B1, MAP2K1, 

MAKP1, MAKP3, MTOR and NRAS genes.
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correlation between the PRS and expression levels of the genes 
in the ubiquitin-proteasome system (UPS). The UPS plays an 
important role in both cell proliferation and survival.50,51 
Cancer cells can utilize the increased UPS activity to achieve 
aberrant growth and resistance to apoptosis.52 The components 

of the UPS represent a diverse group of potential anticancer 
targets.53-55 Basing on our results and the established knowl-
edge in the fields of cancer biology and genetics, we perceive 
that PI3K-Akt/RAS-MAPK/mTOR signaling pathways and 
ubiquitin-proteasome system may be 2 pivots linking PRS and 

Figure 5.  The performance of the prognostic transcriptomic signature of 35 PRS genes in the discovery dataset TCGA (-PRAD) and five external 

datasets, that is, GSE54460 and others. The “-radial” indicates the kernel function used the SVM models. The output BCR label (1 or -1) and numeric 

decision values, that is, transcriptomic BCR risk scores (TRSs) of patients in the GSE70769, which had a small sample size (N = 36), were predicted by the 

model trained using the GSE70768 dataset. For the patients in other cohorts, the labels and scores were predicted via LOOCV. Together with the actual 

BCR labels, the output BCR labels and TRSs were used to calculate a 2 × 2 contingency table for estimating the p-value and to generate the ROC curve, 

respectively. Sn and Sp denote sensitivity and specificity, respectively.
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the initiation and growth of prostate tumors. If this is true, the 
following 2 problems would be worth investigating. The first is 
whether the positive association between PRS and proteasome 
signature indicates the more frequent existence of tumorous 

cells in the prostate tissue of high-PRS individuals compared 
to the existence in low-PRS individuals. The second is whether 
there is a directed regulatory relationship between the protea-
some genes and the PRS genes on the PI3K-Akt/

Figure 6.  Racial disparities in PRS and gene expression level. (A) Comparisons of PRS between AA and EA males. 1000G:ASW and 1000G:CEU denote 

African Ancestry in the SW USA and Utah residents with Northern and Western European ancestry, respectively, as coded by the 1000 Genomes Project. 

T-test was used to estimate the p-values for the between-group differences. (B) The KEGG pathways overrepresented by the 593 genes (disparity genes) 

differentially expressed between AA and EA prostate samples in the GTEx dataset. (C) The distribution profiles of the fold changes in the expression 

levels of the 42 proteasome genes between the AA and EA groups. (D) The inverse relationship between the AA-versus-EA fold changes (y-axis) of the 

expression levels of the 23 genes that were in both the PRS gene set and disparity gene set and the partial correlation coefficients (x-axis) between 

expression levels and PRS.
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RAS-MAPK/mTOR signaling pathways in prostate tissue. A 
previous study showed that mTOR inhibition activated overall 
protein degradation by the UPS and autophagy in myoblasts.56 
However, the mechanism in prostate tissue is still unknown.

Among the hundreds of PCa risk variants, those located 
within or adjacent to a cancer-related gene are not populous.12 
Although PRS is known to be noisy, its relevance with cancer 
susceptibility is intuitively stranger and more robust than indi-
vidual risk variant. To our knowledge, the results and implications 
discussed in the last paragraph have been hardly reported by pre-
vious eQTL analysis or the function annotation of the risk loci.

Another novel finding in this study is that the expression pro-
files of the most significant PRS genes in tumor samples are 
capable of predicting the biochemical relapse of malignant PCa 
after prostatectomy. Except for the GSE84042 data, the predic-
tive performance of the marker sets selected by refining the top 
100 PRS genes is comparable with the best of the transcriptomic 
prognostic signatures (gene sets) reported in recent publications, 
including the TP53 mutation status-associated signature.27 This 
finding could be considered as an additional evidence for the apt-
ness of the PRS in explaining prostate cancer. It also suggests that 
some PRS genes play roles in both the early development of pros-
tate tumors and the late progression of malignant cancers. 
However, it is worth noting that the associations between PRS 
and gene expression levels in healthy male prostate tissue samples 
may be not maintained in prostate cancer samples, as shown by 
the comparison between the PRS gene set and the corresponding 
result (not reported in this paper) from analyzing the TCGA 
data. A recent publication showed that PRS for cancer incidence 
was a weak predictor of prostate cancer metastasis or death.57 
This discordance with our result could be attributed to the fact 
that the associations between PRS and the expression levels of 
the prognostic PRS genes were moderate.

We confirmed the previous observation that American males 
of African ancestry had higher PRSs than Europeans American 
males. Meanwhile, we also found that the transcriptomic differ-
ences between African American (AA) and EA samples were 
incompatible with the patterns of the associations between PRS 
and gene expression levels found in EA samples. The latter result 
somewhat compromises the aptness of PRS for explaining the 
racial disparity in the PCa incident rate. While the analysis results 
were likely biased due to the small size of the AA group in the 
GTEx data and the potential unhealthy status in some of the indi-
viduals who were assumed to be “physically health” in the selection 
of samples (see the Data section), the possibility that the pattern 
shown in Figure 6D was due to the data insufficiency-sourced 
biases and/or random coincidences should be very small. Hereby, 
our analysis raised an important question in prostate genetics. 
That is, whether there is a racial disparity in the biological mecha-
nisms by which the genetic predisposition, assessed with PRS, 
influences the initiation and growth of tumors.

A major limitation of this study was that, for a specific PRS 
gene, the paths that bridged the variations in expression inten-
sity and PRS were not pursued, due to the lack of analysis 

methods appropriate for the purpose. Theoretically, expression 
quantitative trait loci (eQTLs) may be involved in these paths. 
In the prostate tissue-specific eQTL catalog of the GTEx 
release V8 (https://gtexportal.org/home/datasets), the SNPs 
hosting 33 (of 269) PCa risk variants are paired with 41 genes 
in the manner of one to one or one to many (Supplemental 
Table S3). While there is only a small overlap between those 
eQTL genes and the PRS genes identified here, which con-
tains HLA-DRB6 and UHRF1BP1, it is possible that the 
effects of the eQTL SNPs on the cis-located target genes are 
conveyed to the PRS genes through signaling cascades or more 
complicated regulatory networks. Intuitively, such a possibility 
also exists for those eQTL SNPs that have not been identified 
by any published study.

Conclusions
We investigated the biological basis for polygenic risk scores 
and disparities in prostate cancer by a comprehensive genomic 
analysis. The new findings in this study, alongside the moderate 
but significant heritability of PCa susceptibility contributed by 
the risk variants, suggest the aptness and inaptness of the PRS 
for explaining PCa and racial disparities. They may be useful for 
conceiving the potential biological mechanisms that bridge the 
cancer susceptibility and polygenic inheritance. We also identi-
fied a promising transcriptomic prognostic signature.
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