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Abstract: Two key concerns exist in contemporary cancer chemotherapy in clinic: limited therapeutic
efficiency and substantial side effects in patients. In recent years, researchers have been investigating
a revolutionary cancer treatment technique, and photodynamic therapy (PDT) has been proposed by
many scholars. A drug for photodynamic cancer treatment was synthesized using the hydrothermal
method, which has a high efficiency to release reactive oxygen species (ROS). It may also be utilized as
a clear multi-modality bioimaging platform for photoacoustic imaging (PAI) due to its photothermal
effect, computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-
modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer
diagnosis. Furthermore, Au-doped up-conversion nanoparticles (UCNPs) have an exceptionally high
luminous intensity. The Au-doped UCNPs, in particular, are non-toxic to tissues without laser at an
808 nm wavelength, endowing the as-prepared medications with outstanding therapeutic efficacy
but exceptionally low side effects. These findings may encourage fresh effective imaging-guided
approaches to meet the goal of photodynamic cancer therapy to be created.

Keywords: up-conversion; nanomaterials; photodynamic; multi-modality imaging

1. Introduction

Interest in developing theranostic nanoplatforms with simultaneous diagnostic and
therapeutic capacity has gradually increased in the nanomedicine field because it provides
significant prospects in the treatment of major illnesses including cancer [1]. Imaging
probes, as one of the most important components of the theranostic nanoplate-form, should
be able to perform many levels of imaging at the same time, from the cell to the whole
body, to offer comprehensive tumor characteristics for clinical diagnostics. However, single-
modality imaging did not match the high diagnostic criteria since each imaging technique
(optical imaging, CT, and MRI) has intrinsic flaws due to restricted resolution, sensitivity,
or imaging depths.

To mitigate this problem, several imaging probes were combined into a single multi-
modality imaging system, which contained some considerable restrictions such as sophisti-
cated synthetic processes and heterogeneous nanostructures. As a result of their enhanced
optical and magnetic properties, and also improved X-ray attenuation, lanthanide-doped
upconverting nanoparticles (UCNPs) might be perfect for building multifunctional bio
probes by doping with various rare earth ions without modifying other functions.

Many researchers have recently advocated that this system be employed in biological
imaging since it provides considerable benefits in the treatment against major illnesses
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such as cancer. However, the typical challenge is that it has insufficient light intensity
and is poisonous to biological cells; therefore, its structure and surface must be modi-
fied [2]. Many scholars have proposed doping Mo3+, Cu2+ [3,4], and other metal ions in the
NaYF4:Yb3+/Er3+ unit cell to increase the luminous intensity [5,6], but the effect is not sig-
nificant. Others have offered sliver doping [7], which has a large impact as well; however,
sliver is poisonous to cells, may cause cell death without targeting, and cannot be em-
ployed in biology. Many scholars have proposed constructing core-shell structures such as
NaYF4:Yb3+/Er3+@NaGdF4:Yb3+ and NaYF4:Yb3+/Er3+@NaNdF4:Yb3+/Tm3+@NaGdF4:Yb3+ [8–10].
Alternatively, use the reverse microemulsion method to construct a layer of silica or
porous silica, such as NaYF4:Yb3+/Er3+@SiO2, or NaYF4:Yb3+/Er3+@NaGdF4:Yb3+@m-
SiO2 [11–14]. Au nanoparticles (AuNPs) are currently the mainstream biomaterials in
tumor diagnosis and treatment applications [15,16]. They are widely used in CT imaging
and photoacoustic imaging due to their excellent imaging capabilities and photothermal
effects [17]. However, in our research, their photothermal stability seems not to be very
good [18]. Unfortunately, when these materials meet the biological requirements, they will
inevitably reduce their luminous intensity, so that imaging cannot be performed to obtain a
clear image [19,20]. Considering the high desire to develop UCNPs nanomaterials with
highly effective imaging capability as well as high biocompatibility to prevent apoptosis
or biological organ failure, UCNPs doped with Au nanoparticles (AuNPs) are an ideal
candidate because they are easy to fabricate, have enhanced luminescence, and are easy to
surface modify [7,21]. More notably, following illumination, the UCNPs are harmless to
normal tissues but cytotoxic to malignancies. To the best of our knowledge, however, there
appears to be a failure in the literature to yet create theranostic nanoplatforms integrating
multi-modality bioimaging with light trigger chemotherapy.

2. Results and Discussion

The TEM images of gold nanoparticles (Figure S1) prepared using the hydrothermal
method show that they are spherical and have an average diameter of 5 nm. TEM images
show the morphology of Au-UCNPs (Figure S2). They are rod structures with a length
of 50–100 nm and have narrow ends. The reason for this phenomenon is that during the
nucleation and growth of the nanoparticles by the coprecipitation–hydrothermal method,
the temperature controls its width and shape, and the time determines its length. When the
temperature starts to drop, the two ends of the nanorod begin to shrink with the decrease in
temperature, and finally show the phenomenon of narrowing at both ends. The successful
doping of gold nanoparticles into UCNPs was proved by energy spectrum (Figure S3).

The content of ROS released by different concentrations of Au-UCNPs-DSPE-PEG2K
under near-infrared light with wavelength of 808 nm was measured by Singlet Oxygen
Sensor Green (SOSG). As can be seen from Figure 1, Au-UCNPs-DSPE-PEG2K hardly
releases ROS without irradiation. The amount of ROS increased with the increase in
Au-UCNPs-DSPE-PEG2K concentration and time.

Compared with the contrast ability of Au-UCNPs-DSPE-PEG2K, its particularity lies
in its photothermal conversion efficiency (Figure 2). It is excited by near-infrared light
at a 980 nm wavelength, it is observed by a thermal imager that it not only emits green
fluorescence [21], but also emit heat. Combined with its biocompatibility, Au-UCNPs-
DSPE-PEG2K can be considered as a photothermal therapy reagent (Figures S4 and S5). The
reason for this phenomenon is that gold will generate heat when irradiated by a 540 nm
laser, while rare earth up-conversion nanomaterials excited by a 980 nm near-infrared light
will emit 540 nm fluorescence. Secondly, the doping of silver nanoparticles will enhance
the energy of a 540 nm wavelength. Finally, the energy of a 540 nm wavelength excites the
silver nanoparticles, making the silver nanoparticles release heat. Incidentally, the carrier
properties of a 540 nm laser, a 980 nm near-infrared light, and 540 nm fluorescence are the
same, and the photothermal results also show that. Simultaneously, AuNPs enhance the
luminescence intensity of UCNPs under the near-infrared light with the wavelength of
980 nm, so that UCNPs emit stronger light energy with the wavelength of 540 nm. This
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light energy further excites AuNPs, resulting in the heat emission of UCNPs doped with
AuNPs [22].
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of 200 µg/mL of Au-UCNPs-DSPE-PEG2K.

In order to observe the ROS produced by Au-UCNPs-DSPE-PEG2K and its effect on
cells more intuitively, it was monitored by flow cytometry (Figure 3). ROS are molecules
that contain hydroxyl radicals or peroxides with unpaired electrons. In healthy aerobic cells,
ROS is naturally generated at a controlled rate as oxidation products of oxidative phos-
phorylation, oxidoreductase, or metal catalysis. However, it may be induced under some
stress conditions, especially exposure to environmental oxidants and some drugs leading to
release ROS. Excessive ROS may destroy cellular components including DNA, proteins, and
lipids, and eventually lead to cell death. Cell permeability 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH-DA) is a widely used ROS indicator. The reduced non-fluorescein h2dcfda
can be oxidized by intracellular ROS and converted into fluorescent 2′,7′-dichlorofluorescein
(DCF). Therefore, Figure 3 labels intracellular ROS with DCFH-DA and detects the strength
of DCF by flow cytometry.
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Figure 3. The effect of ROS produced by Au-UCNPs-DSPE-PEG2K under laser on cells and the change in fluorescence intensity after DCFH-DA staining were
measured by flow cytometry: (a): blank; (b–e): laser for 0 min, 10 min, 20 min, and 30 min, respectively, after adding Au-UCNPs-DSPE-PEG2K; (f–j): corresponding
to the fluorescence intensity of (a–e,k–o): the negative and positive areas of (a–e).
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It can be seen from Figure 3a–e that the cells initially gathered at one place. After
adding Au-UCNPs-DSPE-PEG2K and laser, there were two groups in the cell community,
which indicates that under the laser, Au-UCNPs-DSPE-PEG2K produced a large amount of
ROS (Figure 1). A large amount of ROS destroyed the cells and turned the cells into frag-
ments, resulting in two groups of cell communities, that is, one group was cell fragments.
Figure 3f–j also confirmed this, which can be seen, with the addition of Au-UCNPs-DSPE-
PEG2K and laser, the fluorescein peak shifted to the right, that is (Figure 4), the fluorescence
was enhanced. In other words, the amount of dye DCFH-DA converted into DCF by
ROS increased.
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The cytotoxicity of Au-UCNPs-DSPE-PEG2K is tested by enzyme labeling instrument. HeLa
cells are cultivated for 4 h after dispersing modified rare-earth nanomaterials in normal saline to
prepare various quantities, and their activity is assessed (Figure 5). The cell survival rate is greater
than 89% at the concentration of Au-UCNPs-DSPE-PEG2K is less than 400 µg/mL. Particularly,
at 200 µg/mL, the cell survival rate is greater than 99%. According to Figure 2, a 200 µg/mL
concentration of rare-earth nanoparticles not only has appropriate safety but also has a high
luminous intensity. Even when the rare-earth ion concentration is as high as 500 or 600 µg/mL,
cell survival remains greater than 80%. Moreover, under the irradiation of near-infrared light with
the wavelength of 808 nm, ROS was produced, which caused the apoptosis of cells (Figure S6).

Au and Au-DSPE-PEG2K nanoparticles are injected intravenously into Balb/c mice
(Figure 6). As can be seen from Figure 6a,b, there is no difference in MRI images before and
after Au nanoparticles injection, demonstrating that AuNPs have no MRI imaging capa-
bilities due to their lack of X-ray attenuation. After injection of Au-UCNPs nanoparticles,
obvious MRI signals appear at the tumor location (in the red circle in Figure 6d), which is
due to the X-ray attenuation characteristics of UCNPs (Figure S7).

Figure 7 shows that, although AuNPs have imaging ability (Figure 7b), it needs a very
high concentration, while Au-UCNPs needs a low concentration (Figure S8), which is why
very obvious CT signal is detected (Figure 7f). AuNPs and Au-UCNPs are at the same
concentration, and Au cannot observe CT signal (Figure 7d).
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Au-UCNPs-DSPE-PEG2K has excellent photoacoustic properties because of its excel-
lent photothermal effect, which are characterized by photoacoustic imaging (Figure 8),
and strong photoacoustic signals can be observed. Figure 9 shows that when injection the
concentration of Au-UCNPs-DSPE-PEG2K is 200 µg/mL, PA value is very obvious.
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3. Materials and Methods
3.1. Materials

The Au nanoparticles and Au-UCNPs-DSPE-PEG2K were synthesized in Beijing Key
Laboratory of Electrochemical Process and Technology of Materials, Beijing University of
Chemical Technology, Beijing, China [23]. Hela cells and BALB/c female white mice with
SPF grade come from Beijing Laboratory of Biomedical Materials, Beijing University of
Chemical Technology, Beijing, China. The cell counting kit 8 (CCK-8) assay kit was acquired
from BOVOGEN Shanghai, China. All chemicals were utilized in as-received condition,
without further refinement.

3.2. Characterization of Materials

A spectrum analyzer (ANDO AQ6317, Yokohama, Japan) was used to obtain the
up-conversion luminescence spectra. The specimen was positioned in a 1.0 cm path
length support and excited by utilizing a 980 nm CW semiconductor diode laser (Pmax
800 mW, 1000 mA). The up-conversion luminescence spectrum was acquired through the
spectrophotometer having a multimode fiber with a core diameter of 0.6 mm. The top of
the fiber was ~2 mm away from the specimen. Thermal imager (FOCUS 280DS) was used
to characterize the photoacoustic properties of photographic materials. HORIBA laser and
power density meter are used to characterize photothermal properties.

3.3. CCK-8 Assay for Cytotoxicity

HeLa cells were cultured in the logarithmic growth phase, and the culture medium
was sucked out from the flask. The cells were then washed with PBS, and digested with the
help of 0.25% trypsin. Then the trypsin was removed, and the cells were blown with DMEM
media containing 10% fetal bovine serum before being shifted to the sample tank and blown
well. Following that, 100 µL cells were introduced onto a 96-well plate (1 × 104 cells/well)
and cultured for 24 h at 37 ◦C in a constant temperature incubator (5% CO2). The cells
were cultured in an incubator at 37 ◦C with 5% CO2 for 1.5 h at concentrations of 200, 300,
400, 500, and 600 µg/mL of Au-UCNPs-DSPE-PEG2K, respectively. The culture media was
blotted out, PBS was washed twice, and the culture medium in the 96-well plates was
replaced with 100 µL of fresh DMEM containing 10% fetal bovine serum, followed by 10 µL
of CCK-8 solution in each well. After 2 h of incubation, the absorbance of each well at
450 nm was measured with a microplate reader.
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3.4. SOSG Assay for ROS

Firstly, 100 µg SOSG was dissolved in 6600 µL of oxygen-free methanol solution and
prepared as a mother liquor with a concentration of 15 µg/mL, and then stored away from
light for later use. Then, a sample solution (200 µg/mL) was prepared, 100 µL was taken
and mixed in a 96-well plate with 50 µL the SOSG mother liquor, and then irradiated with
near-infrared light with a wavelength of 980 nm (irradiance 0.5 W/cm2) for 0, 10, 20, 30,
and 40 min, each concentration was set to three repeated values and finally passed the
spectrometer, which measured the fluorescence intensity of SOSG at 525 nm, and also
detected other concentrations (300, 400, 500, and 600µg/mL) in the same way.

3.5. Establishment of Animal Tumor Model

A BALB/c female white mouse with SPF grade weighing 18 g was depilated, and log
phase Hela cells were subcutaneously injected into the mice’s upper right hind leg to create
a mouse Hela subcutaneous tumor development model.

3.6. MRI, PAI, and CT Imaging of Mice

To acquire preimages, the mice were anesthetized with isoflurane during the proce-
dure, then placed in an animal MRI scanner (NM42-040H-I) with a magnetic field strength
of 1 T, and a tomographic scan was executed of the tumor location on mice whose tumor
developed to 100 mm3. Then, 200 µg/mL of Au-UCNPs-DSPE-PEG2K solution was injected,
and images were collected again. Similarly, the mouse was placed on a SPECT/CT (tube
current: 615 µA, tube voltage: 55 kV) animal bed, a preimage acquisition of full-angle CT
imaging in precise mode was performed, and then the tomographic image of the tumor site
was acquired again after the injection of 200 µg/mL of Au-UCNPs-DSPE-PEG2K solution.
Using the same method, the images of mouse tumors before and after injection (200 µg/mL
of Au-UCNPs-DSPE-PEG2K solution) were obtained in the small animal photoacoustic
imaging system (Nexus 128).

4. Conclusions

An Au-UCNPs-DSPE-PEG2K multi-modality bioimaging device was ultimately devel-
oped and may be utilized for photodynamic treatment. The combined PA imaging with
CT and MRI experiments show that Au-UCNPs-DSPE-PEG2K may be used as contrast
mediators for tri-modal imaging for both in vitro and in vivo testing, giving complete
details for tumor diagnosis. Particularly, Au-UCNPs-DSPE-PEG2K has a good release of
ROS to destroy tumor cells to achieve the purpose of tumor treatment. These nanomaterials
have exhibited low cytotoxicity, indicating their high biocompatibility for organisms. All
these promising findings make Au-UCNPs-DSPE-PEG2K nanocomposites an auspicious
candidate for cancer theranostics, and it has encouraged us to develop the integration of
diagnosis and treatment of tumors.
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