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The aim of the present study was to determine the effect of microRNA (miR)-132 on cardiac
fibrosis in myocardial infarction (MI)-induced heart failure and angiotensin (Ang) II-treated
cardiac fibroblasts (CFs). Experiments were carried out in Sprague-Dawley rat treatment
with ligation of left coronary artery to induce heart failure, and in CFs administration of Ang
II to induce fibrosis. The level of miR-132 was increased in the heart of rats with MI-induced
heart failure and the Ang II-treated CFs. In MI rats, left ventricle (LV) ejection fraction, frac-
tional shortening, the maximum of the first differentiation of LV pressure (LV +dp/dtmax) and
decline (LV -dp/dtmax) and LV systolic pressure (LVSP) were reduced, and LV end-systolic
diameter (LVESD), LV end-diastolic diameter (LVEDD), LV volumes in systole (LVVS) and LV
volumes in diastole (LVVD) were increased, which were reversed by miR-132 agomiR but
deteriorated by miR-132 antagomiR. The expression levels of collagen I, collagen III, trans-
forming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were increased in
the heart of rat with MI-induced heart failure and CFs administration of Ang II. These in-
creases were inhibited by miR-132 agomiR but enhanced by miR-132 antagomiR treat-
ment. MiR-132 inhibited PTEN expression, and attenuated PI3K/Akt signal pathway in CFs.
These results indicated that the up-regulation of miR-132 improved the cardiac dysfunction,
attenuated cardiac fibrosis in heart failure via inhibiting PTEN expression, and attenuating
PI3K/Akt signal pathway. Up-regulation of miR-132 may be a strategy for the treatment of
heart failure and cardiac fibrosis.

Introduction
Heart failure, a complex syndrome resulting from structural or functional cardiac disorders, can disable
the ventricle from ejecting or filling blood [1–3]. Despite the progress in diagnosis, heart failure is still
a leading cause of morbidity and mortality worldwide [4–6]. Heart failure is preceded by left ventricular
(LV) remodeling, which is characterized by the formation of cardiac interstitial fibrosis, including the
increases of collagen I, collagen III, α-smooth muscle actin (α-SMA), and transforming growth factor-β
(TGF-β) [7–9].

MicroRNAs (miRs), a group of small, naturally occurring and non-coding RNAs, can negatively reg-
ulate gene expressions through promoting mRNA degradation or inhibiting mRNA translation [10–13].
Many miRNAs have been recognized as biomarkers and possible therapeutic targets for the diagnosis and
treatment of diseases [14]. Human studies and animal experiments have found multiple miRs, including
miR-24, -199b, -100, -195, -208, and -133, are dysregulated in heart failure [15–19]. However, the relevant
mechanisms are far from being understood.

Circulating miR-132 level was associated with heart failure, and it rose with the severity of heart failure
[20]. However, another study found that miR-132 expression was down-regulated in the blood of heart
failure patients [21]. Moreover, overexpression of miR-132 dramatically enhanced the antioxidant stress
and antiapoptotic ability of H9C2 cells [21]. MiR-132 activated the phosphateidylinositol 3-kinase/protein
kinase (PI3K/Akt) signal transduction pathway via inhibiting phosphatase and tensin homolog (PTEN)
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expression, thus facilitating cardiocyte proliferation and attenuating apoptosis and cardiac fibrosis in rats with
doxorubicin-induced dilated cardiomyopathy (DCM) [22]. However, whether miR-132 attenuates heart failure and
reduces cardiac fibrosis in MI-induced heart failure is still not well known. The purpose of the present study was
to explore the curative effects of miR-132 on cardiac dysfunction and heart fibrosis in rats with MI-induced heart
failure.

Materials and methods
Animals
The experiments were performed at Animal Core Facility of Nanjing Medical University using male Sprague-Dawley
(SD) rats (180-200g, Vital River Biological Co., Ltd, Beijing, China). The rats were kept in a temperature-controlled
room on a 12 h light–dark cycle with free access to standard chow and tap water. All procedures were approved
by the Experimental Animal Care and Use Committee of Nanjing Medical University (Nanjing, China) in 2017
(No.14051386), and conducted in accordance with the Guide for the Care and Use of Laboratory Animals (NIH
publication No. 85-23, revised 1996).

Myocardial infarction model
The myocardial infarction (MI) in the rat model was induced by coronary artery ligation with sterile techniques
as previously reported [23]. Briefly, the rats (180–200 g), anesthetized with sodium pentobarbital (50 mg/kg, i.p.),
were randomly subjected to the ligation of the left anterior descending coronary artery or the sham-operated (Sham)
groups. The heart was exposed through a left intercostal thoracotomy with the left coronary artery looped by a single
nylon suture. Then, the heart was quickly repositioned into the chest. The Sham rats were treated in the same way as
the coronary ligation rats except that their left anterior descending coronary arteries were not ligated.

Angiotensin II rat model
Male SD rats weighing 180–200 g were infused with Ang II (500 ng/kg/min, Sigma, MO, U.S.A.) or saline (solvent
control) via osmotic minipumps (model 2004; ALZET, CA, U.S.A.) with an infusion rate of 0.25 μl/h that were sur-
gically placed below the neck for 4 weeks.

MiRNA-132 agomiR and antagomiR treatment in rats
To determine the effects of miR-132 on MI-induced HF, the rats were injected with miR-132 agomiR (a 2′OME
+ 5′chol modified miR-132 agonist, 40 mg/kg/day) or antagomiR (a 2′OME+5′chol modified miR-132 inhibitor,
40mg/kg/day) 7 days after MI via tail vein for three consecutive days. The miR-132 agomiR and antagomiR were
obtained from RIBOBIO (Guangzhou, China). After 4 weeks of injection, the rats were killed with an overdose of
sodium pentobarbital (100 mg/kg, i.p.).

Echocardiography
Transthoracic echocardiography was performed using an ultrasound system (VisualSonics, Toronto, Canada) with a
21-MHz probe under isoflurane (2.0%) anesthesia. Measurements over three consecutive cardiac cycles were aver-
aged. The ejection fraction (EF) and fractional shortening (FS) of left ventricular (LV) in rats were calculated. The LV
end-systolic diameter (LVESD), LV end-diastolic diameter (LVEDD), LV volumes in systole (LVVS), and LV volumes
in diastole (LVVD) were measured.

Hemodynamic monitoring
The rats were anesthetized with isoflurane (2.0%). A conductance micromanometer catheter (1.4F, Millar Instru-
ments, TX, U.S.A.) was inserted into the LV chamber for hemodynamic monitoring via the left carotid artery. The
maximum of the first differentiation of LV pressure (LV +dp/dtmax) and decline (LV -dp/dtmax), LV systolic pres-
sure (LVSP), and LV end-diastolic pressure (LVEDP) were obtained using a PowerLab data acquisition system (AD
Instruments, Sydney, Australia).

Quantitative real time-PCR (qRT-PCR)
The rats were killed with an overdose of pentobarbital (100 mg/kg, i.p.), and the hearts were removed. The total RNA
in samples was extracted with TRIzol (Ambion, TX, U.S.A.). The cDNA was extracted from the RNA with reverse
transcription using random primers in a total volume of 10 μl according to the instructions of the PrimeScript™ RT
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Table 1 List of utilized primers for qRT-PCR

Gene Species Forward primer Reverse primer

Collagen I Rat TCAAGATGGTGGCCGTTAC CTGCGGATGTTCTCAATCTG

Collagen III Rat CGAGATTAAAGCAAGAGGAA GAGGCTTCTTTACATACCAC

TGF-β, Rat CAGGGAGTAAGGGACACGA ACAGCAGTTAGGAACCCAGAT

α-SMA Rat GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA

miR-132 Rat ACACTCCAGCTGGGTAACA CTCAACTGGTGTCGTGGA

U6 Rat GCTTCGGCAGCACATATACTAAAAT CGCTTCACGAATTTGCGTGTCAT

GAPDH Rat GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA

Abbreviations: α-SMA, α-smooth muscle actin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; miR, microRNA; TGF-β, transforming growth
factor-β.

Master Mix (TaKaRa Biomedical Technology, Beijing, China). All cDNA was stored at − 80◦C before use. Collagen
I, collagen III, TGF-β, and α-SMA mRNA were determined with SYBR Green I fluorescence. All samples were am-
plified in triplicates for 45 cycles in a 384-well plate. The relative gene expression was determined by calculating the
values of �cycle threshold (�Ct) as a relative quantity to the endogenous control. U6 was as a control to miR-132, and
GAPDH was as a control to collagen I, collagen III, TGF-β, and α-SMA. The primers (Genscript, Nanjing, China)
are shown in Table 1.

Isolation and culture of cardiac fibroblasts (CFs)
Rat CFs were isolated from SD rats (1–3 days). Briefly, CFs were separated from cardiomyocytes by gravity separation
and grown to confluence on 10-cm cell culture dishes with DMEM media including 10% FBS, 1% penicillin and 1%
streptomycin (Biochannel Biotechnology Co., Ltd, Nanjing, China) at 37◦C in humid air with 5% CO2 and 95% O2.
The second passage CFs was used in the experiments. CFs were incubated with 10−6 M [24,25] Ang II (Sigma, MO,
U.S.A.) for 24 h to induce the fibrotic phenotype, and treated with miR-132 agomiR or antagomiR according to the
manufacturers’ instructions.

Bioinformatics analysis and dual-luciferase reporter gene assay
Target gene of miR-132 was determined according to previous study [22]. Briefly, endonuclease sites (SpeI and
HindIII) were used to insert PTEN into the pMIR-reporter vector, and the mutation sites of complementary se-
quences of seed sequences were designed on wild-type PTEN (PTEN-WT). After restriction enzyme cutting, the T4
DNA ligase was used to insert the target fragment into the pMIR-reporter vector. The WT and mutant type (MUT)
luciferase reporter plasmids with the correct sequence were cotransfected into HEK-293T with miR-132, respectively.
After 48 h of transfection, the cells were collected, disrupted, and centrifuged for 5 min to collect the supernatant.
The luciferase kit (Beyotime Biotech Co, Ltd., Shanghai, China) was used to determine the relative light unit (RLU)
as its instructions

Statistical analyses
Data are presented as mean +− standard error of the mean (SE). Using GraphPad Prism 6.0 (GraphPad software Inc.,
CA, U.S.A.), statistical significance among multiple groups was evaluated by one-way analysis of variance (ANOVA)
with the Bonferroni post-hoc test. A two-tailed P-value <0.05 was considered statistically significant.

Results
Expression of miR-132 in the heart of heart failure rats and Ang II-treated
CFs
The expression level of miR-132 was reduced in the heart of MI-induced heart failure rats (Figure 1A). MiR-132 ex-
pression level was reduced in the heart of rat administration of angiotensin (Ang) II (Figure 1B). MiR-132 expression
level was reduced in Ang II-treated CFs (Figure 1C) MiR-132 expression level was increased in the heart of rat treat-
ment with miR-132 agomiR (Figure 1D). E. MiR-132 expression level was reduced in the heart of rat treatment with
miR-132 antagomiR (Figure 1E).
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Figure 1. Expression of microRNA (miR)-132

(A) The level of miR-132 was reduced in the heart of myocardial infarction (MI)-induced heart failure rats. (B) MiR-132 expression

level was reduced in the heart of rat administration of angiotensin (Ang) II. (C) MiR-132 expression level was reduced in Ang

II-treated cardiac fibroblasts (CFs). (D) MiR-132 expression level was increased in the heart of rat treatment with miR-132 agomiR.

(E) MiR-132 expression level was reduced in the heart of rat treatment with miR-132 antagomiR. The results are expressed as mean
+− SE; N =8; *P<0.05 versus the Sham group (A) or PBS group (B).

Effects of miR-132 agomiR on cardiac function in heart failure rats
The EF and FS of LV in MI-induced heart failure rats were reduced, which were improved by miR-132 agomiR.
LVESD, LVEDD, LVVS, and LVVD were increased in HF rats, and miR-132 agomiR treatment inhibited these in-
creases (Figure 2).

Effects of miR-132 antagomiR on cardiac function in heart failure rats
The decreases of EF and FS were aggravated by miR-132 antagomiR in MI-induced heart failure rats. The increases
of LVESD, LVEDD, LVVS and LVVD in MI rats were further enhanced by miR-132 agomiR injection (Figure 3).

Effects of miR-132 agomiR on cardiac hemodynamics in heart failure rats
MI-induced heart failure reduced LV +dp/dtmax and LV -dp/dtmax. MiR-132 agomiR treatment increased the reduc-
tion of LV +dp/dtmax and LV -dp/dtmax in heart failure rats. LVSP was reduced in MI-induced heart failure rats,
which was reversed after miR-132 agomiR injection. LVEDP in heart failure rats was increased, which was inhibited
by miR-132 administration (Figure 4).

Effects of miR-132 antagomiR on cardiac hemodynamics in heart failure
rats
The decreases of LV +dP/dtmax and LV -dP/dtmax were further reduced by miR-132 antagomiR in MI-induced heart
failure rats. Treatment with miR-132 antagomiR also further aggravated the decreases of LVSP in MI-induced heart
failure rats. The increase of LVEDP in heart failure rats was enhanced after miR-132 antagomiR administration
(Figure 5).
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Figure 2. Effects of microRNA (miR)-132 agomiR on cardiac function in myocardial infarction (MI)-induced heart failure rats

The left ventricular (LV) ejection fraction (EF) and fractional shortening (FS) were reduced, and LV end-diastolic diameter (LVEDD), LV

end-systolic diameter (LVESD), LV volumes in systole diastole (LVVs) and LV volumes in diastole (LVVd) were increased in MI-induced

heart failure rats. These changes were reversed by miR-132 agomiR treatment. The results are expressed as mean +− SE; N=8;

*P<0.05 versus the Sham+NC agomiR group; #P<0.05 versus the MI+NC agomiR group.

Effects of miR-132 agomiR on cardiac fibrosis in heart failure rats
The expression level of collagen I was increased in the heart of heart failure rats, which was inhibited after miR-132
agomiR administration. The level of collagen III was increased in the heart of MI rats, which was reversed by miR-132
agomiR treatment. TGF-β level was increased in the heart of MI-induced heart failure rats, which was abolished by
miR-132 agomiR injection. The α-SMA expression in the heart was increased in the MI-induced heart failure rats,
which was blocked by miR-132 agomiR (Figure 6).
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Figure 3. Effects of microRNA (miR)-132 antagomiR on cardiac function in myocardial infarction (MI)-induced heart failure

rats

The left ventricular (LV) ejection fraction (EF) and fractional shortening (FS) were reduced, and LV end-diastolic diameter (LVEDD), LV

end-systolic diameter (LVESD), LV volumes in systole diastole (LVVs) and LV volumes in diastole (LVVd) were increased in MI-induced

heart failure rats, and these changes were further aggravated by miR-132 antagomiR treatment. The results are expressed as mean
+− SE; N=8; *P<0.05 versus the Sham+NC antagomiR group; #P<0.05 versus the MI+NC antagomiR group.

Effects of miR-132 antagomiR on cardiac fibrosis in heart failure rats
The expression levels of collagen I and collagen III in the heart were increased in the MI-induced heart failure rats,
and these increases were further enhanced by miR-132 antagomiR administration. MiR-132 antagomiR treatment
further elevated the levels of TGF-β and α-SMA compared with NC antagomiR in the heart of MI-induced heart
failure rats (Figure 7).

Effects of miR-132 agomiR on fibrosis in CFs induced by Ang II
The collagen I expression was increased in Ang II-treated CFs, which was inhibited by miR-132 agomiR treatment.
The collagen III level was increased in Ang II-treated CFs, which was reversed by miR-132 agomiR administration.
TGF-β level was increased in the Ang II-treated CFs, and miR-132 agomiR injection abolished this increase. The
α-SMA expression increased in Ang II-treated CFs, and miR-132 agomiR blocked the increase (Figure 8).
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Figure 4. Effects of microRNA (miR)-132 agomiR on cardiac hemodynamics in myocardial infarction (MI)-induced heart

failure rats

The maximum of the first differentiation of left ventricular pressure (LV +dp/dtmax) and decline (LV -dp/dtmax) and left ventricle

systolic pressure (LVSP) were reduced, and LV end-diastolic pressure (LVEDP) was increased in MI-induced heart failure rats, and

these changes were reversed by miR-132 agomiR treatment. The results are expressed as mean +− SE; N=8; *P<0.05 versus the

Sham+NC agomiR group; #P<0.05 versus the MI+NC agomiR group.

Effects of miR-132 antagomiR on fibrosis in CFs induced by Ang II
The expression levels of collagen I and collagen III in Ang II-treated CFs were increased, which was further enhanced
by miR-132 antagomiR administration. The levels of TGF-β and α-SMA in the Ang II-treated CFs were increased,
which were also further enhanced by miR-132 antagomiR treatment (Figure 9).

The mechanism of miR-132
Compared with the NC group, the luciferase activity of PTEN-WT 3′-UTR was markedly attenuated by miR-132
agimiR, whereas the PTEN-MUT 3′-UTR luciferase activity was not inhibited (Figure 10A). The levels of p-PI3K and
p-Akt were increased in Ang II-treated CFs, and these increases were inhibited by miR-132 agomiR (Figure 10).
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Figure 5. Effects of microRNA (miR)-132 antagomiR on cardiac hemodynamics in myocardial infarction (MI)-induced heart

failure rats

The maximum of the first differentiation of left ventricular pressure (LV +dP/dtmax) and decline (LV -dP/dtmax) and left ventricle

systolic pressure (LVSP) were reduced, and LV end-diastolic pressure (LVEDP) was increased in MI-induced heart failure rats, and

these changes were further aggravated by miR-132 antagomiR treatment. The results are expressed as mean +− SE; N=8; *P<0.05

versus the Sham+NC antagomiR group; #P<0.05 versus the MI+NC antagomiR group.

Discussion
In the present study, we found that attenuated cardiac function in MI-induced heart failure rats, which was improved
by miR-132 agomiR but aggravated by miR-132 antagomiR treatment. MI-induced heart failure reduced the cardiac
hemodynamics, which was reversed by miR-132 agomiR but deteriorated by miR-132 antagomiR administration.
MiR-132 agomiR treatment inhibited the cardiac fibrosis in heart failure rats, while miR-132 antagomiR enhanced
the fibrosis in the heart of MI rats. Up-regulation of miR-132 with agomiR attenuated the increase of fibrosis in Ang
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Figure 6. Effects of microRNA (miR)-132 agomiR on cardiac fibrosis in myocardial infarction (MI)-induced heart failure rats

(A) The increase of fibrosis in heart was inhibited by miR-132 agomiR treatment. (B) The expression levels of collagen I, collagen

III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were increased in the heart of MI-induced heart

failure rats, and these increases were inhibited by miR-132 agomiR treatment; N=8; *P<0.05 versus the Sham+NC agomiR group;
#P<0.05 versus the MI+NC agomiR group.
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Figure 7. Effects of microRNA (miR)-132 antagomiR on cardiac fibrosis in myocardial infarction (MI)-induced heart failure

rats

The expression levels of collagen I, collagen III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were

increased in the heart of MI-induced heart failure rats, and these increases were further enhanced by miR-132 antagomiR treatment;

N=8; *P<0.05 versus the Sham+NC antagomiR group; #P<0.05 versus the MI+NC antagomiR group.

II-treated CFs, but down-regulation of miR-132 with antagomiR further enhanced the increase of fibrosis in Ang
II-induced CFs.

The expression of miR-132 was increased in isoproterenol-induced cardiac hypertrophy [26]. MiR-132 expres-
sion was down-regulated in the blood of heart failure patients [21]. However, another study showed that circulating
miR-132 levels rose with the severity of heart failure in patients with chronic heart failure [20]. In the present study,
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Figure 8. Effects of microRNA (miR)-132 agomiR on fibrosis in cardiac fibroblasts (CFs) treated with angiotensin (Ang) II

The expression levels of collagen I, collagen III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were

increased in Ang II-treated CFs, and these increases were inhibited by miR-132 agomiR treatment. *P<0.05 versus the PBS+NC

agomiR group; #P<0.05 versus the Ang II+NC agomiR group.

we found miR-132 expression in the heart was reduced in MI-induced heart failure rats. Furthermore, miR-132 level
was also reduced in Ang II-treated CFs. Our current results demonstrated miR-132 level was down-regulated in the
heart of heart failure rats and Ang-II treated CFs. Up-regulation of miR-132 may be a therapeutic strategy to treat
heart failure and cardiac fibrosis.

The cardiac function was reduced in MI-induced heart failure rats [27], mice [28,29], rabbits [30], and swines [31].
In the present study, the results showed that the EF and FS of LV in MI-induced heart failure rats were reduced, which

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

11



Bioscience Reports (2020) 40 BSR20201696
https://doi.org/10.1042/BSR20201696

Figure 9. Effects of microRNA (miR)-132 antagomiR on the fibrosis of cardiac fibroblasts (CFs) treated with angiotensin

(Ang) II

The expression levels of collagen I, collagen III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were

increased in Ang II-treated CFs, and these increases were further enhanced by miR-132 antagomiR treatment. *P<0.05 versus the

PBS+NC antagomiR group; #P<0.05 versus the Ang II+NC antagomiR group.
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Figure 10. The mechanism of miR-132

(A) The luciferase activity of PTEN-WT 3′-UTR was markedly attenuated by miR-132 agimiR. (B–D) The increases of p-PI3K and

p-Akt were inhibited by miR-132 agomiR. *P<0.05 versus the NC agomiR (A) or PBS+NC agomiR (B) group; #P<0.05 versus the

Ang II+NC agomiR group.

were improved by miR-132 agomiR. The LVESD, LVEDD, LVVS, and LVVD were increased in the heart failure rats,
and miR-132 agomiR treatment inhibited these increases. The decreases of EF and FS, and the increases of LVESD,
LVEDD, LVVS and LVVD in MI rats were further enhanced after the administration of miR-132 antagomiR. These
results indicated upregulation of miR-132 improved, but downregulation of miR-132 further deteriorated the cardiac
dysfunction in heart failure rats, which is supported by the previous finding that injection of miR-132 mimics into
MI mice increased FS and EF [32].

Cardiac hemodynamics were impaired in rats with chronic heart failure, which was manifested by the increase of
LVEDP and the reduction of LVSP and +dp/dtmax [23]. In the present study, we found that miR-132 agomiR treatment
enhanced the reduction of LV +dP/dtmax, LV -dP/dtmax and LVSP, and attenuated the increase of LVEDP in heart
failure rats. The decreases of LV +dP/dtmax, LV -dP/dtmax and LVSP, and the increase of LVEDP was further aggravated
by miR-132 antagomiR administration. These results demonstrated that the inhibition of miR-132 further damaged
the cardiac hemodynamics in heart failure rats while increasing the miR-132 level improved cardiac hemodynamics.
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Cardiac fibrosis is caused by pathological stimulation to the heart. MI-induced heart failure showed markedly
fibrosis in the heart [33]. The Ang II-induced activation of cardiac fibroblasts, and hypertrophy and proliferation
of cardiomyocytes were significantly inhibited by miR-132 inhibitor anti-miR-132 [34]. Up-regulated miR-132 fa-
cilitated cardiocyte proliferation and repressed cardiocyte apoptosis and cardiac fibrosis in dilated cardiomyopathy
induced by doxorubicin [22]. In the present study, the results showed that the expression levels of collagen I, collagen
III, TGF-β, andα-SMA were increased in the heart of heart failure rats, which was reversed by miR-132 agomiR treat-
ment, but further enhanced by miR-132 antagomiR injection. Moreover, the expression levels of collagen I, collagen
III, TGF-β, and α-SMA in Ang II-treated CFs were inhibited by miR-132 agomiR treatment and further increased
by miR-132 antagomiR treatment. These results indicated that miR-132 up-regulation attenuated the fibrosis of heart
and inhibited the activation of cardiac fibroblasts in MI rats.

Differences genes are targeted by miR-132 in some diseases as previous studies. It showed that miR-132 inhibits
cardiomyocyte apoptosis, and ameliorates myocardial remodeling in rats with MI through IL-1β down-regulation
[35]. miR-132 exhibited the protective impacts on H9C2 cells against oxygen and glucose deprivation-induced injury
via targeting FOXO3A [36]. Our present study found that miR-132 targeted PTEN in CFs, which is supported by
previous study [22]. The signal pathway of PI3K/Akt was involved in the fibrosis of the heart [37,38]. The expression
of p-Akt was increased in the CFs treated by Ang II [8]. In our present study, the results showed that p-PI3K and p-Akt
levels were increased in Ang II-treated CFs, and these results indicated that miR-132 inhibited PTEN expression, and
attenuated PI3K/Akt signal pathway in CFs.

In conclusions, up-regulation of miR-132 improved the cardiac dysfunction and the damage to cardiac hemody-
namics, and attenuated cardiac fibrosis in heart failure via inhibiting PTEN expression, and attenuating PI3K/Akt
signal pathway. MiR-132 may help to improve heart failure and is a potential biomarker for heart failure [39].
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