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Abstract
Sepsis- induced metabolic dysfunction contributes to organ failure and death. L- 
carnitine has shown promise for septic shock, but a recent phase II study of patients 
with vasopressor- dependent septic shock demonstrated a non- significant reduction in 
mortality. We undertook a pharmacometabolomics study of these patients (n = 250) to 
identify metabolic profiles predictive of a 90- day mortality benefit from L- carnitine. 
The independent predictive value of each pretreatment metabolite concentration, ad-
justed for L- carnitine dose, on 90- day mortality was determined by logistic regres-
sion. A grid- search analysis maximizing the Z- statistic from a binomial proportion 
test identified specific metabolite threshold levels that discriminated L- carnitine re-
sponsive patients. Threshold concentrations were further assessed by hazard ratio and 
Kaplan- Meier estimate. Accounting for L- carnitine treatment and dose, 11 1H- NMR 
metabolites and 12 acylcarnitines were independent predictors of 90- day mortality. 
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INTRODUCTION

Sepsis represents the leading cause of death in the intensive 
care unit and the single most expensive inpatient diagnosis, 
representing more than $17 billion in healthcare costs annu-
ally in the United States.1– 3 Septic shock carries a particularly 
poor prognosis, with short- term mortality rates of ~  40%. 
Among the many physiologic disturbances associated with 
sepsis is a profound shift in metabolism.4 Hyperlactatemia 
represents one of the hallmarks of sepsis and is now consid-
ered a criterion for the diagnosis of septic shock.5 However, 
hyperglycemia, lipolysis, and protein catabolism are also 
common and similarly associated with increased mortality.4,6 

Manipulation of these processes represents an underdevel-
oped but promising target for novel pharmacotherapies.

Despite the concerning sepsis mortality statistics and an 
increasingly focused research effort on the condition, clini-
cal trials of novel sepsis pharmacotherapies have tradition-
ally yielded disappointing results. Although the causes of 
the failure of clinical trials to further novel treatments are 
multifactorial, the highly heterogeneous nature of sepsis cer-
tainly contributes to these results.7,8 This highlights the need 
to forge a better understanding of the heterogeneity and com-
plexity of the clinical illness by identifying sepsis endotypes.9 
In doing so, strategies for enriched patient selection could be 
used to improve the precision of clinical trials. Importantly, 
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Based on the grid- search analysis numerous acylcarnitines and valine were identified 
as candidate metabolites of drug response. Acetylcarnitine emerged as highly viable 
for the prediction of an L- carnitine mortality benefit due to its abundance and biologi-
cal relevance. Using its most statistically significant threshold concentration, patients 
with pretreatment acetylcarnitine greater than or equal to 35 µM were less likely to 
die at 90 days if treated with L- carnitine (18 g) versus placebo (p = 0.01 by log rank 
test). Metabolomics also identified independent predictors of 90- day sepsis mortality. 
Our proof- of- concept approach shows how pharmacometabolomics could be useful for 
tackling the heterogeneity of sepsis and informing clinical trial design. In addition, me-
tabolomics can help understand mechanisms of sepsis heterogeneity and variable drug 
response, because sepsis induces alterations in numerous metabolite concentrations.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Sepsis remains a significant hazard to human health, causes a large and highly variable 
metabolic response, and targeted pharmacotherapy remains elusive. L- carnitine rep-
resents a candidate therapeutic, but a recent clinical trial of L- carnitine versus placebo 
in patients with septic shock demonstrated a nonsignificant reduction in mortality.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study addressed the question: are there serum metabolites that differentiate pa-
tients with septic shock who disproportionately derive a mortality benefit from L- 
carnitine treatment?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Pharmacometabolomics can aid in identifying patients with sepsis that are more likely 
to respond to specific therapies. In this study, we identified blood concentrations of 
two metabolites, the acylcarnitine, acetylcarnitine (≥35 µM) and an amino acid, va-
line (≥88 µM) that could be used to identify these patients and for the design of a 
clinical trial that would test the efficacy of L- carnitine in a specific subgroup of pa-
tients with septic shock.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
With few therapeutic options, better understanding of metabolic mechanisms that 
contribute to disease heterogeneity as well as patients who may respond favorably to 
specific treatments will move sepsis care closer to precision medicine and inform the 
design of clinical trials.
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predictive and prognostic enrichment strategies for clinical 
trials have been advocated by many and have been issued as 
guidance by regulatory agencies like the US Food and Drug 
Administration.10– 12

We recently completed a phase II, Bayesian adaptive dose- 
finding randomized control trial comparing L- carnitine (6, 
12, or 18 g) treatment to saline (placebo) for the early treat-
ment of septic shock. None of the tested doses of L- carnitine 
resulted in a significant reduction in sequential organ failure 
assessment (SOFA) score at 48 h, although the highest and 
best performing dose (18 g) demonstrated a nonsignificant 
3% and 6% absolute mortality reduction at 28 days in the in-
tention to treat and per protocol analyses compared to saline 
placebo, respectively.

In parallel with the planning of the original trial, we de-
signed an ancillary metabolomics study, the L- Carnitine 
Pharmacometabolomics in Sepsis (CaPS) study, to identify 
candidate metabolites of drug response that could serve to 
endotype a heterogeneous septic shock cohort and direct the 
design of a clinical enrichment strategy for a phase III trial. 
A number of studies have demonstrated the importance of 
energy- related metabolites for the differentiation of sepsis 
survivors and the identification of sepsis endotypes,4,6,13– 16 
most of which are readily detected by nuclear magnetic 

resonance (NMR) spectroscopy6,14,15 and targeted liquid 
chromatography -  mass spectroscopy (LC- MS) assays.16 
Furthermore, we have previously demonstrated the utility of 
metabolomics in predicting drug response (pharmacometab-
olomics) in sepsis15 using relatively quantified NMR metab-
olites and acylcarnitines generated by an LC- MS assay. With 
this background in mind, we hypothesized that serum con-
centrations of acylcarnitines and/or other metabolites could 
differentiate patients that disproportionately benefit from L- 
carnitine treatment as measured by mortality.

METHODS

Study design

This study utilized pretreatment serum samples collected from 
236 of the 250 patients enrolled in the Rapid Administration 
of Carnitine (RACE) in Sepsis clinical trial.17 The parent trial 
was approved by each site’s institutional review board, all 
patients or their surrogate gave written informed consent, and 
it was registered at clinicaltrials.gov prior to initiation (NCT 
01665092). Details of the blood samples included in the study 
are provided in the Supplementary Material, Figure 1. Serum 

F I G U R E  1  Statistical and logistic regression modeling workflow. We first natural log transformed and normalized each metabolite to have a 
mean of 0 and SD of 1. For each metabolite, we then considered a series of logistic regression models with an outcome of 90- day mortality (p). The 
full model descriptions are provided below. In the metabolite base model, the p value corresponds to the likelihood ratio test for inclusion of the 
metabolite coefficient, BM, compared to the nested null model with only L- carnitine dose (BD) as a predictor. For the interaction model, the p value 
corresponds to the likelihood ratio test for inclusion of the interaction coefficient, BMD, compared to a nested model with dose (BD) and metabolite 
concentration (BM) as predictors. 1Null model: logit(p) = B0 + BD * Dose. 2Metabolite base model: logit(p) = B0 + BD * Dose + BM * Metabolitei. 
3Interaction model: logit(p) = B0 + BD * Dose + BM * Metabolitei + BMD * Metabolitei * Dose
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samples were assayed for acylcarnitines by LC- MS16 and by 
quantitative proton (1H) NMR as previously described.18,19 
More details about the methods for these measurements can 
be found in the Supplementary Material.

Outcomes

We elected to use mortality as the outcome of our analysis 
because the primary end point of the RACE trial (reduction 
in SOFA score at 48 h) was not met, but the 18 g dose of 
L- carnitine resulted in a trend toward a reduction in mortal-
ity. Based on data suggesting a substantial continued decline 
in mortality among sepsis patients beyond 28 days and pre-
liminary data from our phase I study suggesting continued 
benefit from L- carnitine treatment on longer term mortality 
rates,20 we elected to assess the cumulative distribution mor-
tality function to find the optimal time frame for assessment 
of mortality (28, 90, 180, or 365 days). Based on this analysis, 
by 90- days, ~ 90% of the deaths had occurred (Figure S2) so 
we chose 90- day mortality as the primary clinical outcome.

Statistical analyses

Descriptive data are reported as means and SDs, medians 
with interquartile ranges, or proportions as appropriate. 
Differences in categorical outcomes were compared using χ2 
tests, whereas Student t- tests and Wilcoxon rank sum tests 
were used to compare continuous variables. The aims of our 
primary analyses were to: (1) determine the relationship be-
tween individual metabolites and 90- day mortality; (2) deter-
mine if the relationship between a predictive metabolite and 
mortality depends on treatment allocation; and (3) using me-
tabolites most associated with mortality, determine the opti-
mal (threshold) metabolite level that could be used to identify 
patients with septic shock most likely to respond favorably 
to L- carnitine treatment. Collectively, and similar to other 
secondary analyses or ancillary studies of clinical and obser-
vational trials,21– 25 achievement of these goals would provide 
clinical proof of concept of a metabolically informed strategy 
to tackle the heterogeneity of sepsis that could also be used 
for a predictive enrichment design of a phase III study.10,11

Because metabolomic data are on different scales due to 
varying abundance, in preparation for statistical analyses, 
data were natural- log transformed and Z- score normalized to 
have a mean of 0 and a SD of 1.26,27 We began our analysis 
using partial least squares- discriminant analysis (PLS- DA)28 
to visualize the overall metabolic heterogeneity of the study 
participants and determine whether there were metabolic dif-
ferences between sexes and the treatment groups.

We followed PLS- DA by an assessment of the predic-
tive value of individual metabolites on 90- day mortality. To 

accomplish this, we constructed a series of logistic regression 
models and adjusted for treatment assignment (Figure 1).29 
We then further tested if the relationship between each me-
tabolite’s baseline concentration and mortality varied across 
treatment groups using a logistic regression interaction 
model. The likelihood ratio test was used to determine the 
impact of baseline concentration and the interaction between 
concentration and dose for each metabolite (Figure  1).30 
Age31 and SOFA score32 were considered as covariates in 
further multivariable modeling because they are known to be 
associated with sepsis mortality and severity and are clini-
cally available at the time of therapeutic decision making.

To test the potential clinical application of our pharma-
cometabolomics approach, after identifying metabolites 
strongly related to 90- day mortality that also had a significant 
interaction with treatment allocation, we aimed to identify 
the specific concentration or levels of these candidate me-
tabolites that could be used to predict which patients would 
be most likely to derive a mortality benefit from L- carnitine 
(Figure 2). To achieve this, we used a grid- search methodol-
ogy to compute the Z- statistic from the binomial proportion 
test at every possible threshold metabolite concentration or 
level.33 For this example, because the 18 g dose of L- carnitine 
was the most efficacious in the RACE trial and would be the 
one most likely to be tested in a phase III trial, we used the Z- 
statistic to quantify the standardized difference in the propor-
tion of deaths between those patients who received L- carnitine 
(18 g) and those who received placebo. For this analysis, the 
metabolite level at each threshold was used as the criterion 
for inclusion into the proportion test. We then computed a 
two- sample (binomial) proportion test,34 which compared 
the proportion of patients treated with L- carnitine who died 
by 90 days to those that were treated with placebo. At each 
threshold, we estimated the precision in the point estimate 
by performing jackknife resampling— systematically leav-
ing out one observation and calculating the Z- statistic on the 
remaining observations.35 This permitted the identification 
of metabolite levels associated with a range of Z- statistics, 
including the maximum Z- statistic and the corresponding 
95% confidence interval. The Z- statistic simultaneously ac-
counts for the difference in the proportion of patients who 
died in the treatment versus placebo groups and the sizes of 
each group, thereby suggesting the most optimal metabolite 
threshold level. Metabolites were then ranked by descend-
ing maximum Z- statistic. Similar approaches have been used 
by other studies that have sought to identify the responder 
population in clinical and observational trials.21– 25 To further 
illustrate the implications of the use of different metabolite 
concentrations as predictors of mortality, hazard ratios were 
calculated using the Mantel- Haenszel method, and Kaplan- 
Meier curves were constructed (log rank [Mantel- Cox] test). 
Metabolite concentration cut points were selected accord-
ing to different trial scenarios and the grid- search analysis 
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described above. All statistical tests except for hazard ratios 
(Mantel- Haenszel) and log rank (Mantel- Cox) tests, which 
were done using PRISM, were performed in R studio (R ver-
sion 3.6.2 [2019– 12– 12] Copyright 2019 The R Foundation 
for Statistical Computing) and figures were constructed in R 
and PRISM (version 8.4.3, June 10, 2020).

RESULTS

Of the 250 participants randomized in the parent trial, 1H- 
NMR metabolomics and acylcarnitine data were avail-
able from 228 and 236 patient serum samples, respectively 
(Figure  S1). We identified and quantified 27 serum me-
tabolites by 1H- NMR and 24 acylcarnitines by LC- MS 
(Table  S1). Representative 1H- NMR and LC spectra are 
shown in Figures S3 and S4. All- cause 90- day mortality was 
124 of 236 (52.5%), whereas 28- day and 1- year mortality 

were 104 of 236 (44.1%) and 136 of 236 (57.6%), respec-
tively. Clinical and demographic variables of the cohort 
stratified by the primary outcome are summarized in Table 1. 
As expected, patients who died were older and had a higher 
SOFA score. The PLS- DA plots of the acylcarnitine data and 
the NMR metabolites by treatment category (Figure S5a,b) 
and sex (Figure S6a,b) illustrate the metabolic heterogeneity 
of the study cohort and do not demonstrate any metabolic 
distinction between these groups.

We then conducted multivariable logistic regression using 
L- carnitine dose and metabolites as covariates (base model) 
and applied a conservative Bonferroni correction for multiple 
comparisons. The base model identified in 11 of 27 1H- NMR 
metabolites and 12 of 24 acylcarnitines that significantly dis-
criminated 90- day mortality (Table 2; the complete list can 
be found in Table S2). We then tested whether the relation-
ship between predictive metabolites and mortality depends 
on treatment allocation. This was done with the addition of 

F I G U R E  2  Grid- search methodology workflow. After identifying metabolites with the strongest interaction in the logistic regression 
modeling, the metabolite concentration threshold or cut point that maximized the interaction was determined. For every possible threshold 
concentration, patients randomized to receive either placebo or 18 g L- carnitine were considered. For patients whose values exceeded the 
concentration threshold, we stratified patients by treatment allocation and 90- day mortality status and calculated the Z- statistic from the two- sample 
binomial proportion test. This was done iteratively for each metabolite, and the maximum Z- statistic was identified from the grid- search (see 
Table 4). LC, L- carnitine
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an interaction term between L- carnitine dose and metabo-
lite level (interaction model), which reduced the number of 
significant metabolites from 23 to 14, of which all but three 
metabolites were acylcarnitines (Table  3; a comprehensive 
list can be found in Table  S3); these were not in range to 

withstand a conservative adjustment (e.g., Bonferroni) for 
multiple comparisons. In this analysis, a statistically signifi-
cant and negative interaction term indicates that the predicted 
probability of 90- day mortality for a given metabolic feature 
is lower at higher doses of L- carnitine. To determine whether 
the signals found in the base and interaction models was 
merely due to factors associated with the risk of death, we 
controlled for both age31 and SOFA score.32 Several acylcar-
nitines and choline tolerated this adjustment (see Table  S4 
for the full list of metabolites); notably, lactate was not sig-
nificant in either model (p = 0.96 and p = 0.22, respectively).

As these findings were not evident in the parent clinical 
trial and they suggest that there may be a sepsis endotype 

T A B L E  1  Demographics and clinical characteristics of the cohort, 
stratified by 90- day mortality

Variable
Survived 
(n = 111) Died (n = 125) p value

Demographics

Age, years (IQR) 61 (49, 69) 66 (57, 76) 0.002

Male, n (%) 60 (54) 74 (41) 0.43

Female, n (%) 51 (46) 51 (59)

Race

Black, n (%) 33 (30) 39 (31) 0.88

Asian, n (%) 3 (3) 2 (2)

White, n (%) 68 (61) 74 (59)

Other, n (%) 7 (6) 10 (8)

Ethnicity

Hispanic, n (%) 5 (4) 7 (6) 0.70

Medical history

Diabetes, n (%) 34 (31) 46 (37) 0.32

Liver disease, n (%) 11 (10) 25 (20) 0.03

Renal disease, n (%) 10 (10) 24 (20) 0.03

Physiologic variables

Heart rate, beats per 
minute (IQR)

100 (84, 113) 100 (87, 114) 0.70

Respiratory rate, 
breaths per 
minute (IQR)

20 (16, 24) 21 (18, 26) 0.09

Cumulative 
vasopressor 
index (IQR)

4 (3, 8) 6 (4, 8) <0.001

Body mass index 
(IQR)

28 (25, 36) 27 (22, 35) 0.10

Laboratory values

White blood count, 
cells/mm3 (IQR)

22.0 (12.3, 28.7) 16.1 (11.4, 23.7) 0.24

Platelet count, cells/
mm3 (IQR)

161 (99, 232) 129 (65, 210) 0.02

Creatinine, mg/dl 
(IQR)

1.6 (1.1, 2.4) 2.1 (1.4, 3.0) 0.003

Total bilirubin, mg/
dl (IQR)

0.9 (0.5, 1.7) 1.6 (0.7, 3.7) <0.001

Clinical lactate, 
mmol/L (IQR)

3.1 (2.3, 4.8) 4.9 (2.7, 8.4) <0.001

Severity of illness

SOFA score 10 (8, 12) 12 (9, 15) <0.001

Abbreviations: IQR, interquartile range; SOFA, sequential organ failure 
assessment.

T A B L E  2  Logistic regression model for the prediction of 90- day 
mortality adjusted for treatment (L- carnitine dose or placebo)

Metabolite 
predictorb 

Base modela 

Metabolite
Coefficient 
(βM)

βM
Standard
Error

βM
p value
(Bonferroni)

Acetylcarnitine (C2)c 0.85 0.16 <0.0001

C18:1c 0.84 0.17 <0.0001

Acetylcarnitine (C2)d 0.76 0.16 <0.0001

C20:1c 0.74 0.16 <0.0001

Tyrosined 0.68 0.16 0.0002

Betained 0.68 0.16 0.0002

Propionylcarnitine 
(C3)c 

0.64 0.15 0.0002

Propylene glycold 0.66 0.16 0.0003

C16:1c 0.60 0.15 0.001

Lysined 0.58 0.15 0.002

Glycined 0.56 0.15 0.003

C20- carnitinec 0.56 0.15 0.004

Glutamined 0.55 0.15 0.01

C14- carnitinec 0.53 0.15 0.01

C16- carnitinec 0.52 0.15 0.01

Methionined 0.51 0.15 0.01

Lactated 0.51 0.15 0.02

C12:1- carnitinec 0.51 0.15 0.02

C4- carnitinec 0.48 0.14 0.02

C20:2- carnitinec 0.49 0.15 0.03

Prolined 0.47 0.14 0.03

C8- carnitinec 0.46 0.14 0.04

Alanined 0.46 0.14 0.05
aThe base model is described as logit(p) = B0 + BD * Dose + BM * Metabolitei, 
where p is the probability of mortality in 90 days.
bCompounds with Bonferroni adjusted p values less than or equal to 0.05 ranked 
in ascending order; for the complete list see Table S2 in the supplementary file.
cAs measured by liquid chromatography -  mass spectroscopy.
dAs measured by 1H- nuclear magnetic resonance spectroscopy.
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that may derive a therapeutic benefit from supplement L- 
carnitine, we hypothesized that a pharmacometabolomics 
approach may aid in defining this subgroup of patients. To 
identify the candidate metabolites, we took a hypothesis- 
generating approach and considered all metabolites with sig-
nificant (≤0.05) unadjusted p values (n = 14 in the logistic 
regression interaction model; Table  3) and assessed the Z- 
statistic of each. Based on this analysis, the metabolites with 
the highest maximum Z- statistics included a number of acyl-
carnitines as well as the branched chain amino acid, valine 
(Table 4; also see Table S5). In addition to the Z- statistic val-
ues, to identify candidate metabolites, we also considered the 
prevalence of the acylcarnitine signal, the known potential of 
acetylcarnitine (C2) to predict drug responsiveness15 and its 
close metabolic relationship with L- carnitine. Furthermore, 
the maximum Z- statistic of C12 and C8:1 represented a lower 
percentage of the clinical cohort than either C5 or acetylcar-
nitine (C2). As such, we selected acetylcarnitine (C2) as the 
most viable metabolite candidate to demonstrate the utility 
of our pharmacometabolomics approach. As examples, we 
assessed several concentrations of both acetylcarnitine (C2) 
and valine, including the ones at the maximum Z- statistic, 

35 µM (p = 0.002; as measured by LC- MS; Figure 3) and 
88  µM (p  =  0.009), respectively (also see Figure  S7 and 
Table S5). These analyses illustrate how pharmacometabolo-
mics may aid in the design of a precision trial of L- carnitine 
for the treatment of septic shock using the scheme as illus-
trated in Figure 4.

DISCUSSION

Our pharmacometabolomics study, CaPS, aimed to identify 
pretreatment, sepsis- induced metabolic derangements in sur-
vivors and nonsurvivors treated with L- carnitine. We found 
that there are likely metabolically distinct groups (endotypes) 
of patients that do proportionally better when they receive an 
18 g dose of supplemental L- carnitine. These findings imply 
that a precision, clinical trial enrichment strategy using phar-
macometabolomics could help combat the heterogeneity of 
sepsis and drug response, which is known to have contributed 
to numerous negative clinical studies.7

Here, we show that a pharmacometabolomics approach 
identified clinically indistinguishable sepsis endotypes that 
are more likely to derive a mortality benefit from treatment 
with L- carnitine (18 g), a finding not evident in the metaboli-
cally naive parent trial. To accomplish this, we used a metab-
olomics analysis to capture high abundant polar compounds 
(quantitative 1H- NMR) and acylcarnitines (LC- MS) in serum 

T A B L E  4  Significant metabolitesa from the logistic regression 
interaction model ranked by descending maximum Z- statistic

Metabolite predictor
Maximum 
Z– statistic 95% CI

C10:1- carnitineb 3.67 2.05– 5.29

C8:1- carnitineb 3.44 2.01– 4.87

C10- carnitineb 3.06 1.44– 4.67

Acetylcarnitine (C2)b 3.01 1.93– 4.09

C8- carnitineb 2.98 1.24– 4.72

C5- carnitineb 2.74 1.76– 3.73

Valinec 2.61 0.79– 4.43

C12- carnitineb 2.52 0.74– 4.30

C18:2- carnitineb 2.41 1.18– 3.64

C14:1- carnitineb 2.40 1.2– 3.60

C16- carnitineb 2.39 0.55– 4.23

C16:1- carnitineb 2.38 0.52– 4.23

Cholinec 1.71 −0.24– 3.67

2- Oxoisocaproatec 1.68 −0.28– 3.63

Abbreviation: CI, confidence interval.
aSee Table 3; see Table S5 for the complete list of metabolite predictors ranked 
by Z- statistic.
bAs measured by liquid chromatography -  mass spectroscopy.
cAs measured by 1H- nuclear magnetic resonance spectroscopy.

T A B L E  3  Logistic regression interaction model testing the 
relationship between metabolite predictors and mortality by treatment 
(L- carnitine dose or placebo) for the prediction of 90- day mortality 
ranked by ascending p value up to 0.05

Metabolite predictore 

Interaction modela 

Interaction 
coefficient 
(βM*D)

βM*D
Standard 
error

βM*D
p valued 
(Raw)

C10:1- carnitineb −1.22 0.37 <0.0001

C8:1- carnitineb −1.07 0.35 0.001

C8- carnitineb −0.97 0.36 0.01

C10- carnitineb −0.97 0.36 0.01

C18:2- carnitineb −0.96 0.35 0.01

C14:1- carnitineb −0.90 0.34 0.01

C12- carnitineb −0.77 0.33 0.02

C16:1- carnitineb −0.84 0.38 0.02

Cholinec −0.74 0.33 0.02

C16- carnitineb −0.82 0.38 0.02

Oxoisocaproatec −0.74 0.34 0.03

C5- carnitineb −0.70 0.36 0.04

Valinec −0.69 0.35 0.05

Acetylcarnitine (C2)b −0.81 0.42 0.05
aThe interaction model is described as 
logit(p) = B0 + BD * Dose + BM * Metabolitei + BMD * Metabolitei * Dose.
bAs measured by liquid chromatography -  mass spectroscopy.
cAs measured by 1H- nuclear magnetic resonance spectroscopy.
dRaw p values are not adjusted for multiple comparisons.
eFor the complete list see supplementary Table 3 in the supplementary file.
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samples collected from patients enrolled in a phase II clinical 
trial of L- carnitine therapy.17 Using this approach, similar to 
our prior study,16 we found a prevalent acylcarnitine signal. 
From this profile, we selected acetylcarnitine (C2) and va-
line to illustrate how different threshold concentrations could 
influence mortality in patients randomized to either placebo 
of L- carnitine (18 g). Specifically, patients with higher (e.g., 
≥30  µM) acetylcarnitine (C2) levels at enrollment may be 
more likely to derive a treatment benefit as defined by de-
creased intermediate term (90- day) mortality; this benefit 
is maximized at acetylcarnitine (C2) concentrations greater 
than or equal to 35 µM. Although severity of illness could 
contribute to this finding, clinical variables alone do not 

seem to account for the identification of the drug- responsive 
endotype because the finding is retained when accounting 
for factors associated with the risk of death (age and SOFA 
score; see Table S4). Notably, we also found that serum con-
centrations of the branched chain amino acid, valine, could 
also be used to identify a mortality benefit of L- carnitine but 
not to as great an extent as acetylcarnitine (C2). Collectively, 
these data suggest that there are patients that are in clinically 
occult subgroups. Should these data be validated, metaboli-
cally informed clinical trial design36 and, ultimately, preci-
sion treatment strategies could represent a new paradigm of 
sepsis care. These data provide the groundwork and rationale 
for a pharmacometabolomics directed clinical trial to test 

F I G U R E  3  Pretreatment acetylcarnitine (C2) concentration as a predictive clinical trial enrichment strategy. Four scenarios illustrate 
how different threshold concentrations of acetylcarnitine (C2), a high abundant acylcarnitine would have impacted the outcome of the Rapid 
Administration of Carnitine (RACE) in Sepsis clinical trial in patients treated with either L- carnitine (18 g) or placebo. In scenario one, no 
threshold concentration is used so the entire RACE cohort (n = 236) is eligible. The sample size of 170 patients represents those that received either 
L- carnitine (18 g; n = 100) or placebo (n = 70). The hazard ratio is not significant, and consistent with the parent trial, the Kaplan- Meier curve 
shows no mortality benefit of L- carnitine (p = 0.57). In scenario two, an acetylcarnitine (C2) threshold concentration of greater than 21 µM is used. 
Forty- four percent (n = 104) of the RACE cohort met this criterion and of these, 68 patients received either L- carnitine (18 g) or placebo. The 
hazard ratio is not improved, and the Kaplan- Meier curve shows no mortality benefit of L- carnitine (p = 0.59). In scenario three, an acetylcarnitine 
(C2) threshold concentration of greater than 30 µM is used. Twenty- seven percent (n = 64) of the RACE cohort met this criterion and of these, 
42 patients received either L- carnitine (18 g) or placebo. The hazard ratio is significant and favors L- carnitine (18 g); the Kaplan- Meier curve 
shows a mortality benefit of L- carnitine (p = 0.04). Finally, scenario four uses the acetylcarnitine (C2) concentration associated with the maximum 
Z- statistic (Table S4), greater than 35 µM. Twenty- three percent (n = 54) of the RACE cohort met this criterion and of these, 37 patients received 
either L- carnitine (18 g) or placebo. The hazard ratio is significant, and the Kaplan- Meier curve shows a mortality benefit of L- carnitine (p = 0.01). 
The number of patients at risk at each time point and the number of censored subjects, which was due to the end of the study (1 year), can be found 
here: https://doi.org/10.7302/vvqp- ma61. N/A, not applicable

https://doi.org/10.7302/vvqp-ma61
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L- carnitine therapy efficacy for septic shock using a specific 
concentration of a key metabolite (e.g., acetylcarnitine [C2]) 
to guide inclusion criteria (Figure 4).

Importantly, the current study also shows that numerous 
metabolites may have predictive value for sepsis mortality, 
even after controlling for factors associated with the risk of 
death (see Table  S4). These data provide further evidence 
that sepsis induces broad metabolic disruption that is linked 
to patient outcomes, corroborating prior studies.37,38 Of note, 
numerous acylcarnitines, including unsaturated acylcarni-
tines, predicted mortality, suggesting significant disruption 
in fatty acid metabolic pathways.38 Overall, the broad range 
in disruption of acylcarnitines may reflect differential and 
variable mobilization of fatty acids,39 rather than disruption 
of a specific enzyme or pathway. We have previously demon-
strated this in a smaller cohort of patients with septic shock.16 
Despite this variance, acetylcarnitine (C2) was the most ro-
bust predictor of overall sepsis mortality. This corroborates 
a previous study that identified acetylcarnitine (C2) as being 
associated with the severity of sepsis- induced organ dysfunc-
tion, inflammation, and infection.37 Acetylcarnitine (C2) also 
happens to be one of only two compounds (with L- carnitine) 
detected by both the LC- MS and NMR analytical platforms; 
regardless of the detection method, it performed similarly in 
the regression models.

Interestingly, acetylcarnitine (C2) outperformed the more 
clinically ubiquitous lactate level in predicting sepsis mor-
tality. After correcting for age and SOFA score, lactate was 
not a significant independent predictor (Table S4) whereas 
acetylcarnitine (C2) retained its predictive value following 

this correction, which suggests the potential for its use as an 
adjunctive clinical test for risk prognosis. However, as our 
cohort was highly selected and involved only participants 
receiving vasopressors (which affect glycolysis and lactate 
production)40,41 who were already resuscitated, it would be 
inappropriate to interpret these data to imply that lactate does 
not serve an important role in the early identification and 
prognosis of patients with suspected infection. In particular, 
serial lactate levels and its clearance rate have been used to 
assess the adequacy of resuscitation and lactate is included in 
the sepsis definition.5,42– 44 Nevertheless, limitations of lac-
tate have been recognized42 and, notably, others have demon-
strated that acylcarnitines outperform lactate in predicting 
sepsis mortality.38 Our data suggest that acetylcarnitine (C2) 
may represent a superior risk stratification tool in a selected 
cohort of fully resuscitated patients undergoing treatment 
with vasopressor infusions.

We also learned from the CaPS study that pretreatment 
serum L- carnitine concentrations did not predict a L- carnitine 
treatment mortality benefit, suggesting against the hypothesis 
that serum L- carnitine deficiency drives the response to sup-
plemental L- carnitine in patients with sepsis. Rather, in ag-
gregate, these data provide evidence to support the hypothesis 
that sepsis induces an impairment in the mobilization of ace-
tyl groups. Although there may be a number of biologically 
plausible hypotheses, our findings could be due to sepsis- 
induced increased intracellular accumulation of acetyl- CoA 
secondary to its decreased metabolism via the tricarboxylic 
acid cycle (TCA) or enhanced acetyl- CoA production via fatty 
acid (beta- oxidation) metabolism (Figure S9). Consequently, 
increases in acetyl- CoA are managed by several mechanisms, 
one of which is via the mitochondrial enzyme, carnitine 
acetyltransferase (EC 2.3.1.7). Carnitine acetyltransferase 
transfers acetyl groups to carnitine, displacing the hydrogen 
atom in its hydroxyl group45 converting it to the membrane- 
permeable, acetylcarnitine (C2) (Figure S9). Acetylcarnitine 
(C2), the shortest of the acylcarnitines, is important because 
it plays a controlling role over acetyl- CoA on metabolic sub-
strate switching and therefore, enables metabolic flexibil-
ity.45 As the need for adenosine triphosphate (ATP) increases, 
acetyl- CoA is diverted to the TCA cycle. However, in sepsis, 
the TCA cycle may fail to metabolize these groups resulting 
in excess acetyl- CoA and subsequent elevation in measured 
serum acetylcarnitine (C2) concentrations. The elevation in 
acetylcarnitine (C2) may reflect the ability of L- carnitine to 
serve as route for the disposal of excess acetyl groups, which 
has been demonstrated in the myocardium46 and during ex-
ercise.47 However, unlike acetylcarnitine (C2), the metabolic 
link between L- carnitine therapeutic response and branched 
chain amino acid (BCAA) concentrations is less clear. We 
and others have shown that levels of BCAAs influence sep-
sis outcome15,38 and shock resolution.48 It is possible that 
patients with elevated BCAA blood concentrations represent 

F I G U R E  4  A clinical trial enrichment strategy could optimize 
clinical trial design for heterogeneous critical illnesses like sepsis. 
An example of a scheme for a hypothetical phase III clinical trial of 
supplement L- carnitine for the treatment of septic shock that uses an 
a priori determined acetylcarnitine (C2) threshold concentration to 
determine whether a patient is enrolled and randomized to receive 
either L- carnitine (18 g) or placebo
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those with a metabolic reserve that enables them to more effi-
ciently utilize supplemental L- carnitine49 but, in general, the 
mechanisms of BCAA signaling and metabolic mechanisms 
of action are poorly understood.50 In aggregate, our findings 
suggest that the magnitude of sepsis- induced disruptions in 
energy metabolism may be associated with a therapeutic ben-
efit of L- carnitine. This relationship and the mechanisms that 
underlie it warrant further interrogation.

Despite the encouraging results of our study, we ac-
knowledge that there are several important weaknesses. 
We recognize that “real- time” metabolomics is not feasi-
ble in clinical practice and that routine measurement of 
these compounds, including acetylcarnitine (C2), for rou-
tine clinical use is not currently available. We also used a 
limited, focused metabolomic approach, measuring high 
abundant polar compounds (1H- NMR) and acylcarnitines. 
We acknowledge that a broad, untargeted approach may 
have yielded additional compounds predictive of outcomes 
or treatment response. With our targeted approach, we still 
made multiple comparisons testing involving over 50 me-
tabolites in this study, which opens the door to false positive 
findings. Our findings persisted after application of a con-
servative Bonferroni correction, but we acknowledge that 
the predictive capacity of acetylcarnitine (C2) and valine, 
when accounting for interactions between baseline metabo-
lite and treatment assignment (interaction model), was not 
amenable to correction for multiple comparisons. As such, 
and given that this was an ancillary study, we acknowledge 
that any conclusions regarding the accurate prediction of 
clinical drug responsiveness are only hypothesis generat-
ing and will require rigorous prospective testing. We did, 
however, highlight how the use of a number of different 
acetylcarnitine (C2) and valine concentrations would influ-
ence the mortality outcome of the RACE trial (Figure 3 and 
Figure S7). These were merely used as examples to illus-
trate the utility of a pharmacometabolomics approach and 
despite including almost 250 patients, we acknowledge that 
our results may overestimate the true effect size and will 
require validation in an external cohort. Nevertheless, even 
though these subgroups represent less than or equal to 50% 
of the total RACE trial cohort, they highlight the value of 
a predictive enrichment strategy that could be used to de-
sign a phase III clinical trial of L- carnitine supplementation 
for septic shock. Importantly, the pharmacometabolomics 
approach was developed concurrent with the design of the 
parent trial, and the conceptual model was based on and is 
consistent with our preliminary work in a unique, although 
smaller cohort,15 strengthening the validity of the findings.

In summary, an ancillary pharmacometabolomics study, 
CaPS, of the parent clinical trial, RACE, found numerous 
predictors, independent of intervention, age, and SOFA 
score, for 90- day mortality in septic shock, including many 
acylcarnitines and other metabolites, such as tyrosine, 

betaine, lysine, and glycine. We also demonstrate the trans-
lational value of the work by showing how the application 
of a pharmacometabolomics- based clinical trial enrichment 
strategy, using pretreatment acetylcarnitine (C2) concentra-
tions as an example, could be used to identify the responder 
population, a sepsis endotype, that may derive a mortality 
benefit from L- carnitine supplementation. This represents a 
unique clinical trial enrichment strategy that could be used 
to improve the efficiency of a phase III L- carnitine efficacy 
study in patients with septic shock9 and other emerging ther-
apeutics in heterogeneous critical illnesses. These findings 
also support the notion that distinct metabolic endotypes con-
tribute to sepsis heterogeneity.
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