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Abstract

Sparse spectral clustering (SSC) has become one of the most popular clustering

approaches in recent years. However, its high computational complexity prevents its appli-

cation to large-scale datasets such as hyperspectral images (HSIs). In this paper, we pro-

pose two efficient approximate sparse spectral clustering methods for HSIs clustering in

which clustering performance is improved by utilizing local information among the data.

Firstly, we construct a smaller representative dataset on which sparse spectral clustering is

performed. Then the labels of ground object are extending to whole dataset based on the

local information according to two extending strategies. The first one is that the local interpo-

lation is utilized to improve the extension of the clustering result. The other one is that the

label extension is turned to a problem of subspace embedding, and is fulfilled by locally lin-

ear embedding (LLE). Several experiments on HSIs demonstrated that the proposed algo-

rithms are effective for HSIs clustering.

Introduction

Hyperspectral (HS) remote sensors can capture images in hundreds of spectral bands which

provide useful information for discriminating different materials of interest in a scene. With

the rapid development of imaging spectroscopy technologies, current sensors are able to

acquire hyperspectral image(HSI) data with high spatial and spectral resolutions simulta-

neously [1]. Although abundant space-spectrum information is beneficial to improve the abil-

ity of object recognition, but on the other hand also brought some difficulties, for the existence

of the Hughes phenomenon [2]. Realizing the object recognition must rely on the classification

algorithm, which include two categories, i.e., the supervised approach and the unsupervised

approach. Supervised techniques require the availability of a training set for training the classi-

fier. Unsupervised methods, also known as clustering methods, perform recognition just by

exploiting information conveyed by the data, without requiring any training sample set. Usu-

ally, the supervised methods offer the higher classification accuracy compared to the unsuper-

vised ones. But in some circumstances, such as hyperspectral image recognition problem, it is
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necessary to resort to unsupervised techniques because training information acquisition is dif-

ficult and expensive [3]. As is well known to us all, HSIs are typical high-dimensional data

with large spectral variability, high dimensionality, and complex structures, which makes HSI

clustering to be a very challenging task [4].

Nowadays, many different clustering methods for HSIs have been proposed. The existing

clustering algorithms for HSIs can be coarsely divided into the following four categories, i.e.,

Iterative methods, statistical methods, algebraic approaches and spectral clustering-based

methods. The Iterative-based clustering methods, such as k-means [5], FCM [6] and K-flats

[7], alternate between assigning points to subspaces and fitting a subspace to each cluster. Sta-

tistical approaches, such as Mixtures of Probabilistic PCA (MP-Principal Component Analy-

sis) [8] and Multi-Stage Learning (MSL) [9], assume that the distribution of the data inside

each subspace is Gaussian and alternate between data clustering and subspace estimation by

applying Expectation Maximization (EM) to a mixture of probabilistic PCAs. But statistical

approaches are sensitive to initialization and need to know the number of the subspaces. Alge-

braic approaches such as generalized principal component analysis (GPCA) [10] fit the data

with a polynomial, whose gradient at a point gives the normal vector to the subspace contain-

ing that point. However, the flaw of GPCA is that it is sensitive to noise and outliers.

Spectral clustering-based methods have two main categories, local spectral clustering-based

approaches and globe spectral clustering-based approaches. Local subspace affinity (LSA) [11],

locally linear manifold clustering [12], etc., which belong to the first category, uses local infor-

mation to build a similarity between pairs of points. But these methods have unsatisfied effect

when the points located at the intersection of two subspaces and have difficulties in how to

choice the neighborhood size. The reason is that the categorical attribute of neighborhood can

be hardly decided. The global spectral clustering-based approaches, such as spectral curvature

clustering (SCC) [13], try to resolve this problem. These methods build similarities based on

not local but global information. However, they need to obtain some a priori information,

such as the number and dimensions of the subspaces, and assume that all the subspaces have

the same dimensions.

In recent years, Sparse Subspace Clustering (SSC) is becoming a newly developed spectral

clustering-based framework for data clustering [14, 15].Sparse subspace clustering pursues a

sparse representation of high-dimensional data and uses it to build the affinity matrix. The

clustering result is finally obtained by means of spectral clustering (SC). The key to sparse sub-

space clustering is to design a good representation model which can reveal the real subspace

structure of high-dimensional data [16]. Sparse subspace clustering has been successfully

applied to different research fields, such as face clustering [17], motion segmentation [18], and

so on. For HSIs, pixels coming from the same land-cover, which may have similar spectra

characteristics, have a high probability that they lie in the same subspace [19]. So, each kind of

land-cover material can be grouped into a subspace. Therefore, subspace theory can be used to

model the clustering of HSIs. Sun et al. [20] proposed an improved sparse subspace clustering

(ISSC) method to select an appropriate band subset for hyperspectral imagery (HSI) classifica-

tion. The angular similarity measurement is presented and utilized to construct the similarity

matrix. Zhang et al. proposed a novel spectral–spatial sparse subspace clustering (S4C) algo-

rithm for hyperspectral remote sensing images clustering [19]. Considering the spectral and

spatial properties of HSIs, the high spectral correlation and rich spatial information of the

HSIs are taken into consideration in the SSC model to obtain a more accurate coefficient

matrix. However, directly applying the SSC algorithm to HSIs usually is difficult for the huge

calculated amount. The order of magnitude of the HSIs often reaches to several hundred thou-

sand and more, which cannot be afforded by normal computer. The conventional researches

[19] on HSIs often cut the original image into small piece.

Approximate sparse spectral clustering for hyperspectral image classification
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Aimed at this problem, several methods have been developed to speed up the spectral clus-

tering algorithms, which can be loosely classified into two types. One type accelerates spectral

clustering by reducing the computation of the eigen-decomposition of the Laplacian graph,

such as the Nyström method [21]. This kind of method has the drawback of complex calcula-

tion. The other type of the approximate spectral clustering methods samples a representative

data set on which the spectral clustering is performed, and the result is extended to the whole

data set. Under this framework, one is based on k-means clustering (KASP) [22] and the other

is based on random projection trees (RASP) [23]. KASP has obviously advantage than

Nyström method, no matter from accuracy, calculated amount and memory requirements.

But in this kind of method, if the label of representative data is falsely clustered, all related

points will be wrongly assigned. Moreover, because of the quantification of k-means, it is pos-

sible that some data points which are close together may be assigned to different clusters. Cao

et al. proposed an improved approximate spectral clustering method based on local informa-

tion (LI-ASP) [24]. In this article, the local interpolation is adopted to improve the extension

of the clustering result on the small representative set.

Inspired by the aforementioned works, in this paper, we propose two approximate sparse

subspace clustering methods. Firstly, a smaller representative dataset is constructed, and the

sparse spectral clustering (SSC) is performed on this small dataset. Then the labels obtained by

SSC are extended to whole dataset based on local information. We design two methods for

labels extending. One method is that the whole data is interpolated into a new space based on

the local relationship with representative dataset. The other method is that the label extension

is turned to a problem of subspace embedding. So the whole data will be embedded to the

space which is spanned by representative dataset, and the embedding is fulfilled by locally lin-

ear embedding (LLE). From these two ways of extension, we can get a new space representa-

tion included all data with different pattern. Finally, in this new space, the k-means is

performed on all data, and the final clustering result is obtained. These ways of extension can

be supervised by data local information, so the more precise clustering result can be gained.

The contributions of this paper are summarized as follows. First, to the best of our knowledge,

we are the first ones to fulfill the clustering for HSIs on the point of pixels with the approximate

SSC(ASSC) algorithm. Second, Introducing the ASSC based on local interpolation (LI-ASSC)

to SSC, and the procedure of extending the label is supervised by local spectral features. Third,

based on Local Linear Embedding (LLE), a novel extending rule is proposed (LLE-ASSC),

which can effectively keep the local linear relationship.

The remainder of this paper is organized as follows. Section II briefly introduces the SSC

model for HSIs and the approximate spectral clustering based on Local information-based

(LI-ASP). In Section III, we propose the LI-ASSC algorithm for HSIs clustering, which is focus

on approximate SSC for hyperspectral image clustering with local interpolation. And the

ASSC based on LLE (LLE-ASSC) is also introduced in this section, which emphasis is to fulfill

approximate SSC by subspace embedding. The experimental results are given in Section IV.

Section V concludes this paper and outlines future works.

HSI clustering via the SSC model

HSI clustering via the SSC model

In this section, the HSI clustering scheme with the SSC model is introduced. The HSI data can

be denoted as Z= 2 RM�N�D which is a 3-D data cube, where M represents the width of the HSI

image, N stands for the height of the image and D is the number of the spectral band. Before

clustering, we must reorder Z/ into a 2-D matrix, which is denoted by Y ¼ ½Z0
1
;Z0

2
; . . . :Z0MN �,

Y 2 RMN�D. Then, with the hyperspectral data itself being used as the dictionary, the SSC

Approximate sparse spectral clustering for hyperspectral image classification
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model utilizes the self-expressiveness property of the data to build the sparse representation

model as follows:

minc; EkCk0
þ rkEk2

F

s:t: Y ¼ YC þ E; diagðCÞ ¼ 0;CT1 ¼ 1 ð1Þ

where C≜½c1; c2; . . . :cMN � 2 R
MN�MN is the matrix whose ith column corresponds to the sparse

representation of Yi, E is a noise matrix, and parameter ρ balance the two terms in the objective

function. The diag(C) = 0 is used to eliminate the trivial solution of writing a point as an affine

combination of itself. In addition, the constraint CT 1 = 1 ensures that it is a case of an affine

subspace [14, 15].

Unfortunately, (1) is a nonconvex optimization problem, so there is no unique and stable

solution. We can obtain a tractable convex optimization problem by relaxing (1) and replacing

the 0-norm with the 1-norm, which yields the following convex surrogate [19]:

minc; EkCk1 þ rkEk2

F

s:t: Y ¼ YC þ E; diagðCÞ ¼ 0;CT1 ¼ 1 ð2Þ

The optimization problem in (2) can be solved by the alternating direction method of mul-

tipliers(ADMM).

Next, the obtained sparse coefficient matrix C can be adopted to construct the adjacent

matrix wij 2W, which defines the weight on the edge between the data nodes in the following

way:

wij ¼ jcijj þ jcjij ð3Þ

Algorithm1: sparse subspace clustering for HSIs
Input: HSI data points fyig

MN
i¼1
, which come from a union of l affine sub-

spaces fSig
l
i¼1
, l is the parameter denoting the cluster number.

Step 1. Calculate the sparse coefficient matrix C of data points fyig
MN
i¼1

using the sparse subspace clustering model (2).
Step 2. Normalize the columns of Cas ci  

ci
kcik1

:

Step 3. Establish similar weighted graph W according to the sparse
coefficient matrix with (3).
Step 4. Perform spectral clustering on the similarity graph.
Output: A 2-D matrix which records the labels of the clustering result
of the HSI.

Directly applying the SSC algorithm to HSIs is usually invalid since the great computational

complexity can’t be afforded by normal computer or the computational time is too long. In

fact, SC has the same difficulties when applying to large-scale datasets. So many improving

methods have been proposed as mentioned in Section I. In next sub-section, we will emphasis

on one of them, called LI-ASP.

Local information-based approximate spectral clustering (LI-ASP)

Cao et al. [24] thought the process of extending must reflect the relationship between whole

data and representation dataset. And by analyzing, they found the local relationship is very

important to extension. So a local interpolation rule is proposed for approximate spectral clus-

tering (LI-ASP), in order to improve the extension from the representative points clustering

Approximate sparse spectral clustering for hyperspectral image classification
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result to the whole result. This interpolation rule is based on the assumption that the nearby

points are likely to have the same labels. Because the local information is used to supervise the

extension process, so this extension will not destroy the local data relationship, and can get

more precise clustering result. The process of LI-ASP can be summarized as follows.

For data set Y = [y1,y2,. . .ymn], denoted X = [x1,x2,. . .xp] as the p randomly sampled repre-

sentative points. Firstly, calculating the new representations of X, i.e. X0 ¼ ½x0
1
; x0

2
; . . . x0p�.,

using the SC algorithm, which is just formed by the top p eigenvectors of the Laplacian graph.

Then, computing the pairwise distances between original data Y and sampled data X by using

(4)

y0i ¼
P

j2NðiÞexp
� dðxj; yiÞ

s2

� �

x0j: ð4Þ

Where N(i) is the neighborhood set of p representative points away from the original data.

Finally, performing k-means on Y0 ¼ ½y0
1
; y0

2
; . . . y0n�, to obtain the whole labels of the dataset Y.

HSI clustering via the approximate SSC(ASSC) model

LI-ASP is an efficient approximate SC algorithm based on local information. It focuses on

improving the results of spectral clustering on the representative set and extending that result

to all data. So this method significantly improves approximate SC, while still maintaining scal-

ability to large-scale datasets. In this section, inspiring by the idea of approximate SC, we pro-

pose two approximate SSC algorithms for hyperspectral clustering, named LI-ASSC and

LLE-ASSC.

Local information based approximate SSC(LI-ASSC)

LI-ASSC is based on LI-ASP directly. The only difference is that we get the eigenvectors of rep-

resentative data by SSC but not SC. Theoretically these two algorithms have identical advan-

tages. Because of utilizing the local spectral information of HSIs, the complicated computation

can be overcome, and meantime the accuracy of label extending is promoted. The proposed

LI-ASSC algorithm is summarized in Algorithm 2.
Algorithm 2: Local information based approximate SSC(LI-ASSC) for HSIs
Input: HSI data points fyig

MN
i¼1
, which come from a union of l affine sub-

spaces fSig
l
i¼1
, l is the parameter denoting the cluster number.

Step 1. Calculate the sparse coefficient matrix C of data points fyig
MN
i¼1

using the sparse subspace clustering model (2).
Step 2. Normalize the columns of C as ci  

ci
kcik1

.

Step 3. Establish similar weighted graph W according to the sparse
coefficient matrix with (3).
Step 4. Apply SC to the similarity graph and get the top p eigenvector,
denoted by X0 ¼ ½x0

1
; x0

2
; . . . x0p�:

Step 5. Embedding Y to feature space based on X0with (4), get the new
representation Y0.
Step 6. Perform k-means on Y0 to obtain the whole labels.
Output: A 2-D matrix which records the labels of the clustering result
of the HSI.

Local linear embedding based approximate SSC (LLE-ASSC)

In LI-ASSC, the local information of data is used to help the process of label extending keeping

the local data relationship unchanged, so the clustering result should be improved. This

kind of interpolation method looks the local data relationship as linear. But for actual

Approximate sparse spectral clustering for hyperspectral image classification
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circumstances, especially HSIs, the relationship of data has obviously nonlinear trait. So, linear

interpolation cannot reflect the real local spectral characteristics. By analyzing the process of

interpolation, we find that the step of extending labels can be looked upon a course of data

embedding actually, i.e., a new feature space is established according to the eigenvector of rep-

resentative data. Then based on the local relationship of original data with the representative

set, the whole original data can be embedded to this feature space. And the whole labels can be

obtained by using k-means on this new feature space.

Since HSIs have nonlinear relationship, so we must select a nonlinear analytical method to

depict the data relationship. In recent years, manifold learning is one of the outstanding algo-

rithms for nonlinear analysis. And the local linear embedding (LLE) is a famous one among

the manifold learning. LLE has global optimal analytical solution, and fulfills the embedding

by solving sparse matrix eigenvector, no needing iteration. So the complexity of LLE is rela-

tively small in manifold learning and fits the big scale data, such as HSIs. So here, we use LLE

to accomplish the label extending in ASSC. We named it LLE-ASSC. The details of it are sum-

marized as following.

For every data in X = [x1,x2,. . ...,xp], X 2 RD�P. Calculating the reconstruction weight wij by

minimizing (5), and reconstructing representative data xi by its k nearest neighbors

εðWÞ ¼
Xp

i¼1

xi �
Xk

j¼1

wijxj

�
�
�
�
�

�
�
�
�
�

2

ð5Þ

Where ε(W) is the reconstruction cost function, and weight wij meets the constraint condition

∑jwij = 1 and wij = 0, if xi is not a neighbor of xj. Then the low-dimensional vector X’ is con-

structed by keeping wij unchanged and minimizing the following error function (6):

�ðX0 Þ ¼
Xn

i¼1

x0i �
X

Xj2OðXiÞ

wijx
0

j











2

¼ kX0 ðI � WTÞk
2
¼ tr½X0NðX0 ÞT � ð6Þ

Where x0i 2 Rd�pðd < DÞ,
P

ix
0

i ¼ 0; and 1

n

P
ix
0

iðx
0

iÞ
T
¼ I, Now, we get a new low dimen-

sional representation X’ of X.

Next, we embed each data in Y to this low dimensional space. For each data in Y, we find

their k nearest neighbors from X. And like (5), the weight is got using (7)

εðUÞ ¼
XM�N

i¼1

yi �
Xk

j¼1

uijxj

�
�
�
�
�

�
�
�
�
�

2

ð7Þ

Keeping uij unchanged, we can get the low dimensional representation of Y with (8), and the

whole original HSI data can be embedded to this low dimensional space.

y0j ¼
Xk

i¼1

uijx
0

i ð8Þ

Finally, by performing k-means, the label result is obtained. We summarized this method

in Algorithm 3.
Algorithm 3: Local linear embedding approximate SSC(LLE-ASSC) for HSIs
Input: HSI data points fyig

MN
i¼1
; which come from a union of l affine sub-

spaces fSig
l
i¼1
, l is the parameter denoting the cluster number.

Step1. Sample p representative data X = [x1,x2,. . .xp] randomly form data
points fyig

MN
i¼1
, the k nearest neighbors of each xi is found.

Approximate sparse spectral clustering for hyperspectral image classification
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Step 2. With (5) and (6), get the low dimensional representation of X,
denoted by X0 ¼ ½x0

1
; x0

2
; . . . x0p�.

Step 3. Embedding Y to feature space with (7) and (8), get the new
representation Y0.
Step 4. Perform k-means on Y0 to obtain the whole labels.
Output: A 2-D matrix which records the labels of the clustering result
of the HSI.

Experimental results and discussion

In this section, we conduct a set of experiments to further evaluate the effectiveness of pro-

posed algorithms for HSI. And considering the fairness, KASP-ASSC and RASP-ASSC and

LI-ASP were used as benchmarks, because all of these algorithms are belong to approximate

clustering methods.

HSI data sets

Two widely used HSI data sets are applied in our experiments, including PaviaU and Pavia

Centre scenes [18, 19]. These are two scenes acquired by the ROSIS sensor during a flight cam-

paign over Pavia, northern Italy. The number of spectral bands is 102 for Pavia Centre and 103

for PaviaU. Pavia Centre has a 1096×1096 pixels image, and Pavia University has 610×340 pix-

els, but some of the samples in both images contain no information and have to be discarded

before the analysis. The geometric resolution is 1.3 meters. Both image ground truths differen-

tiate 9 classes, and the discarded samples are shown as abroad black strips (Fig 1(B), Fig 2(B)).

We trimmed a typical part of the image as the test area from Pavia Centre data set with the size

of 399 ×348, which contains 8 main land-cover classes. The HSI in false color and its corre-

sponding ground truth are shown in Fig 1 (A) and (B) respectively. Fig 2(A) and 2(B) shows

the false color and its corresponding ground truth of PaviaU.

Fig 1. Part of pavia centre hyperspectral image. (a) The HSI in false color (RGB 3, 65,101), (b) Ground truth.

https://doi.org/10.1371/journal.pone.0202161.g001
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Experimental set-up

Two aforementioned hyperspectral data sets with different imaging environment settings were

used to validate the performance of the proposed methods. The number of clusters was set as a

manual input, and the parameters of each algorithm were manually adjusted to the optimum.

Both the visual clustering results and quantitative evaluations are given for each experiment.

In order to obtain quantitative evaluations, we adopted six evaluating indicators to measure

the quality of clustering results. They are accuracy (AC) and normalized mutual information

(NMI) [25, 26], which is often used to test clustering algorithm effect; producer’s accuracy,

user’s accuracy, overall accuracy (OA), and kappa coefficient [18] which is usually used to ver-

ify the HSIs classification precision.

Parameter analysis

In the course of extending the labels, the selected number of neighbor, k, has important impact

on the clustering result. For guaranteeing both noise-immunity and detail-preserving for

image based on local neighborhoods, Cai et.al [27] researched the number of neighbor in clus-

tering algorithm. On this basis, we choose to compare the AC and NMI on paviaU set when k
is changed from 5 to 30. Fig 3 shows the change in the AC and NMI of KASP-ASSC, LI-ASSC

and LLE-ASSC corresponding to different k values, with the other parameters fixed.

It can be seen from Fig 3 that for LLE-ASSC and LI-ASSC, the precision changes with dif-

ferent values of k, which suggests that the neighbor structure plays a very important role in the

clustering process. While for KASP-ASSC, the change is not so significant. Moreover, our pro-

posed algorithms, no matter for AC or NMI, have obvious advantages compared with KAS-

P-ASSC in general case. On the other hand, the time consumption will increase rapidly when k
becoming bigger, but clustering effect is not be improved obviously. So in the following

Fig 2. The paviaU hyperspectral remote sensing image. (a) The HSI in false color (RGB 64, 101,1), (b) Ground truth.

https://doi.org/10.1371/journal.pone.0202161.g002
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experiment, taking algorithm efficiency into consideration, we select manually adjusting the k
value for each algorithm with it is less than 30 to get the effect that as good as it can.

Fig 4 shows the visual clustering result. From Fig 4 it can be clearly observed that LI-ASSC

and LLE-ASSC obtain more effective clustering results which contain less salt-and-pepper

noise and significant less misclassification.

Next, we adopt the confusing matrix and the corresponding some common index to give

the quantitative evaluation, the parameter k is same as showed in Fig 4. The result is listed in

Table 1. In this table, the optimal value of each row is shown in bold, and the second best

results are underlined. From Table 1, it can be seen that the clustering result of RASP-ASSC

and KASP-ASSC are very poor and contains significant amounts of misclassifications,

Fig 3. Analysis of parameter k (a) Change in the AC with various values of k. (b) Change in the NMI with various values of k.

https://doi.org/10.1371/journal.pone.0202161.g003
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particularly for the Self-Blocking Bricks and Shadows class. While LI-ASSC and LLE-ASSC

improves the clustering accuracy to a large degree by making use of the spatial neighborhood

information in the course of extending labels. For the Self-Blocking Bricks class, the misclassi-

fication is significantly reduced by LI-ASSC which achieves a higher precision of 56.73%. Also

KASP-ASSC obtains the better effect for Meadows, but the superiority is not so apparently.

The OA and Kappa of LI-ASP are all very low, while LLE-ASSC has the best overall clustering

effect.

Experiment on the pavia centre

In this experiment, for each algorithm, we chose the parameter k manually to obtain the best

clustering effect. Other parameters involved in SSC adopted the default value. The clustering

visual result is showed in Fig 5.

Fig 4. Cluster maps of the different methods with the PaviaU image(a)KASP-ASSC(k = 10) (b)RASP-ASSC(k = 10) (c)LI-ASSC(k = 10) (d)LI-ASP

(k = 10) (e)LLE-ASSC(k = 20) (f)True Ground.

https://doi.org/10.1371/journal.pone.0202161.g004
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Table 1. Quantitative evaluation of the different clustering algorithms for paviaU image.

Evaluation Producer’s Accuracy (%) User’s Accuracy (%)

RASP-

ASSC

KASP-

ASSC

LI-

ASSC

LLE-

ASSC

LI-

ASP

RASP-

ASSC

KASP-

ASSC

LI-

ASSC

LLE-

ASSC

LI-

ASP

Asphalt 44.78 44.87 73.74 77.86 29.23 97.75 97.68 82.22 79.19 33.93

Meadows 89.97 89.98 86.41 81.82 54.44 30.35 30.23 31.54 37.86 34.22

Gravel 0 0 0.01 0 2.36 0 0 0.04 0 2.1

Trees 63.29 63.5 96 54.24 27.71 73.11 73.65 59.6 93.51 30.74

Painted metal sheets 95.17 94.31 30.66 98.65 51.6 79.03 78.81 82.8 98.14 55.02

Bare Soil 22.34 22.51 24.78 32.21 15.26 25.55 25.87 25.51 25.13 19.15

Bitumen 0 0 0 0 0 0 0 0 0 0

Self-Blocking Bricks 0.2 19.69 56.73 49.65 7.5 0.05 6.41 0.06 92.91 19.58

Shadows 14.11 14.65 95.91 30.26 100 80.46 84.16 96.52 89.97 28.72

OA(%) 40.9 31.32 49.29 51.51 28.78

Kappa(%) 30.58 31.19 38.69 42.54 11.71

https://doi.org/10.1371/journal.pone.0202161.t001

Fig 5. Cluster maps of the different methods with the Pavia centre image(a)KASP-ASSC(k = 20) (b) RASP-ASSC(k = 20) (c) LI-ASSC(k = 20) (d) LI-ASP(k = 10) (e)

LLE-ASSC(k = 15) (f)True Ground.

https://doi.org/10.1371/journal.pone.0202161.g005
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From Fig 5, we find that our algorithms have obvious advantage no matter from the visual

and the quantitative effects. The water area is misclassified severely by LI-ASP,KASP-ASSC

and RASP-ASSC. But our methods, LI-ASSC and LLE-ASSC, overcome this problem. In addi-

tion, the best clustering effect of self-blocking brick class is also obtained by LLE-ASSC.

The quantitative result of this experiment is listed in Table 2. Equally, Our algorithms

obtain the more effective results. Especially for the water class, LI-ASSC gets the best result

which precision achieves a higher producer’s precision of 98.51%. And for the Self-Blocking

Bricks and Bitumen class, the more effective result is acquired by LLE-ASSC. And the OA and

Kappa of KASP-ASSC is still very low, while LLE-ASSC have the best overall clustering effect.

On the other hand, in this experiment, we compared the time consumption of these four

algorithms, LI-ASSC has the faster convergence speed than LLE-ASSC, which speed is a little

slower than KASP-ASSC. Theoretically, the computational complexity of LI-ASSC and

LLE-ASSC is respectively O(lkn+2n+τn), O(lkn+3n+τn), and the computational complexity of

KASP and RASP is about O(lkn). Where l represents the number of affine subspaces, n is the

number of data samples, k is the neighbor number and τ is the number of iterations. From the

order of magnitude, the difference of computational complexity is not so big. However,

because the hyperspectral images have huge samples, parameter n has the most important

influence on complexity. With the increasing of n, the computational time of LLE-ASSC

increase rapidly.

To illustrate the robustness of the algorithm, we perform experiment 10 times on pavia cen-

tre image with same parameters. The average results are shown in Table 3. The value in blanket

means square error. The conclusion is just similar with previous results. Our methods are

more effective than KASP-ASSC and KASP-ASSC.

Experiment on statistical significance

From these experiments mentioned above, we can find the proposed solution exhibited in gen-

eral better performances than comparison methods. But on the same moment, we also noticed

Table 2. Quantitative evaluation of the different clustering algorithms for pavia centre image.

Evaluation Producer’s Accuracy (%) User’s Accuracy (%)

RASP-

ASSC

KASP-

ASSC

LI-

ASSC

LLE-

ASSC

LI-

ASP

RASP-

ASSC

KASP-

ASSC

LI-

ASSC

LLE-

ASSC

LI-

ASP

Water 0 0 98.51 70.61 57.5 0 0 94.82 94.61 45.43

Trees 87.55 86.43 86.04 84.06 0 88.73 91.2 97.3 99.65 0

Meadows 43.41 43.92 7.61 28.29 0 35.27 29.02 31.7 29.24 0

Self-Blocking Bricks 50.48 52.32 84.72 86.54 29.67 67.01 66.26 91.45 92.52 64.16

Bare soil 95.2 96.66 93.77 95.68 44.25 71.63 72.23 82.8 70.42 25.8

Asphalt 42.91 42.21 83.19 76.42 36.78 37.20 37.61 87.17 88.8 84.31

Bitumen 70.16 69.75 99.72 99.76 43.38 91.48 92.29 65.3 76.9 25.22

Shadow 99.76 99.64 99.88 99.53 100 99.17 99.29 99.17 99.76 24.79

OA(%) 66.52 66.87 81.45 84.83 36.69

Kappa(%) 57.91 58.27 78.16 81.76 24.5

Time(s) 1570.58 1485.32 1543.63 2138.26 1205.35

https://doi.org/10.1371/journal.pone.0202161.t002

Table 3. The AC (std) and NMI (std) of clustering results on pavia centre image.

KASP-ASSC RASP-ASSC LI-ASSC LLE-ASSC LI-ASP

AC 0.9581(0.0036) 0.9413(0.0039) 0.9635(0.0042) 0.9759(0.0091) 0.9324(0.0048)

NMI 0.8383(0.0140) 0.8405(0.0136) 0.8640(0.0115) 0.8968(0.0216) 0.7629(0.0185)

https://doi.org/10.1371/journal.pone.0202161.t003
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that in some cases these differences are very small. So, it is necessary to research the statistical

significance.

Here, we also utilize the nonparametric McNemar test to evaluate the statistical significance

in accuracy improvement with different algorithms. The McNemar’s test statistic for different

algorithms can be calculated as [28]:

z ¼
f12 � f21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f12 þ f21

p ð9Þ

Where f12 denotes the number of samples misclassified by algorithm 2 but not 1; and f21

means the number of samples misclassified by algorithm 1 but not 2. |z| is the absolute value of

z. For 5% level of significance, the |z| value is 1.96. If a |z| value is greater than this quantity, the

two classification algorithms have significant discrepancy.

Then we perform experiments for twenty times on both data sets by selecting representative

samples randomly. For different size of two dataset, we chose 0.02% and 0.05% representative

samples from paviaU and pavia centre respectively. Then, we perform the statistical analysis

for the methods, LI-ASSC with RASP-ASSC, LLE-SSC with KASP-ASSC, and LLE-SSC with

K-means, which can be tabulated as Table 4 and Table 5.

Conclusion

In this paper, in view of hyperspectral image’s huge data size, we have introduced the approxi-

mate SSC algorithm to HSIs by treating each kind of land-cover class as a subspace based on

approximate SC. According to our literature research, our algorithm and [18] are the only

researches on the subject which apply SSC to HSIs classification. Reference [18] focused on

improving the adjacent matrix and sparse model by utilizing of spatial-spectral information.

But their work must be restricted by the memory capacity of computer. So the image is clipped

to a very small size in their experiments [18]. For example, the PaviaU data set is cut to

200×100. But, yet the size in our experiment is 610×340. When the algorithm in [18] is used to

deal with so big scale data set, the computational load will be very heavy.

In our works, we focus on how to improve the approximation performance. Faced with the

shortcomings of KASP-ASSC, which directly use traditional extending label method in

approximate course, we have proposed two novel ASSC based algorithms, i.e., LI-ASSC and

LLE-ASSC, for HSIs. We take the local information into consideration in the ASSC model to

promote the performance of the algorithm. The extensive experimental results, compared with

some conventional approximate method, clearly verify that the proposed two ASSC based

algorithms achieve a superior clustering performance and are competitive algorithms.

Table 4. Z values in the McNemar’s test result on paviaU image. And the 5% level of significance is selected.

PaviaU Image

LLE-ASSC & KASP-ASSC LLE-SSC &

K-means

LI-ASSC & RASP-ASSC

|z| 39.75 4.85 21.20

https://doi.org/10.1371/journal.pone.0202161.t004

Table 5. Z values in the McNemar’s test result on pavia centre image. And the 5% level of significance is selected.

Pavia centre Image

LLE-ASSC & KASP-ASSC LLE-SSC &

K-means

LI-ASSC & RASP-ASSC

|z| 69.50 58.61 63.32

https://doi.org/10.1371/journal.pone.0202161.t005
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However, the proposed algorithms still have space for improvement. For instance, the prob-

lem of determining the parameter k adaptively is needed to be solved. And the representative

data is selected randomly in our algorithms. This may be lack of uniformity in each class,

which will be addressed in our future work. On the other hand, inspired by many excellent

incremental algorithms [29], we also plan to design a similar incremental framework based on

SSC.
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