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Pancreatic neuroendocrine tumors (pNETs) are rare and part of the diverse family of
neuroendocrine neoplasms (NENs). Somatostatin receptors (SSTRs), which are widely
expressed in NENs, are G-protein coupled receptors that can be activated by
somatostatins or its synthetic analogs. Therefore, SSTRs have been widely researched
as a diagnostic marker and therapeutic target in pNETs. A large number of studies have
demonstrated the clinical significance of SSTRs in pNETs. In this review, relevant literature
has been appraised to summarize the most recent empirical evidence addressing the
clinical significance of SSTRs in pNETs. Overall, these studies have shown that SSTRs
have great value in the diagnosis, treatment, and prognostic prediction of pNETs;
however, further research is still necessary.

Keywords: somatostatin receptor, pancreatic neuroendocrine tumor, somatostatin analog, peptide receptor
radionuclide therapy, somatostatin receptor imaging
INTRODUCTION

Pancreatic neuroendocrine tumors (pNETs) originate from the neuroendocrine cells in the pancreas
and belong to a group of diverse neuroendocrine neoplasms (NENs) (1). Of all the different types of
pancreatic neoplasms, pNETs only account for 1 to 2% and are therefore defined as uncommon
tumors with a clinical incidence of <1 patient per 100,000 individuals per year (2). Although
considered rare, their clinical incidence has been rising from 0.27 to 1.00 per 100,000 individuals in
the last 40 years (3). Furthermore, an increasing number of patients are getting diagnosed in earlier
stages, possibly due to improved diagnostic methods, in particular endoscopic and imaging
techniques (2). Pancreatic NENs (p-NENs) can be classified into two groups according to the
presentation of hormone related symptoms: non-functioning (NF-pNENs) or functioning (F-
pNENs). A minor fraction (30%) of pNETs are F-pNENs which may release peptides and
hormones, for instance vasoactive intestinal peptide (VIP), gastrin, insulin, glucagon, etc. (4).
Even though most of the pNETs arise sporadically, they have been associated with genetical
conditions as well, including tuberous sclerosis, von Hippel Lindau disease, multiple endocrine
neoplasia (MEN)-1 (which is also accountable for <5% of insulinomas and 20–30% of gastrinomas),
n.org May 2021 | Volume 12 | Article 6790001

https://www.frontiersin.org/articles/10.3389/fendo.2021.679000/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.679000/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.679000/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.679000/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:yuxianjun@fudanpci.org
mailto:jishunrong@fudanpci.org
https://doi.org/10.3389/fendo.2021.679000
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.679000
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.679000&domain=pdf&date_stamp=2021-05-19


Hu et al. Role of SSTR in pNET
and neurofibromatosis-1. According to their pathological
features, pNETs have been categorized as follows: grade 1,
which has a well-differentiated morphology and Ki-67 <3%;
grade 2, which also has a well-differentiated morphology and
Ki-67 3–20%; and grade 3, neuroendocrine carcinomas with Ki-
67 >20% and poorly differentiated morphology. The World
Health Organization (WHO) introduced the following sub-
group to a new grading system for pNETs in 2017: well-
differentiated neuroendocrine tumors (NETs) with a Ki-67
>20%, defined as grade 3 pNET, which is clearly different from
poorly differentiated neuroendocrine carcinoma, defined as
grade 3 pNEC (5, 6). The grade and stage of the pNET
determine a patient’s prognosis. Tumors of less than 2 cm
usually have a very good prognosis and indicate an indolent
grade or biology (7–10). The majority (>80%) of patients with
localized tumors, stage I or II, that qualify for resection are cured
by undergoing solely surgery. The survival of grade 1 and grade 2
pNETs has significantly improved over the last thirty years,
reflected by an increase of around 2 to 5 years in median
overall survival (OS) (3). A less promising prognosis is seen in
advanced grade 3 pNETs, although it is still superior to poorly
differentiated (grade 3) pNECs, with a 5-year survival rate of
approximately 29% (11). Surgery is both the main and most
significant treatment as well as the only method to cure pNETs.
Patients who are unsuitable for surgery can be offered systemic
therapy such as peptide receptor radionuclide therapy (PRRT),
chemotherapy, targeted therapy, and somatostatin analog (12).

Somatostatin receptors (SSTRs) belong to the superfamily of
G protein-coupled receptors (GPCRs) and can be activated by
Frontiers in Endocrinology | www.frontiersin.org 2
their ligands to exert their physiological function (13).
Knowledge of SSTRs and their activation has increased over
the last 20 years as a result of many clinical and translational
studies and has led to the development of novel treatments (14).
The clear effectiveness of somatostatin (SST) analogs (SSAs) has
been demonstrated in the treatment of numerous diseases
including pancreatitis, nephro- or retinopathy as complications
of obesity and diabetes, some types of pain, inflammation, and
acromegaly (excessive growth hormone produced by the body)
(15, 16). In addition, one of the unique features of NETs is the
overexpression of SSTRs. Diagnostic and treatment approaches
targeting SSTR with SSAs have shown advantages and a
promising future prospect (17–20). Figure 1 represents the
theranostic significance of SSTRs in patients with NETs.

In this review, we focused on the diagnostic, prognostic, and
therapeutic values of SSTRs in the management of pNETs.
BIOLOGY OF SSTRs AND SSAs

Five subtypes of SSTRs have been discovered (13). Receptor
sequences for human SSTRs range in length from 364 amino
acids for SSTR5 to 418 amino acids for SSTR3. Unfortunately,
crystal structures are not yet available for any SSTR (14). The
coding sequences of the genes that encode SSTRs are all
intronless, with the exception of SSTR2. The SSTR2 gene could
be spliced to generate two distinct receptor proteins, SSTR2A
and SSTR2B, which are different in carboxyl termini sequence
and length. Only human tissues encompass the unspliced variant
FIGURE 1 | A schematic presentation of theranostics with radiolabeled SSAs that target the SSTRs. The radiopharmaceutical element is comprised of the targeting
fraction (SSA) and a chelator that forms a steady composite with the radionuclide. Radiotheranostics consists of diagnostic (panel on the left) and therapeutic (panel
on the right) aspects.
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of SSTR2A (21). Although SSAs that target SSTR2 and SSTR5
have important therapeutic functions in the treatment of
endocrine tumors, it is remarkable that only a few mutations
associated with disease have been detected in the somatotropin
release-inhibiting factor (SRIF) system, which consist of seven
genes (five receptor genes and two peptide precursors). To date,
there has been only one report of an acromegaly patient, who is
resistant to octreotide treatment and demonstrated a mutation
(R240W) of SSTR5 which evidently affected signaling of the
receptor (22). SSTR expression can generally be found in tumors
and healthy tissues. SSTRs are based in cellular membranes that
consist of seven membrane-spanning domains and are
connected to the transmembrane potassium ion channels,
calcium ion channels, and intracellular enzymes including
adenylate cyclase (ACL) and phosphotyrosine phosphatases
(PTPs) like phosphotyrosine phosphatase h (PTPh), Src
homology phosphatase 1 (SHP1), and Src homology
phosphatase 2 (SHP2). After binding to the SST or SSA,
intracellular pathways are activated by SSTRs resulting in
antiproliferative and antisecretory effects. In addition,
activation of SSTR2 and SSTR3 also exert proapoptotic effects
as shown in Figure 2 (23–26).

Natural SST, also referred to as SRIF, is a cyclic polypeptide of
which two isotypes exist (SST-14 and SST-28, which consist of a
N-terminal extension). SST functions as an internal regulator of
Frontiers in Endocrinology | www.frontiersin.org 3
inhibition and is part of the neuropeptide family. SST-14 as well
as SST-28 possess a high affinity to bind each of the five related
subtypes of SSTRs (14). The hypothalamus can secrete SST,
which leads to the inhibition of essential hormones, for instance
thyroid-stimulating hormone and growth hormone. Whereas in
the gastrointestinal tract, the production of gastric acid is
controlled by SST as well as inhibition of the secretion of
diverse hormones, namely cholecystokinin, gastrin, glucagon,
VIP, secretin, insulin, and gastric inhibitory polypeptide (GIP).
In addition, SST can also reduce motility in the gastrointestinal
tract and contraction in the gallbladder through the reduction of
blood flow and inhibition of exocrine pancreatic secretion (23).

The induction of various biological effects following
activation of the SSTR resulted in identifying them as
important therapeutic targets. However, the use of native SST
as in vivo therapy is limited because it has a remarkably short
half-life. Thus, many different analogs have been developed that
could extend the biological actions of SST, prolong its persistence
in the body, and often possess increased efficacy. Among these,
the very first octapeptide that was developed was octreotide,
which could sustain a half-life of 90–120 min following
subcutaneous administration. Subsequently, lanreotide and
vapreotide were developed, which were cyclooctapeptide SSAs
(27). It has been discovered recently that pasireotide (SOM-230)
is one of the very first analogs to demonstrate a strong affinity for
A B DC

FIGURE 2 | Schematic representation of SSTR-targeted therapy. (A–C) represent the intracellular signaling pathways modulated by SSA/SST. (D) represents the
schematic of peptide receptor radionuclide therapy (PRRT). Blue arrows, activation; red arrows, inhibition; ↑, increase; ↓, decrease; ACL, adenylate cyclase; AKT,
protein kinase B; BAX, B-cell lymphoma 2 (BCL2)-associated X protein; Ca2+, calcium; G, G protein; JNK, c-Jun N-terminal kinases; K+, potassium; MEK, mitogen-
activated protein kinase kinase; NFkB, nuclear factor kappa B; PI3K, phosphoinositide 3 kinase; PTPh, phosphotyrosine phosphatase h; raf, rapidly accelerated
fibrosarcoma kinase; ras, RAS kinase; SHP1, Src homology phosphatase 1; SHP2, Src homology phosphatase 2; Src, Rous sarcoma oncogene; SSAs,
somatostatin analogues; SST, somatostatin; SSTR, somatostatin receptor; Vdc, voltage-dependent channel; VEGF, vascular endothelial growth factor; Zac1, zinc
finger protein regulator of apoptosis and cell cycle arrest.
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the majority of SSTR subtypes, except for SSTR4 (also known as
pansomatostatin analog), while octreotide and lanreotide only
show a high affinity for SSTR2 and SSTR5 as shown in Table 1
(29). Consequently, the development of synthetic SSAs
promoted the clinical use of radiolabeled SSAs, either in
imaging, combined with probes in various clinical practices, or
as therapy, with a large number of compounds in clinical
research. For instance 90Y or 177Lu-DOTATATE and 177Lu-
DOTATOC for PRRT, and SSA labeled with 68Ga, such as
DOTATOC, DOTATATE, and DOTANOC for somatostatin
receptor imaging (SRI) (30). Each of the SSTRs has a high
binding affinity to natural SST28 and SST14, while a
significant difference is found in the binding affinity of
radiolabeled SSAs and synthetic SSAs as shown in Table 1
(25, 28).
PROGNOSTIC VALUES OF SSTR
EXPRESSION IN pNETs

Since SSTRs are present on the surface of tumor cells, it provides
a molecular basis for long-acting SSAs to be implemented in
therapy and diagnostics; thus, the assessment of SSTR expression
in pNETs could be important for diagnostic purposes and SSA-
based treatment strategies. In previous research, the expression
of SSTR subtypes in pNETs was studied mainly through
immunohistochemical methods or reverse transcription PCR
(RT-PCR) and only a few by receptor autoradiography (31–
40). Although these studies revealed a heterogeneous SSTR
expression pattern, it was confirmed in most studies that
SSTR2 is the most commonly expressed subtype in pNET
(Table 2).

Furthermore, several studies have assessed the potential value
of SSTR expression in the prognosis of pNETs. For instance,
Okuwaki et al. (41) retrospectively studied 79 pNET patients to
evaluate the correlation between outcomes and the intensity of
SSTR2a expression (SSTR-2a score from 0 to 3 by
immunohistochemistry criteria). The results revealed that the
survival rate of patients with a SSTR-2a score of 0 was 58% at 1
Frontiers in Endocrinology | www.frontiersin.org 4
year, 51% at 3 years, and 35% at 5 years; patients with a SSTR-2a
score of 1 was 88% at 1 year, 74% at 3 years, and 74% at 5 years;
patients with a SSTR-2a score of 2 was 94% at 1 year, 80% at 3
years, and 80% at 5 years; and patients with a SSTR-2a score of 3
was 100% at 1 year, 3 years, as well as 5 years. As the results
clearly indicate, survival was significantly reduced in patients
with a SSTR-2a score of 0 compared to those with a higher SSTR-
2a score, implying that assessing the SSTR2 could be valuable in
choosing treatment options and estimating future survival. A
retrospective study (42) that followed up 116 patients with
gastroenteropancreatic neuroendocrine neoplasms (GEP-
NENs) showed that the positive expression of SSTR5 and
SSTR2 was associated with an improvement in survival. The
results indicated that the median OS of patients with a positive
expression of SSTR5 and SSTR2 had not been reached yet prior
to publication, while the median OS of patients with a negative
expression of SSTR5 and SSTR2 was 7.22 and 3.48 years,
respectively; however the pNET subgroup was not analyzed
exclusively in this study. Another retrospective study, which
included 99 pNET patients, demonstrated by univariate analysis
that the expression of SSTR2 was correlated to an improvement
in OS, with combined survival rates of 97.5% at 1 years, 91.5% at
3 years, and 82.9% at 5 years. In addition, multivariate analysis
demonstrated that positive expression of SSTR2 was a greater
prognostic indicator of OS than high Ki-67 (43).

Positive expression of SSTR2 (41–44) and SSTR5 (42) has
shown a significant correlation with improved OS, indicating its
potential value as prognostic marker and imaging, or therapeutic
target. However, an agreement on the significance of the
expression of SSTR as a prognostic biomarker in pNETs has
not been achieved yet and requires additional evaluation in
studies of a prospective nature.
SSTR-TARGETED IMAGING IN pNETs

As discussed above, most well-differentiated pNETs contain and
overexpress SSTRs (seeTable 2) that have a higher binding affinity
for these SSAs (SSTR2 > SSTR5 and 3, as shown in Table 1).
TABLE 1 | Somatostatin Analog Affinities.

Somatostatin analog Affinity (IC50 nM)

SSTR1 SSTR2 SSTR3 SSTR4 SSTR5

Octreotide >1000 0.4–2.1 4.4–34.5 >1,000 5.6–32
Lanreotide >1000 0.5–1.8 43–107 >1,000 0.6–14
Pasireotide 9.3 1 1.5 >100 0.16
In-DTPA-octreotide >10,000 22 ± 3.6 182 ± 13 >1,000 237 ± 52
Ga-DOTATOC >10,000 2.5 ± 0.5 613 ± 140 >1,000 73 ± 21
Ga-DOTANOC >10,000 1.9 ± 0.4 40.0 ± 5.8 260 ± 74 7.2 ± 1.6
Ga-DOTATATE >10,000 0.20 ± 0.04 >1,000 300 ± 140 377 ± 18
Y-DOTATOC >10,000 11 ± 1.7 389 ± 135 >10,000 114 ± 29
Y-DOTATATE >10,000 1.6 ± 0.4 >1,000 523 ± 239 187 ± 50
Lu-DOTATATE >1,000 2.0 ± 0.8 162 ± 16 >1,000 >1,000
M
ay 2021 | Volume 12 | Artic
Data from (25, 28).
All data are mean ± SD; IC50: half maximum inhibitory concentration (IC50 depicts the concentration of a drug needed for in vitro inhibition of 50%; the lower the IC50, the stronger
the affinity).
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Therefore, Somatostatin receptor imaging (SRI) combined
with radiolabeled SSA (111In-pentetreotide (Octreoscan)/68Ga-
DOTA-SSA PET/CT) is increasingly being used as a diagnostic
tool when pNET is suspected (45). A review comparing the
sensitivity of different imaging methods for pNETs and their
metastases in the liver (see Table 3) showed that SRI has
advantages in sensitivity.

As Table 3 evidently shows, 111In-pentetreotide has a higher
sensitivity overall compared to cross-sectional imaging for the
two types of primary pNETs (non-insulinomas) as well as a
specific advantage in examining the whole body at once and
thereby possibly discovering liver as well as distant metastases
(47–51). 111In-pentetreotide has an overall sensitivity in pNET of
60–80% (52). The use of 111In-pentetreotide following cross-
sectional imaging led in 39% of patients (with a total range of 16–
71%) to an alteration in management (47, 51). Among all the
distinct pNETs, SRI is generally not conducted in insulinomas
since the sensitivity for 111In-pentetreotide in benign
insulinomas is considered as low, due to the low levels or
absence of SSTR2 and SSTR5 in these type of tumors (53).

Different studies have used a variety of 68Ga-labeled SSAs (54,
55). These mainly include 68Ga-DOTATATE, 68Ga-DOTATOC,
and 68Ga-DOTANOC (54–57). Although these three possess a
different affinity for varying subtypes of SSTRs, they do have a
high affinity for SSTR2 in common, and reviews including
comparative studies have demonstrated that minor or no obvious
differences were observed in their performances (53–55, 58, 59).
Frontiers in Endocrinology | www.frontiersin.org 5
Multiple published studies, in which the findings of 68Ga-DOTA-
SSA PET/CT were compared to those of 111In-pentetreotide
SPECT/CT in the exact same group of patients, concluded that
68Ga-DOTA-SSA PET/CT had a significantly higher (which varied
from 22 to 46%) sensitivity in the patients 68Ga-DOTA-SSA PET/
CT 95–100% vs SSTR scintigraphy 45–78%) (45, 60–63). It has been
recommended most recently to replace SRI with 111In-pentetreotide
SPECT/CT by 68Ga-DOTA-SSA PET/CT since it has a higher
diagnostic accuracy and sensitivity and requires a smaller dose of
radiation (45, 54, 55). However, a recently published meta-analysis,
which only included pNET patients, that evaluated the detection of
the primary lesion and its primary staging with 68Ga-DOTA-SSA
PET/CT demonstrated that the pooled specificity and sensitivity for
identifying primary pNET was 95 and 79.6%, respectively (64). This
sensitivity was lower compared to the results of other meta-analysis/
series, which included patients with different type of NETs, and
demonstrated a mean sensitivity of 92% (range between 68 and
100%), a relatively high mean specificity of 88% (range between 50
and 100%), and a high mean accuracy of 93% (range between 90
and 97%) (50, 54, 55, 65–69). These differences might be correlated
to the PET/CT’s spatial resolution that can cause restriction in the
identification of minor pancreatic lesions and the inclusion of
higher histopathological grades of pNETs in these studies which
could have resulted in an increase of false-negative outcomes due to
a lower expression of SSTR (70). Moreover, the inclusion of
insulinoma patients could also have contributed to these
differences due to their restricted expression of SSTR in
TABLE 3 | The sensitivity of different imaging modalities for pNETs and their metastases in the liver.

Imaging modality Sensitivity (%)

Gastrinoma Insulinoma pNET <1.5 cm pNET >2.5 cm Liver metastasis

CT scan 5–47 20–63 34 50–94 75–100
MRI 10–44 10–85 34 60–95 67–100
US 0–21 26–50 11–33 30–76 15–77
Angiography 15–51 50–60 30–60 60–90 33–86
EUS 40–63 71–94 40–90 82–100 N/A
111In-pentetreotide 30–32 33–60 29–30 52–96 90–100
68GaDOTATAC PET/CT 68–100 31–90 60–80 68–100 95–100
May 2021 | Volume 1
Data from (46).
pNET, Pancreatic Neuroendocrine Tumor; CT, Computed Tomography; MRI, Magnetic Resonance Imaging; US, Ultrasound; EUS, Endoscopic Ultrasound.
TABLE 2 | SSTR expression in p-NETs.

Tumor type SSTR subtype

SSTR1 SSTR2 SSTR3 SSTR4 SSTR5

mRNA Protein mRNA Protein mRNA Protein mRNA Protein mRNA Protein

p-NET in general 62%(32) 30%(69) 90%(32) 78%(69) 56%(32) 78%(69) 78%(32) 12%(25) 81%(32) 76%(69)
62%(21) 36%(25) 86%(21) 76%(25) 86%(21) 40%(25) 52%(199) 86%(21) 56%(25)

53%(199) 55%(199) 29%(199) 34%(199)
Functioning p-NET
Gastrinoma 30%(33) 100%(33) 79%(33) 76%(33)
Insulinoma 25%(16) 13%(16) 19%(16) 88%(16) 19%(16)

31%(36) 58%(36) 78%(36) 78%(36)
2 | Artic
The data on mRNA expression is obtained from studies that used RT-PCR (31–34). The data on protein expression is obtained from immunohistochemical studies (35–38, 40) that used
SSTR subtype-specific antibodies and receptor autoradiography method with subtype-selective SSTR autoradiography (39). The numbers indicate the percentage of tumors that express
the corresponding SSTR subtype amongst the total of tumors investigated; the numbers between parentheses represent the total number of tumors included in these studies.
le 679000
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comparison with carcinoids, the most common histopathological
subtype of GEP-NET, resulting in the potential reduction of SSTR-
PET sensitivity (71).

68Ga-DOTA-SSA PET/CT also has a high sensitivity for
identifying metastases in liver, lymph nodes, and distant ones
(bone, etc.), which has a great influence on treatment, prognosis,
and OS (50, 68, 72–75). Various studies (56, 76–79) have
demonstrated that the tumor standardized uptake value (SUV) of
68Ga-DOTA-SSA PET/CT is related to progression-free survival
(PFS), Ki-67, tumor progression, and tumor grade/differentiation.
Another study also found that the SUV of 68Ga-DOTA-SSA PET/
CT in NET patients is related to the expression of SSTR2 and can
serve as a distinct predictor of OS (44). In addition, it has been
demonstrated that the SUV of 68Ga-DOTA-SSA PET/CT correlates
with the uptake amount of radioligand in PRRT (80), and a
maximum cut-off of 16.4 could predict responding lesions with a
specificity of 60% and sensitivity of 95% (81).

SRI has also demonstrated its value in radioguided surgery
(RGS). RGS makes use of radiopharmaceuticals that are uptaken
by tumor tissues by preference. Studies found that RGS
combined with 68Ga-DOTATATE in GEP-NET patients
showed feasibilities in guiding the removal of lymph node
metastasis and both intraoperative evaluation as well as
establishing the correctness of surgical margins. In addition, it
could also be valuable in the identification and removal of minor
tumors that were invisible or not palpable in recurrent NET
patients, in whom the surgical area is covered with scar tissue
(82, 83).

These studies suggest that SRI with radiolabeled SSAs have an
essential role in identifying the primary tumor, initial staging,
restaging, prognosis, intraoperation guidance, and evaluation of
the response to treatment in pNET patients. Moreover, SRI can
differentiate whether or not patients are suitable for treatment
with PRRT. This is a key feature of targeting SSTRs because it
provides the opportunity to personalize treatment (also referred
to as theranostic approach as shown in Figure 1).
SSTR-TARGETED THERAPY IN pNET

The therapeutic value of PRRT and SSAs in NETs relies on the
biological foundation of SSTR expression on the NET’s surface
(see Figure 2).

SSA in the Treatment of pNET
Antiproliferative Effects
SSAs function through targeting SSTRs (84). The most studied
SSAs are lanreotide autogel and octreotide long-acting release
(LAR), which primarily target SSTR5 and SSTR2. Whereas the
newest SSA, pasireotide, can target a broader scope of SSTRs,
including SSTR1, 2, 3, and 5 as shown in Table 1 (85, 86). Due to
their anti-secretory effects, SSAs were previously only used to
regulate symptoms (84). However, at present their anti-
proliferative effect has been widely confirmed (87).

The PROMID clinical trial was the first to provide solid
evidence of the anti-proliferative effect (88, 89). This study was
a double-blind, placebo-controlled, prospective phase III
Frontiers in Endocrinology | www.frontiersin.org 6
randomized controlled trial (RCT), in which the effect of
octreotide LAR was evaluated in patients who had a
metastatic or locally advanced, non-treated grade 1 midgut
NET, or an idiopathic NET. The results showed that the
increase in median time to progression (TTP) of the tumor
was clinically and statistically significant (placebo 6 months vs.
octreotide LAR 14.3 months and hazard ratio (HR) of 0.34
(95%-CI 0.20–0.59; p = 0.000072). The patients in this study
who were in the placebo group were permitted to go over to the
octreotide LAR group if progression occurred, which is
probably the primary cause of TTP differences not resulting
in an improvement of the OS. Even though no pNET patients
were included in this RCT, the results were still regarded as
powerful and led to the addition of octreotide as treatment in
pNET patients to the ENETS guidelines (19, 90). This was
further confirmed by a few small phase II studies and
retrospective series that demonstrated the anti-proliferative
effect of octreotide LAR in patients with a pNET, of which a
majority were low Ki-67 NETs (as longer lasting responses were
observed in patients with a low Ki-67 of less than 10) (91). The
CLARINET study was a crucial phase III trial, in which the
effects of SSA in pNET patients was evaluated (20, 92–94). This
randomized, placebo-controlled, and double-blinded study
assessed lanreotide autogel in patients who had metastatic or
locally advanced, well-differentiated, and non-functioning
(except for gastrinomas) GEP-NETs with a low Ki-67 of less
than 10%. The (core) study duration was 96 weeks, which was
followed by an open label extension (OLE) component. The
majority of the included patients were treatment-naïve (84% in
both groups) and were in a steady disease state during baseline
(95 and 96% in the placebo and lanreotide group, respectively).
The findings demonstrated an advantage in regard to PFS with
a HR of 0.58 (95%-CI 0.32–1.04 in the core study) (92) and
median PFS of 29.7 months in the pNET group (core study and
OLE as a whole). The advantage in PFS was seen irrespective to
tumor burden (20). Despite the poor response rate (2%),
stabilization of disease was still high (64%), which resulted in
a great disease control rate (DCR) of 66%. Data on the patients,
during OLE, that crossed over to the lanreotide autogel group
due to disease progression under placebo and were initially
already in that group without disease progression at week 96
(n = 88) showed that, interestingly, 50% of these patients had
pNETs (93). The median PFS of pNET patients was 29.7
months, which was shorter compared to the median PFS of
all the included patients (38.5 months) (20). A large number of
studies have tried to enhance the anti-tumor ability of SSAs by
developing novel SSAs like pasireotide LAR (95) or compounds
of SSAs combined with other anti-tumor media like everolimus,
as demonstrated in the COOPERATE-1 study (96). However,
these studies have not yielded any successful results and the
clinical use of SSAs in the treatment of pNETs is, at present,
still restricted to single agent approaches.

Anti-Secretory Effects
In patients with malignant insulinoma, SSAs are mainly used as
second-line medical therapy to regulate hypoglycemia. A
previous study has demonstrated that octreotide can be
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successful in regulating hypoglycemia in a majority of
insulinoma patients (97). In addition, pasireotide could be
considered as an alternative treatment choice in malignant
insulinomas and subsequent recurrence of hypoglycemic
incidents since it is capable of regulating hypoglycemia in
insulinomas that are resistant to other therapies, such as
octreotide LAR, everolimus, and chemotherapy (98).
However, SSAs can also exacerbate hypoglycemia through the
inhibition of counter-regulatory processes, such as GH and
glucagon, in insulinomas that do not express SSTRs (99). High
dosages of proton pump inhibitors can effectively decrease
oversecretion of gastric acid, although it cannot decrease the
abnormal increase of enterochromaffin-like (ECL) cells. On the
contrary, multiple studies have shown that the use of SSAs,
such as lanreotide and octreotide LAR, in type 1 gastric NETs
(related to chronic atrophic gastritis) and type 2 (related to the
Zollinger–Ellison syndrome) can suppress the secretion of
gastrin and decrease the tumor burden. Their results show
that in 50–100% of gastrinomas, gastric secretion is either
decreased or normalized, which resulted in the stabilization
of the tumor in 47–75% of included patients. Furthermore,
SSAs may be capable of inhibiting hyperplasia of ECL cells or
the growth of type 2 gastric NETs (100–102). Lanreotide and
octreotide have demonstrated the ability to quickly reduce
diarrhea and migratory necrolytic erythema in glucagonoma
patients, despite the sustained rise of glucagon levels in the
serum (103–105), whereas pasireotide has been proposed as a
suitable treatment approach in first-generation glucagonomas
resistant to SSAs. Treatment with octreotide, as an adjuvant, in
the rare vipomas was successful in decreasing VIP levels in serum
and regulating diarrhea (106–108). Even though it seems
contradictory to use SSAs in the treatment of somatostatinomas,
a study has shown that octreotide relieved the associated
symptoms and successfully decreased the levels of SST in the
plasma of three patients (109).

PRRT in the Treatment of pNETs
The effectiveness of PRRT in NETs is based on the biologic
foundation of SSTR expression on the NET’s surface. PRRT is
comprised of a radionuclide (e.g., b-emitters Lutetium-177
[177Lu] and Yttrium-90 [90Y], a-emitter Actinum-225 [225Ac])
which is connected to a chelator (DOTA) that is bound to a SSTR
ligand, for instance [Tyr3] octreotide or [Tyr3] octreotate (110).
This composite is intravenously given after which the ligand,
[Tyr3] octreotate, first connects to the cell surface’s SSTR and
then supplies emission of b− radiation with a span of 12 mm for
90Y and 2 mm for 177Lu (111). Among the compounds that have
been studied, b-emitters, 90Y-DOTATOC and 177Lu-
DOTATATE, have been the most widely used clinically.
However, recently several clinical studies using PRRT with a-
emitters have demonstrated its strengths compared with b-
emitters, which will be discussed below in more details.

Anti-Tumoral Efficacy
It is worth noting that no prospective and randomized phase III
trials have been conducted with PRRT in pNETs. Although, the
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NETTER-1 trial is the biggest study to date that evaluated the
effects of PRRT, it unfortunately did not include any pNET
patients (18). However, several non-randomized studies have
been reviewed and they provided retrospective as well as
prospective data on evaluation the use of PRRT with 177Lu-
DOTATATE in pNET patients (112, 113). The results showed a
median objective response rate (ORR) of 58% (with a range
between 13 and 73%), a median DCR of 83% (with a range
between 50 and 94%), a median OS between 42 and 71 months,
and a median PFS ranging between 25 and 34 months. A
retrospectively conducted study including 74 GEP NET
patients demonstrated that a more elevated ORR (adjusted
SWOG criteria) of 73 vs 39% (p = 0.005) was found in pNET
patients. This group of patients also seemed to have a longer
median OS (57 vs. 45 months); however, this finding was only
observed in the univariate analysis (p = 0.037) and not in the
multivariate analysis (p = 0.173) (112). Another retrospective
study that included 310 GEP-NET patients showed that the
patients with functional pNETs had a decreased disease-specific
survival in comparison to patients with non-functional GEP-
NETs (33 vs. >48 months, respectively, p = 0.04) (114). These
findings were further underwritten by the outcomes of another
retrospective study which had 68 patients included. The results
demonstrated a poorer median OS in functional pNETs
compared to non-functional pNETs with univariate analysis
(45 vs. 63 months, respectively, p = 0.045); however, these
findings did not show statistical significance in the multivariate
analysis (p = 0.506) (115).

To date, the largest study that evaluated 90Y-DOTATOC has
been a prospective phase II trial in which 342 pNET patients
were enrolled (divided in functional pNET, n = 47 and non-
functional pNET, n = 295). Nearly 50% of the pNET patients
(ORR = 47%, according to the RECIST criteria) had tumor
response. In addition, the study revealed a mean OS of 60
months in the group of nonfunctional pNET patients (116).

Although PRRT with b-emitters has shown a good clinical
effect, recently, a more promising radionuclide, a-emitters has
attracted increased attention in radionuclide therapy (117, 118).
Radioisotopes that emit a-particles which have higher energy
and shorter penetration range in comparison with b-particles,
induce a higher probability of double strand breaks and
minimum damage to surrounding healthy tissue (119, 120).
These a-emitters have demonstrated promising therapeutic
effects in a few pre-clinical in vitro (121–123) or in vivo (124,
125) studies. Currently, the only clinical experience with 213Bi-
DOTATOC included seven patients with advanced NETs with
liver metastases who were refractory to treatment with 90Y-
DOTATOC or 177Lu-DOTATOC (117). It demonstrated lower
toxicity, better specific tumor binding than with b-irradiation,
and partial remission of metastases. Two years after receiving
213Bi-DOTATOC targeted alpha therapy (TAT), all seven
patients were still alive. A study with another type of a-
emitters, 225Ac, had included 10 patients with progressive
NETs after b-PRRT. In line with 213Bi, 225Ac-DOTATOC was
well tolerated and effective (126). Another recent study with
225Ac-DOTATATE confirmed the potential of these radiotracers
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as an additional, and valuable, treatment option for patients who
are refractory to 177Lu-DOTATATE therapy. The included 32
patients, who previously received 177Lu-DOTATATE therapy,
were treated with 225Ac-DOTATATE. Of them, 24 patients were
assessed as responsive, with nine as stabilized disease and 15
partial remissions (127). The clinical experience with TAT in
NETs has shown very promising results even in patients
refractory to treatment with b-particles. However, further
investigations are needed due to the limited amount of
clinical evidence.

Efficacy in Hormone-Related Symptoms
There have been two studies that studied PRRT as treatment of
gastrinomas (128, 129). In one of these studies 11 gastrinoma
patients were assessed, and the results indicated that every
patient experienced improvement of their symptoms although,
the median OS was just 14 months (129). In contrast, the
findings of the other study,which assessed 36 gastrinoma
patients, revealed an ORR of 30% as well as a clinically
observed response rate of 16% (128). In addition, the median
OS was reported to be 45 months in the patients that were
considered as responders. In terms of malignant insulinomas,
there is a limited amount of data by means of case reports or
series that indicate a positive result of PRRT in stabilization of
disease as well as hypoglycemia (130, 131). Another recently
published retrospective study, which had 34 functional pNET
patients with metastasis and persistent hormonal symptoms
included in it, reported that most patients (71%) showed a
significant improvement in terms of the functional syndrome
and 80% of them showed a decrease in the circulating levels of
related hormones. Following PRRT, the outcomes demonstrated
a median PFS of 18.1 months, which was correlated to a
coexisting improvement of quality of life (132).

Overall, PRRT can be considered as a real innovation in the
treatment of NETs. Even though randomized and prospective
data of PRRT in pNETs is limited, the data that is available today
indicates that it is an effective treatment for pNETs and should be
studied further.
FUTURE PROSPECTIVE

SSTR Antagonists in Imaging and Therapy
SRI and PRRT use radiolabeled SSAs (see Table 1), which are
only SSTR agonists as mentioned previously, mainly because it is
believed in general that agonists would be the most suitable for
imaging since they are internalized, while SSTR antagonists are
not (133). It has been uncovered recently that SSTR antagonists
with radiolabeling produce more superior imaging than SSTR
agonists with radiolabeling (133, 134). A study conducted in vitro
with SSTR3 antagonists revealed that it detected 76-fold more
sites of binding in comparison to the SSTR3 agonist (134).
Thereafter, a few studies which only included a minor amount
of NET patients (pNETs as well as GI-NETs were included)
showed that SSTR2 antagonists with radiolabeling, i.e., 111In-
DOTA-BASS and 68Ga-OPS202 (68Ga-NODAGA-JR11),
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demonstrated more superior imaging of the tumor and higher
sensitivity than SSTR2 agonists with radiolabeling (28, 133–136).
These results have led to the option of using 177Lu-radiolabeled
SSTR2 antagonists in PRRT instead of 177Lu-radiolabeled SSTR2
agonists. The results of another preclinical study (137)
conducted in vivo with SSTR2 positive cells and in mice with
tumors, showed that the tumor uptake was five times more with
SSTR2 radiolabeled antagonists, 177Lu-DOTA-JR11, compared
to the SSTR2 radiolabeled agonist, 177Lu-DOTA-octreotate,
which led to a longer delay in growth. When research using
these two SSTR2 radiolabeled compounds were expanded to four
advanced NET patients (134), the 177Lu-DOTA-JR11 provided
1.7–10.6-fold higher tumor uptake dose compared to the agonist,
177Lu-DOTA-octreotate, which resulted in a partial remission in
half of the enrolled patients. These findings indicate that SSTR2
radiolabeled antagonists have the potential of being an improved
agent in comparison to SSTR2 radiolabeled agonists in pNET/
NET imaging and PRRT.
CONCLUSION

Although pNET is a highly heterogeneous disease, SSTR is
expressed in most pNETs, which provides the opportunity for
promising approaches and strategies in diagnosing, treating, and
predicting the prognosis of pNET patients. In the previous few
decades magnificent progress has been made in the clinical
significance of SSTRs in pNETs. SRI and therapies with
radiolabeled SSA have shown significant value in clinical
practice and has been recommended in various guidelines.
However, an even more promising agent, namely radiolabeled
somatostatin antagonists, has shown its superiority compared
with agonists. Despite the accumulation of evidence that SSTR-
targeted or related therapies (e.g., SSAs and SSTR-targeted
PRRT) are safe and effective options for refractory or
unresectable pNETs, most SSTR-targeted therapies target
SSTR2, and for those SSTR2-negative patients, more effective
therapeutic approaches targeting other SSTRs are urgently
needed. More and larger randomized prospective trials,
conducted in multiple centers with a long-term follow-up are
desperately needed as well. In addition, research deciphering
crystal structures for the five SSTRs are also needed, in particular
to uncover the exact signaling pathways of SSTR ligands and
SSAs that underlie its antitumor effects and to facilitate the
development of novel SSTR subtype-selective agents, along with
the detection and selection of appropriate candidate patients who
could benefit from these therapies.
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