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Abstract: “Alzheimer’s disease” (AD) is a neurodegenerative disorder in which the memory shrinks
and neurons die. “Dementia” is described as a gradual decline in mental, psychological, and
interpersonal qualities that hinders a person’s ability to function autonomously. AD is the most
common degenerative brain disease. Among the first signs of AD are missing recent incidents or
conversations. “Deep learning” (DL) is a type of “machine learning” (ML) that allows computers
to learn by doing, much like people do. DL techniques can attain cutting-edge precision, beating
individuals in certain cases. A large quantity of tagged information with multi-layered “neural
network” architectures is used to perform analysis. Because significant advancements in computed
tomography have resulted in sizable heterogeneous brain signals, the use of DL for the timely
identification as well as automatic classification of AD has piqued attention lately. With these
considerations in mind, this paper provides an in-depth examination of the various DL approaches
and their implementations for the identification and diagnosis of AD. Diverse research challenges are
also explored, as well as current methods in the field.

Keywords: deep learning; health informatics; Alzheimer’s disease

1. Introduction

DL has become a prominent issue in the ML domain in the past few years. ML can
be utilized to tackle issues in different sectors. Neuroscience is included in this list. It is
well known that detecting malignancies and functioning regions in cognitive systems has
been a huge challenge for scientists over the years. The standard approach of detecting the
variation in blood oxygen levels can be applied for this purpose. However, completing
all the processes can take too long on certain occasions [1]. One benefit of DL approaches
over typical ML methods is that the reliability of DL techniques grows with the phases
of learning. The efficiency of DL methods tends to rise greatly as more information is
provided to them, and they outperform conventional techniques [2]. This is similar to the
human brain, which learns more as new information becomes available on a daily basis [2].

The domains of detecting AD have lately attracted a lot of research interest. AD is
the most frequent type of dementia. Its symptoms can arise well after 60 years of age, and
the chance of developing the illness increases with advancing age. AD can be split into
seven phases. The first is the normal phase, which is accompanied by behavioral and mood
variations, along with impaired functioning. The second phase is typical ageing amnesia,
in which patients are unable to recollect names as easily as they could in the previous 5
to 10 years. “Mild cognitive impairment” (MCI) is the third phase, and patients’ frequent
enquiries are a sign. Mild AD forms the fourth phase, and signs include a reduced capacity
to handle finances and to make food for visitors. Stage 5 of AD is moderate AD, which
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manifests itself as a deficiency in fundamental regular tasks. The sixth phase of AD is
intermediate-severe AD, which is marked by a loss of the capacity to perform everyday
tasks. Extreme AD is the final phase, and an indication is that the person needs assistance
in day-to-day tasks to survive [3].

As it can be observed, AD possesses seven phases, each of which has its own set of
characteristics, so it is critical to know which phase of symptoms individuals are experi-
encing. Furthermore, AD therapies cover a diverse range of areas and benefits. The first
is therapy that aids patients in maintaining their psychological health. A further benefit
is that therapy aids in the management of behavioral issues. Third, therapy reduces or
slows the progression of disease symptoms. As a result, the relevance of classification and
prognosis can be seen, which is why researchers in this sector use DL methods [4].

The emphasis of this study is on the various DL methods as well as the various real-
world applications of DL for AD detection. The subsequent sections of the paper are as
follows: The transition from ML to DL approaches for AD prediction is discussed in the
Section 2. The Section 3 discusses the various DL strategies for detecting AD. The Section 4
uses real-world case studies to show how DL can be used in the field of Alzheimer’s
diagnosis. In Section 5, the various research problems encountered during AD prediction
utilizing DL approaches are explored. Section 6 is devoted to the paper’s discussion. The
paper’s conclusion and future scope are offered at the end.

2. Transformation from ML to DL Approaches for the Effective Prediction of AD

During the last decade, ML has been employed to discover neuroimaging indicators of
AD. Several ML technologies are now being used to enhance the diagnosis and prognosis of
AD [5]. The authors of [6] used a “support vector machine (SVM)” to accurately categorize
steady MCI vs. progressing MCI in 35 occurrences of control subjects and 67 MCI instances.
In most ML procedures for bio-image identification, slicing is prioritized, but recovery
of robust shape features has mostly been ignored. In several circumstances, however,
extracting convincing qualities from a feature space could eliminate the necessity for
image classification [7]. Most early studies relied on traditional shape features such as
“Gabor filters” and “Haralick texture” attributes [8,9]. DL is defined as a novel domain
of ML research that was launched with the purpose of bringing ML nearer to its initial
objective: “artificial intelligence (AI)”. To interpret textual, voice, and multimedia files, the
DL architecture often requires more abstraction and representation levels [10].

The authors of [11] provide a comparative analysis of classical ML and DL tech-
niques for the early diagnosis of AD and the development of mild cognitive impairment
to Alzheimer’s disease. They examined sixteen techniques, four of which included both
DL and ML, and twelve employed only DL. Using a combination of DL and ML, an
accuracy rate of 96% was attained for feature selection and 84.2% for MCI-to-AD transfor-
mation. Utilizing CNN in the DL method, an attribute selection accuracy of 96.0% and a
MCI-to-AD conversion predictive performance of 84.2% were obtained. In particular, the
authors discovered that categorization ability could be enhanced by combining composite
neuroimaging with serum biomarkers.

According to the study in [12], it is obvious that DL approaches for feature extraction
and the ML strategy of classification using a SVM classifier are extremely effective for
AD diagnosis and prediction. It has also been noted that prognosis and treatment based
on many modalities fare better than those based on a single modality. Recent develop-
ments show a rise in the application of DL algorithms for the study of medical images,
allowing for quicker interpretation and more improved precision than a human clinician.
Figure 1 shows that DL could be placed into two groups: “generative architecture” and
“discriminative architecture”.
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Figure 1. Types of DL architectures. 

The “Recurrent Neural Network (RNN)”, “Deep Auto-Encoder (DAE)”, “Deep Boltz-
mann Machine (DBM)”, and “Deep Belief Networks (DBN)” are the four kinds of “gener-
ative architecture”, whereas the “Convolutional Neural Network (CNN)” and RNN are 
the two kinds of “discriminative architecture”. The structurally complex transformations 
and local derivative structures were recently discovered as current segmentation tech-
niques for Phyto analytics by many scientists [11–13]. These descriptions are referred to 
as hand-crafted traits since they were created by people to extract characteristics from 
photos. A major aspect of employing these characteristics was to utilize vectors to locate 
a part of a picture, whereupon the created pattern is extracted. The SVM then receives the 
characteristics obtained by the customized approach [14] as a form of predictor. The best 
characteristics extract characteristics from a database. Several of the most widely used and 
concise descriptors rely on DL to achieve this [15,16]. As shown in Figure 2, the CNN is 
used to pull descriptions out of the images for this reason.  

 
Figure 2. The architecture of a generalized CNN. 

CNNs are particularly good at retrieving general features [17]. Various layers of ap-
proximations are formed when a deep network has been built on a large volume of im-
agery. The first-layer characteristics, for example, are like “Gabor filters” or color objects, 
which can be used for a wide range of picture issues and repositories [18]. “Deep neural 

Figure 1. Types of DL architectures.

The “Recurrent Neural Network (RNN)”, “Deep Auto-Encoder (DAE)”, “Deep Boltz-
mann Machine (DBM)”, and “Deep Belief Networks (DBN)” are the four kinds of “gener-
ative architecture”, whereas the “Convolutional Neural Network (CNN)” and RNN are
the two kinds of “discriminative architecture”. The structurally complex transformations
and local derivative structures were recently discovered as current segmentation tech-
niques for Phyto analytics by many scientists [11–13]. These descriptions are referred to
as hand-crafted traits since they were created by people to extract characteristics from
photos. A major aspect of employing these characteristics was to utilize vectors to locate a
part of a picture, whereupon the created pattern is extracted. The SVM then receives the
characteristics obtained by the customized approach [14] as a form of predictor. The best
characteristics extract characteristics from a database. Several of the most widely used and
concise descriptors rely on DL to achieve this [15,16]. As shown in Figure 2, the CNN is
used to pull descriptions out of the images for this reason.
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CNNs are particularly good at retrieving general features [17]. Various layers of ap-
proximations are formed when a deep network has been built on a large volume of imagery.
The first-layer characteristics, for example, are like “Gabor filters” or color objects, which
can be used for a wide range of picture issues and repositories [18]. “Deep neural networks
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(DNN)” can be employed on bio-image records; however, this method necessitates a large
volume of information that is difficult to come by in many circumstances [19]. The infor-
mation augmentation procedure is an answer to this situation, as it could customize the
preliminary data using its own approach, allowing it to build information. Reflection, trans-
lation, and pivoting original imageries to generate opposing portrayals are certain popular
information augmentation processes [20]. Customizing the picture’s luminosity, intensity,
as well as brightness could also produce diverse images [21,22]. “Principal component
analysis (PCA)” is another commonly utilized technique for information augmentation.
Certain essential elements are inserted into a PCA once they have been scaled down to
a smaller proportion [23,24]. The major goal of this procedure is to display only the pic-
ture’s highly appropriate features. “Generative adversarial networks” have been used in
recent studies [25,26] to combine images that vary with the primary ones. This strategy
necessitates the creation of a separate domain [27,28].

The images generated, however, are not reliant on modifications in the image database.
As a result, different techniques may be applied depending upon the issue. For instance,
element-wise computation was used to mimic random noise in radar altimeter imagery
in [29]. Ductility was used in [30] to mimic the process of stretching in prostate chemother-
apeutics. An alternative technique that takes advantage of DL is to adjust a pre-trained DL
model, such as a CNN, on fresh data reflecting a different challenge. This method takes ad-
vantage of a pre-trained CNN’s shallow depth layers. Fine-tuning (also known as “tuning”)
is a technique for stretching the learning phase on a new image dataset. This strategy sig-
nificantly decreases the computing expenses of learning new information and is suited for
modest populations. Another advantage of fine-tuning is that it enables scientists to readily
study CNN combinations because of lower processing expenses. Such configurations could
be created with multiple pre-trained CNNs and a variety of hyperparameters.

CNNs are also used as attribute extractors in certain investigations [31]. SVM with
quadratic or regular kernels plus “logistic regression” and “extreme ML random forest”
or “XGBoost” and “decision trees” are used for classifications [32]. Shmulev et al. [33]
evaluated the findings acquired via the CNN technique to those obtained through alter-
native classifiers that only analyzed characteristics derived by CNN and determined that
the latter works better than the former. Rather than being deployed explicitly for visual
information, CNNs could be utilized on pre-extracted characteristics. This is particularly
pertinent whenever a CNN is administered to the outcomes of different regression methods
and whenever diagnostic ratings are matched across other model parameters and magnetic
resonance characteristics.

CNNs could also be used to analyze non-Euclidean environments such as clinical
charts or cerebral interface pictures. Morphological MRIs could be used with different
designs. Various perceptron variants, such as a “probabilistic neural network” or a “stacked
of FC layers,” were used in various studies. Several studies used both “supervised” (deep
polynomial networks) and “unsupervised” (deep Boltzmann machine and AE) designs
to retrieve enhanced interpretations of attributes, whereas SVMs are primarily used for
classification [34]. Imagery parameters such as texturing, forms, trabecular bone, and
environment factors are subjected to considerable pre-processing, which is common in
non-CNN designs. Furthermore, to further minimize the dimensions, the integration or
extraction of attributes is commonly utilized. On the other hand, DL-based categorization
techniques are really not limited to cross-sectional structural MRIs. Observational research
could combine data from various time frames while researching relatively similar topics.

In [35], the authors developed an SVM with kernels that permitted antipsychotic MCI
to be switched to AD while the other premonitory categories of AD were removed. They
were able to achieve a 90.5 percent cross-validation effectiveness in both the AD and NC
studies. They were also 72.3 percent accurate in predicting the progression of MCI to AD.
Regarding the extraction of attributes, two methods were utilized:

• “Free Surfer” is an application for cerebral localization with cortex-associated information.
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• The “SPM5 (Statistical Parametric Mapping Tool)” is a device for the mapping of
statistical parameters.

Researchers further found that characteristics ranging from 24 to 26 are the most
accurate predictors of MCI advancing to AD. They also discovered that the width of the
bilateral neocortex may be the most important indicator, followed by right hippocampus
thickness and APOE E”4 state. Costafreda et al. [36] employed hippocampus size to
identify MCI patients who were inclined to progress to AD. A number of 103 MCI patients
from “AddNeuroMed” were used in their research. They employed the “FreeSurfer”
for information pre-processing and SVM with a semi-Stochastic radial basis kernel for
information categorization. Following model training on the entire AD and NC datasets,
researchers put it into practice. In less than a year, they were able to achieve an accuracy of
85 percent for AD and 80 percent for NC. They concluded that hippocampus alterations
could enhance predictive efficacy by consolidating forebrain degeneration.

According to a comprehensive analysis of various SVM-centered studies [37], SVM is
a commonly used technique to differentiate between AD patients and apparently healthy
patients, as well as between steady and progressing subtypes of MCI. Regarding diagnoses,
advancement projections, and therapy outcomes, functional and structural neuroimaging
approaches were applied. Eskildsen et al. [38] found five important ways to tell the
difference between stable MCI and MCI that is becoming worse.

To differentiate and diagnose AD, the researchers in [39] studied 135+ AD subjects,
220+ CN patients, and 350+ MCI patients. They trained on the neuroimaging utilizing
information from ADNI. To differentiate AD patients from CN patients, they employed
“neural networks” and “logistic regression”. The metrics were determined to have extensive
brain properties. Rather than relying on specific parts of the brain, important properties
such as volume and thickness were determined.

Because of its capacity to gradually analyze multiple levels and properties of MRI and
PET brain pictures, the authors of [40] advised using cascading CNNs in 2018. Since no
picture segmentation was used in the pre-treatment of the information, no skill was neces-
sary. This trait is widely seen as a benefit of this technique over others. The attributes were
extracted and afterwards adapted to the framework in the other techniques. Depending on
the ADNI dataset, their research included 90 plus NC and AD subjects, with 200 plus MCI
cases. The efficiency rate was greater than 90%.

The work in [41] suggested a knowledge-picture recovery system that is based on
“3D Capsules Networks (CapsNets)”, a “3D CNN”, and pre-treated 3D auto-encoder
technologies to identify AD in its early phases. According to the authors, 3D CapsNets are
capable of quick scanning.

Unlike deep CNN, however, this strategy could only increase identification. The
authors were able to distinguish AD with a 98.42% accuracy. The authors of [42] looked at
407 normal participants, 418 AD patients, 280 progressing MCI patients, and 533 steady
MCI instances from an institution. They practiced on 3D T1-weighted pictures using
CNNs. The repository they used was ADNI. They looked at CNN operations to identify
AD, progressing MCI, and stable MCI. Whenever CNNs were utilized to separate the
progressing MCI individuals from the steady MCI patients, there was a 75% accuracy rate.
The researchers in [43] developed an algorithm that used MRI scans to determine medical
symptoms. The maximum number of cases that researchers could use was 2000 or more,
and they chose to work on the ADNI repository.

“DSA-3DCNN” was reported to be quite accurate compared to alternative contem-
porary classifiers in diagnosing AD that relied on MRI scans by Hosseini-Asl et al. [44].
The authors demonstrated that distinguishing between AD, MCI, and NC situations can
improve the retrieval of characteristics in 3D-CNN. With respect to analysis, the cerebral
extraction technique used seven parameters. The FMRIB application package was utilized.
This collection offers technologies to help MRI, fMRI, and DTI neuroimaging information,
in addition to outlining the method of processing the information. By eliminating quasi-
cerebral tissues from head MRIs, PET was utilized to categorize them into cerebral and
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non-cerebral imageries (a vital aspect of any assessment). In BET, no prior treatment was
required, and the procedure was quick.

3. Diagnosis and Prognosis of AD Using DL Methods

DL is a subfield of ML [45] that discovers characteristics across a layered training
process [46]. DL approaches for prediction and classification are being used in a variety of
disciplines, such as object recognition [47–49] and computational linguistics [50,51], which
together show significant improvements over past methods [52–54]. Since DL approaches
have been widely examined in the past few years [55–57], this section concentrates on the
fundamental ideas of “Artificial Neural Networks (ANNs)”, which underpin DL [58]. The
DL architectural schemes used for AD classification and prognosis assessment are also
discussed. NN is a network of connected processing elements that have been modeled
and established using the “Perceptron”, the “Group Method of Data Handling” (GMDH),
and the “Neocognitron” concepts. Because the single layer perceptron could only generate
linearly separable sequences, these significant works investigated effective error functions
and gradient computational algorithms. Furthermore, the back-propagation approach,
which utilizes gradient descent to minimize the error function, was implemented [59].

After detection, a person with AD can expect to live for an average of 3 to 11 years.
Certain individuals, nevertheless, may survive for 20 years or more after receiving a
diagnosis. The prognosis typically relies on the patient’s age and how far the illness has
advanced prior to detection. The sixth most frequent cause of mortality in the US is AD.
Other ailments brought on by the problems of AD can be fatal. For instance, if a person
with AD has trouble swallowing, they may suffer from dehydration, malnourishment, or
respiratory infections if foods or fluids enter their lungs. The individuals responsible for the
patient’s care are also directly and significantly impacted by AD in addition to the patients
themselves. Caregiver stress condition refers to a deterioration in the psychological and/or
physical well-being of the individual caring for the Alzheimer’s sufferer and is another
persistent complication of AD in this regard.

Rapid progress in neuroimaging techniques has rendered the integration of massively
high-dimensional, heterogeneous neuroimaging data essential. Consequently, there has
been great interest in computer-aided ML techniques for the integrative analysis of neu-
roimaging data. The use of popular ML methods such as the Support Vector Machine (SVM),
Linear Discriminant Analysis (LDA), and Decision Trees (DT), among others, promises
early recognition and progressive forecasting of AD. Nevertheless, proper pre-processing
processes are required prior to employing these methods. In addition, for classification
and prediction, these steps involve attribute mining, attribute selection, dimensionality re-
duction, and feature-based classification. These methods require specialized knowledge as
well as multiple time-consuming optimization phases [5]. Deep learning (DL), an emerging
branch of machine learning research that uses raw neuroimaging data to build features
through “on-the-fly” learning, is gaining significant interest in the field of large-scale,
high-dimensional neuroimaging analysis as a means of overcoming these obstacles [59].

3.1. Gradient Computation

The error between the training algorithm output and the intended result is calculated
using the back-propagation process. The back propagation formula computes the difference
several times, altering the weights each time and halting until the difference is no longer
adjusted [60]. The technique of creating an ANN using a “multi-layer perceptron” is
depicted in Figure 3.
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Figure 3. MLP procedure (where Act signifies activation function, w represents weights, and Net
denotes network).

The weights are changed using a “back-propagation” process until the differential
value reaches 0, once the first erroneous value is obtained using the least squares approach
from the hypothetical random distribution weight. The network weights are adjusted until
the divergence score reaches 0, after the preliminary error score is determined from that of
the hypothetical random distribution weight using the least squares approach. For instance,
Equation (1) updates the w21 of Figure 3:

w21(m + 1) = w21m − ∂ErrYout

∂w21
(1)

ErrYout =
1
2
(yt1 − y01)

2 +
1
2
(yt2 − yo2)

2 (2)

The ErrYout, which is the sum of error y01, is shown in Equation (2). The parameters
yo2., yt1, and yt2 are obtained from the supplied information. The chain rule could be used
to determine ErrYout’s partial derivative regarding w21:

∂ErrYout

∂w21
=

∂ErrYout

∂yo1
.

∂yo1

∂net1
.
∂net1
∂w21

(3)

Similarly, the chain rule updates w11 in the hidden layer, as indicated in Equation (4):

∂ErrYout

∂w11
=

∂ErrYout

∂yh1
× ∂yh1

∂net1y
× ∂net1

∂w11
(4)

3.2. DNNs in the Real World

Because backpropagation utilizes a “gradient descent” approach to determine the
weights of every layer, and since it is piled downwards from the output nodes, a dimin-
ishing gradient phenomenon develops, in which the divergence number reaches 0 prior
to finding the optimal value. Whenever the sigmoid is differentiated, the peak value is
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0.25, and as it multiplies, it draws nearer to 0. This is known as the diminishing gradient
phenomenon, and it is a key stumbling block for DNNs. The problem of the diminishing
gradient has been extensively studied [61]. One of the results of this endeavor was the
replacement of the sigmoid function, which is an activation function, with several different
measures, including the “hyperbolic tangent function”, “ReLu”, and “Softplus” [62,63].
The “hyperbolic tangent function” extends the sigmoid’s spectrum of derivative scores.
The most commonly utilized activation function is the “ReLu”, which substitutes a number
with 0 when it becomes 0 and utilizes the number when it becomes greater than 0. It
will become plausible to alter the weights from vanishing down to the very first layer via
layered hidden units as the derivatives approaches 1 whenever the value is greater than 0.
This basic strategy provides an easy implementation of DL by allowing numerous levels
to be built. When ReLu reaches zero, the “Softplus” method is substituted, which uses a
gentle fall mechanism.

While weights are calculated accurately using the gradient descent approach, it nor-
mally consumes a lot of time to compute, since all the information must be distinguished
at every iteration. To address performance and reliability difficulties, improved gradient
descent algorithms were devised in conjunction with the activation function. The “Stochas-
tic Gradient Descent (SGD)”, for instance, employs a portion of the complete information,
which is selected randomly for quicker and much more regular iterations [64], and it has
been expanded to “Momentum SGD” [65]. The “Adaptive Moment Estimation” (Adam) is
presently among the most common gradient descent algorithms.

3.3. DNN Architectures

Overfitting has also contributed immensely to the development of DL [66], with
attempts to handle the issue at an individual and collective scale. One of the earliest
models created to tackle the generalization error was the “Restricted Boltzmann Machine
(RBM)” [58]. It combines the RBMs evolved in the “Deep Boltzmann Machine (DBM)”,
which is a denser architecture [67]. The “Deep Belief Network (DBN)” is a supervised
learning system that extracts information out of each tier level to link unstructured variables.
DBN outperformed conventional algorithms, which is one of the reasons that DL has
become so prominent. Although DBN eliminates the possibility of hyperparameters by
employing RBM to minimize weight initialization, CNN effectively limits the number of
hyperparameters by integrating convolution and pooling levels, resulting in a decrease
in difficulty. Due to its sufficiency, CNN is frequently utilized in the domain of visual
recognition. “RBM, DBM, DBN, CNN, Auto-Encoders (AE), sparse AE, and stacked AE”
are all depicted in Figures 4–10 respectively.
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“Auto-encoders (AE)” represent an unsupervised classification methodology that
utilizes a back-propagation algorithm and SGD to allow the resulting value to approximate
the data input. Owing to the diminishing gradients problem, AE activates dimensionality
minimization, although it is hard to train. Sparse AE solves this problem by permitting
just a minimal number of hidden layer units to be used [68]. “DBN, DNN, RBM, DBM,
DBN, AE, Sparse AE, and Stacked AE” are DL algorithms that have been employed for
AD diagnostic categorization up to this point. Every method was created to distinguish
“cognitively normal controls (CN)” from “mild cognitive impairment (MCI)”, which is
the premonitory phase of AD. Employing multi-modal neuroimaging information, every
technique is utilized to forecast the transition of MCI to AD.

3.4. DL for Selection of Attributes from Neuroimaging Information

Structure and genomic indicators for AD have been identified using heterogeneous
neuroimaging datasets. Pre-selected AD-specific areas, such as the hippocampal and neo-
cortex, have been found to be critical markers for improving ML classification performance.
DL algorithms were applied to identify characteristics from neuroimaging repositories.

In [69], the authors classified AD/CN with more than 86% efficiency using “stacked
sparse autoencoders (SAEs)” and a “softmax” regression layer. To retrieve additional
data from multichannel brain images [70–72], they utilized SAE and a “SoftMax logistic
regressor”, along with a zero-mask tactic for information fusion, in which one of the
therapies is arbitrarily concealed by substituting the input parameters with 0 to converge
distinct kinds of information for SAE. The DL method improved AD/CN classification
performance by 90%. The authors of [73] achieved more than 84 percent AD/CN prediction
performance and an 82 percent MCI transition accuracy rate using SAE for pre-training and
DNN for the final phase. A CNN that has demonstrated exceptional results in the domain of
machine vision was also used to diagnose AD using heterogeneous neuroscience datasets.

The authors in [74] employed feature maps to convert localized imageries into elevated
attributes from raw MRI imageries for the “3D-CNN”, resulting in an 87-plus percent
accuracy for AD/CN categorization. They raised the efficiency to more than 89% by testing
two “3D-CNNs” on distinct neuroimage regions collected from “MRI” and “PET” data,
subsequently merging the findings to execute a “2D CNN” [74]. In [75,76], the authors
demonstrated more than 79% accuracy for AD/CN identification using two alternative 3D
CNN algorithms (basic “VoxCNN” and “residual neural networks (ResNet)”). This was the
first study showing that the subjective segmentation process was redundant. In [77,78], the
authors took 2D segments of the hippocampus area in the radial, longitudinal, and frontal
planes and used “2D CNN” to classify AD/CN with an 85-plus percent accuracy.

In [78], the researchers used an information learning strategy to pick configural regions
from MR images built on AD-linked structural signs and then applied “3D CNN” on these.
This method employed three separate sets of information (ADNI-1 for learning, ADNI-2 for
assessment, and MIRIAD for validating) to produce sufficiently better accuracies of more
than 91 percent for AD/CN diagnosis from “ADNI-2” and “MIRIAD”, correspondingly, and
75-plus percent for MCI transformation prognosis on “ADNI-2”. The work [79] employed
three-dimensional CNN architectures to capture the quasi-association across MRI and PET
patterns on participants for both MRI and PET scans and utilized the learnt network to
infer PET characteristics for patients with only MRI information. The AD/CN classification
performance in this research was more than 92% accurate, and the MCI transformation
accuracy rate was more than 72%.

In [80], the researchers used SAE with “3D CNN” on MRI and FDG PET scans to
achieve a 90% accuracy in AD/CN categorization. In [81], the scientists adopted a blend
of 2D CNNs and RNNs to generate intra-slice and cross-attributes after decomposing 3D
PET data into a series of 2D slices. The method identified AD/CN with 91 percent accuracy.
When information is unbalanced, the risk of misinterpretation rises, and susceptibility falls.
There have been 76 cMCI and 128 ncMCI individuals [82], and the observed sensitivity was
less than 50%, which was poor. The work in [78] used 38 cMCI and 239 ncMCI patients
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and found that their sensitivity was less than 44%. The authors in [83] earlier revealed
the first application of 3D CNN designs to heterogeneous PET scans, achieving more than
95% accuracy for AD/CN categorization and 84-plus percent accuracy for MCI-to-AD
transition prognosis.

Table 1 shows the DL techniques for feature selection on neuroimaging data.

Table 1. DL techniques for feature selection on neuroimaging data.

Reference DL Technique Accuracy

[69] SAEsoftmax” regression layer >86%
[70] 3D-CNN >87%
[72] SAE SoftMax” regression layer >90%

[73] SAE DNN >84% for AD/CN classification
>82% for MCI to AD classification

[74] 3D CNN >92% for AD/CN classification
>72% for MCI to AD conversion

[75] VoxCNN
ResNet >79%

[77] 2D CNN >85%
[78] 3D CNN >75% for MCI to AD conversion

[80] SAE
3D CNN >90%

[81] Ensemble of 2D CNN and RNN >91%

[83] 3D CNN >95% for AD/CN classification
>84% for MCI to AD conversion

3.5. DL for Selection of Heterogeneous Neuroimaging Data

Heterogeneous neuroimaging information such as that from MRI and PET has indeed
been frequently employed during DL to boost the effectiveness of AD/CN categorization
and the prognostication of MCI-to-AD transformation: magnetic resonance for central
nervous system functional degeneration, aβ peptide PET for frontal cortex oligomers
accrual, and FDG-PET for glucose uptake biotransformation are examples. Thirteen studies
used MRI scans, ten used FDGPET scans, twelve used both MRI and FDG-PET diagnostic
tests, and one used both amyloid PET and FDG-PET scans. In comparison to MRI, PET
scans performed significantly better in AD/CN diagnosis and/or detection of MCI-to-AD
transition. The accuracy of two or more multimodal neuroscience types of information was
better than that of a solitary neuroscience method.

To obtain the appropriate levels of performance accuracy, DL systems necessitate a
huge amount of information. Due to the limited availability of neuroscience information,
hybrid techniques that integrate classic ML methods for diagnosis categorization alongside
DL techniques for attribute mining performed better and could be a useful alternative for
dealing with such information. An “autoencoder (AE)” was used to interpret the original
picture parameters, rendering them identical to the actual picture, while it was being
used as input, allowing the restricted neuroscience information to be efficiently utilised.
Though hybrid strategies have produced promising outcomes, they do not fully exploit
DL, which pulls patterns from enormous volumes of neuroimaging information efficiently.
The CNN, which specializes in retrieving properties from imagery, is the most widely
utilized DL technique in machine vision research. Recently, 3D CNN techniques based
on heterogeneous PET scans have performed effectively for AD/CN categorization and
MCI-to-AD transition predictions.

4. Case Studies on the Diagnosis of AD Using DL and Related Technologies

Computer vision research forms an essential part of identifying and treating a variety
of disorders. These kinds of images form a valuable resource for extracting diagnostics [84].
These are key aspects of the “Electronic Health Records (EHR)” and are typically analyzed
by a group of specialists (“radiologists”). There are numerous picture types available, with
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MRI and PET being the most prevalent in AD. The use of AI to automate the analysis of
these types of photographs has grown in popularity across time. In reality, AI is projected
to play a major role in EHR research and not just for plain images:

• During the last 15 years, the utilization of such techniques and AI technologies in
medical applications has skyrocketed. There seem to be three important aspects to
consider, e.g., information quantity and quality have both improved. In this sense, the
discipline is approaching Big Data.

• Efforts are being made to minimize human discrepancies, because radiologists are
constrained by a variety of parameters, such as time or expertise, and are also likely to
make errors [85,86].

• The emergence of AI in general and DL in particular is apparent. Adopting these
systems for clinical use might not have been considered conceivable if they had not
demonstrated such significant improvement during the past few decades [87,88].

Despite numerous articles published based on straightforward ML techniques such as
SVM [86] and statistical techniques such as “independent component analysis (ICA)” [89],
DL and CNN have captured healthcare imaging techniques in the last 5–10 years [90,91].
Such methods were also applied in a variety of computer-aided diagnostic scenarios. These
could be broken down into the following groups:

• In detection with the help of computers (CADe), certain components in the imagery,
such as structures or neurons, can be identified. CADe can also be used to identify
areas of focus for scientists, like malignancies.

• Segmentation is the separation of complete picture portions from the rest of the imaging.
• Computer-aided Diagnosis (CADx) denotes a diagnostic based on particular data that

can be described as a categorization task in plain terms. Medical photos are employed
in this scenario, which emphasizes the necessity of CNN. In the context of AD, there
are three classifications: NC, MCI, and AD.

The work in [91] mentions another intriguing area, which can be referred to as deep
feature learning. It is focused on the creation and development of a plan that can retrieve
important knowledge from data. It enables the acquisition of higher-level characteris-
tics that are unseen to the naked eye and can be reused in a variety of contexts. It is
frequently employed in Alzheimer’s. CADx is a preliminary step for retrieving valu-
able features from pictures or pre-training deep networks using diverse methods such as
auto-encoders [92–94]. Nevertheless, this method is becoming obsolete, as it necessitates
additional development steps and, thus, no substantial improvement in the overall perfor-
mance is seen [95]. Deep feature extraction has not really addressed during the explanatory
stage for these considerations. Finally, the ANN is the foundation for most experiments
performed in the last 5–10 years. ANNs are typically taught under supervision, but their
non-supervised applications are equally vital. In any case, imagery must be pre-processed
for models to fully utilize it.

There are a few medical diagnostic pre-treatment approaches that appear in a broad
range of articles connected to the AD automatic detection study. Initially, authors relied on
individually created characteristics that necessitated the employment of quite sophisticated
pre-treatment methods. The usage of CNN and auto-encoders for automatic attribute
mining, on the other hand, makes the task relatively easy. Finally, two crucial operations
must be emphasized: MRI image capturing and cranium removal.

Image registration is the process of matching a particular image to a source image,
known as an overlay, to ensure that the same parts, including both images, reflect simi-
lar anatomical features [96,97]. Because similar data reside in almost all the imagery, it
is easier for a CNN or an auto-encoder to identify a specific section of the imagery as
important. There are numerous assessment methods [97] that can be used not only in
neuroscience [94,98–100], but also in other medical domains such as melanoma [101].

Cranium peeling is the process of removing data from the cranium that is shown
on MRI pictures, as the name suggests. The goal is to create an output photo that is
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as concise as possible, with only the data necessary for the assigned task. Clearly, nei-
ther of the most important indicators for AD can be detected in the cranium. As a re-
sult, other researchers [98–100] employ various strategies to remove the skull and other
non-brain regions, or they use an imaging information source that already has the cra-
nium removed [101]. It is important to note that endocrinal data are not discussed in
research that employs PET imaging because these images do not contain quite so much
extraneous information.

Additional universal methods, such as picture normalization, are available in addition
to the abovementioned processes. Brightness normalization and geographical normalizing
are two distinct examples. The first of these, known as whitening [102], is focused on
modifying the spectrum of image pixels to include a specific criterion, such as lowering the
pixels to a narrow timeframe or removing the average and subtracting the mean deviations.
The next method entails resizing the pixels (or spatial information in three-dimensional
images) to reflect a dedicated area (or capacity) [102]. For instance, every region of interest
in [103] occupies 2 mm3 of volume. Face recognition could be thought of as a kind of
geographic normalization in this context [102].

CNN has become increasingly significant in the diagnosis of AD in recent times. This
is not to say that these algorithms have not been utilized before, but they were usually
accompanied by other DL methodologies, such as the Shallow Extraction of features. CNN
has been directly employed for the past 3 years, resulting in an effective model that is also
far less time-consuming than initial efforts.

AlexNet was a watershed moment in DL history. It demonstrated how a CNN might
achieve good picture prediction performance. Its principles were further explored in the
decades to come, resulting in major designs, notably VGGNet, Inception, and ResNet.
Even though CNNs were created to operate on ImageNet information, their exceptional
outcomes have rendered them the preferred option for a wide variety of uses. Many DL
frameworks already have these models built with ImageNet, so programmers can change
them to fit their own needs.

It has not been any different when it comes to computer-aided diagnosis. Even though
there are significant variations between the two zones that limit the effectiveness that could
be achieved by adjusting these nets, this strategy has proven to be the most promising
in practice not just with AD, but with other disorders such as vision loss, melanoma, as
well as cervical cancer. Researchers have customized the “Inception V3” technique. The
scientists of [104] experimented using both the “Inception V3” technique and a “ResNet50”
model. An “Inception V3 model” was also utilized in [105] to classify 750-plus diverse
illness types.

In reality, “Inception V3” and ImageNet are the most commonly used designs in the
research works. Table 2 is a summary of the articles that use CNN to diagnose AD and the
above disorders.

Table 2. CNN architectures for detection of AD and other disorders.

Reference Illness CNN Model Accuracy

[19] AD “Inception + LeNet5” 96.85%

[76] AD VoxCNN +
VoxResNet 80%

[103] AD “Inception V3” 92%

[104] Breast Cancer “Inception V3 +
ResNet50” 85%

[105] Skin Cancer “Inception V3” 93.33%
[106] Diabetic Retinopathy “Inception V3” 90.3%

“LeNet5” is an older design that was inspired by [17]. “VoxCNN” is a “VGGNet”-
derived cubic CNN. The “volumetric residual network VoxResNet” is a volumetric residual
network. The first effort to explicitly build CNNs for AD diagnosis did not employ
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ImageNet parameters or parameter tuning; however, it did utilize two of these popular
designs (“Inception V1”) and an earlier one from well before “AlexNet” [19]. The results
recommend that utilizing more sophisticated and complicated designs might result in
overfitting because of the insufficient information available. The authors integrated the
two concepts and created a decision-making system that was almost 100% accurate.

Following this, another article [76] attempted to show that a CNN could simply be
used to produce characteristics and categorize data in a totally automated fashion. The
authors achieved this by making model creation as simple as possible, utilizing only 231
photos. They created a 3D CNN dubbed VoxCNN that was influenced by VGGNet and con-
trasted this to the VoxResNet framework. When compared to [44], the outcomes remained
substantially inferior, although they did demonstrate the ease with which this technique
might be implemented. Lastly, utilizing just the “Keras” toolkit to create the structures and
“SciPy” to improve the image quality of pictures, the most contemporary article customized
the “InceptionV3” model with 18F-FDG PET scans. The authors established that their algo-
rithm quantitatively surpassed clinicians’ efforts considerably, particularly in predicting
the development of AD more than 6 years in advance.

5. Research Challenges in DL for AD

AI in clinical applications faces several obstacles, some of which are comparable to
those encountered by equivalent systems in other domains. The bulk of the issues are
information-linked, though there are humanistic aspects to consider.

The first and most obvious difficulty is the scarcity of labeled information. Even
though the severity of symptoms has decreased with the passage of time, they remain a
major cause of worry for scholars, particularly when compared to other databases such as
ImageNet. Although this central database has many pictures, OASIS Neurons currently
provide MRI and PET information for 1098 people [107]. Although it is accurate to say that
the number of trainings in therapeutic diagnostics is typically lower (ImageNet has 1000),
this is not always the case.

Overfitting is frequently the result of this issue. The retrieval of numerous arbitrary
regions from photographs, including two-dimensional and three-dimensional ones, was a
frequent solution. This method is similar to how physicians examine images by areas [34].
Several methods extract the patches in a less random way, trying to use metadata to link
many patches from each picture [108].

Information augmentation, which is less prevalent, or even the production of synthetic
images, are further options. However, “transfer learning” appears to be the most popular
strategy in recent articles. It is believed that while fine-tuning an Inception net or a ResNet,
minimal training information will be required.

The unbalanced information problem is linked to the data availability issue. When
compared to the positive class, the negative class is frequently found to be more prevalent.
This is to be anticipated, given how much simpler it is to collect knowledge from normal
subjects. To make matters harder, the negative group is frequently positively associated,
and the positive class has a huge variety. According to studies on the matter, under-
sampling the over-represented group is not a smart option, whereas over-sampling the
under-represented category may be beneficial in certain situations [109].

Another major aspect is the architectural variation of the images. Apart from the
various imaging types (MRI, fMRI, PET, and so on), these variations could be used in a
variety of ways. The primary issue is whether to use the 3D information directly, as these
images are usually in three dimensions, or to translate the images into two dimensions.
Because it minimizes data redundancy, 3D information ought to be the default option [43].
Nevertheless, there has been a trend to convert the photos to 2D, since this is considerably
faster and more efficient in preventing overfitting [103]. The mining 2D and 3D patches
from images was compared in [43], and the results showed that the differences were not
very extreme.
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In addition to specific difficulties, there are various moral and philosophical issues
at stake. HER are important pieces of information that not only restrict the quantity of
photographs that may be collected, but also force one to use them very carefully. Confidence
in AI is a related issue, as there is still a lot of misunderstanding regarding what AI is and
how it works among the general population. AI is a hotly debated and ongoing area of
study that is not limited to clinical uses [110]. The major issue usually involves the “black
box” phenomenon. In Alzheimer’s-related literature [103], there have been some attempts
to help with this problem, but this is not the norm.

DL also faces the challenges of transparency and reproducibility. The purpose of
transparent DL is to enable the adequate explanation and communication of the results of
a DL model. Even when all the parameters are known, it is difficult to grasp how the DL
network operates, because its performance depends on the intricate relationships between
many variables. The problem is coming up with solutions that make sense. Likewise,
reproducing the code developed by one researcher is also a major challenge faced by DL. If
more researchers are unable to replicate an experiment and obtain the same results as the
original researchers, the hypothesis is invalidated. Therefore, failure to duplicate results
diminishes the credibility of science.

6. Discussion

Alzheimer’s disease (AD) requires an accurate and timely diagnosis in order to begin
successful therapy. Early detection of AD is very important for drug applications and,
eventually, for diagnostic and therapeutic purposes. In this article, a comprehensive
assessment was conducted for DL algorithms for the clinical categorization of AD based on
brain signals. DL techniques have achieved accuracy levels of up to 95% in AD diagnosis
and 84% in MCI transition prognosis. Even though it raises concern when investigations
achieve high reliability with a small amount of information, particularly if the technique is
susceptible to overfitting, the SAE process had a higher precision rate of 97-plus percent,
while the amyloidosis PET scan had the lowest accuracy of 96.8%. When 3DCNN was
performed on MRI data in addition to the attribute mining stage, the maximum accuracy
for AD diagnosis remained greater than 86% [70]. Because of this, it has been shown that
two or more different types of neuroscience data are more accurate than a single type
of neuroscience data [52]. In classic ML, performance is influenced, including improved
characteristics. Nevertheless, the more complicated the information, the more challenging
it is to choose the best attributes. DL involves extracting the best information. DL is rapidly
being employed for computer-aided diagnosis owing to its simplicity of usage and superior
results. Since 2015, the volume of AD researchers utilizing a CNN that demonstrated
higher image recognition accuracy than DL systems has risen dramatically. This is in line
with a prior survey, which found that DL for tumor categorization, identification, and
categorization has risen steadily since 2015 [91]. DL is being used in new ways to provide
faster and more accurate assessments than behavioral scientists. The popular Google
research for the analytic categorization of macular degeneration [106] revealed classification
results far exceeding those of a healthcare professional. DL screening categorization must
consistently perform under several situations, and the expected classification algorithm
must be subjected to interpretation. For diagnostic categorization and diagnosis forecasting
using DL to be ready for real-world therapeutic trials, as shown below in [52], many
problems still need to be solved.

Professional intervention in pre-processing procedures for attribute mining and se-
lection from imagery may be required in conventional ML methodologies. Nevertheless,
because DL does not involve a social contact but rather extracts attributes associated with
the input imagery, information pre-processing is not always required, resulting in greater
adaptability in attribute retrieval related to different content-driven inputs. As a result, DL
can provide a solid, validated version at any specified moment during the operation. Due
to its versatility, DL has been demonstrated to work more effectively and efficiently than
typical ML that depends on preprocessing [55].
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Unfortunately, this component of DL inherently introduces ambiguity as to which
aspects will be retrieved at each iteration, and so it is tough to describe which specific
attributes were retrieved from the systems unless there is a dedicated architecture for the
attribute [61]. It is also hard to ascertain just how these chosen characteristics contribute
to a judgment and the comparative relevance of various attributes or subcategories of
characteristics owing to the complexity of the DL algorithm, which includes several hidden
units. This is a significant restriction for biological research, in which it is essential to
comprehend the information quality of certain traits to create models. Ambiguities and
inconsistencies risk obscuring the process of improving accuracy and making the correction
of any prejudices that may exist in a specific content set more difficult. The application of
the research findings to specific applications is also limited owing to a lack of transparency.

The problem of accessibility is related to the lucidity of ML outcomes but is not unique
to DL. Due to its flexible concept, ML’s sophistication has made it easier to formally charac-
terize. It becomes much more complex to describe why a certain forecast was generated
as a perceptron develops into a neural net by integrating more hidden units. The catego-
rization of AD using DL and three-dimensional integrative clinical information involves
quasi-convolutional layers as well as the accumulation of distinct source dimensionality in-
formation, making it hard to perceive the influential factors of features extracted inside the
actual data space. This forms obstacles with regard to the significance of the structure in the
understanding of therapeutic images such as the “MRI”/“PET” scans. Additional sophisti-
cated procedures create credible findings, but the scientific environment is hard to describe,
though the outcome for analytical categorization must be transparent and comprehensible.

DL performance is affected by the pseudo random created at the beginning of training,
and professionals can adjust hyper-parameters including “learning rates”, “batch sizes”,
“weight decay”, velocity, as well as dropout ratios [111]. It is crucial to provide the same
arbitrary values on numerous levels to obtain similar experimental outcomes. However,
if the hyper-parameters and randomized samples are not supplied in most situations, it
is vital to keep nearly identical software components [112]. The randomization of the
training technique and the ambiguity of the setup could make it impossible to replicate
the research and acquire similar findings. Whenever the availability of a neuroscience
dataset is restricted, significant design consideration is required to minimize overfitting
and consistency concerns.

In ML, security breaches happen whenever the information set architecture is struc-
tured poorly, leading to a system that utilizes unnecessary extra details for categoriza-
tion [113]. Any successive MRI scans must be categorized as relating to a person with
AD in the event of clinical categorization for neurodegenerative AD. When a participant’s
neural substrates are covered by both training and validation, the structure of the brain
region, not cognitive indicators, has a major effect on how they classify things.

Further studies should examine major discoveries using DL on completely different
information sources. This is now generally known in genomics [114] as well as other
domains, although DL research using neuroscience information has been slow to catch
on. Furthermore, the growing open ecosystem of clinical study results, particularly in
the domain of AD and associated symptoms, will provide a foundation for addressing
this issue.

7. Conclusions and Future Work

DL methods and applications are constantly improving, leading to an improvement
in the results in restricted scenarios such as picture identification. Whenever deduction is
legitimate, i.e., whenever the training and test settings are identical, this helps to effective
communication. This is particularly the case when employing neuroimaging to examine
AD. Whenever the channel’s sophistication is too high to ensure openness and repeatability,
one of DL’s flaws is the complexity of adjusting for probable network bias. This problem
could be solved by collecting vast numbers of brain images and examining the correlations
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between DL and other attributes. The problem of consistency could be fixed if the variables
used to obtain results and average scores from enough experiments were made public.

Deep learning is not a panacea for all situations. DL has problems adjusting to diverse
types of information as a source, such as neuroscience with genomic information, because
it retrieves properties associated with the input information minus the pre-processing for
attribute choice. Since the weights for the input information are routinely adjusted inside a
network, adding more data to the network produces ambiguity and uncertainty. On the
other hand, a fusion technique separates the detailed data into ML components and the
neuroimages into DL components while combining the two sets of results.

By solving these challenges and proposing problem-specific remedies, advancement
in DL will be accomplished. DL techniques will become more effective as more information
becomes available. The development of two-dimensional CNN into three-dimensional
CNN is critical, particularly in the research of AD that involves heterogeneous neuroimag-
ing. Furthermore, “Generative Adversarial Networks (GAN)” could be used to produce
artificial healthcare information for augmentation. In addition, “reinforcement learning”, a
type of learning that adjusts to modifications while making its own decisions depending
on the environment, may have medical applications. The DL-based AD study is still in
its early stages, with the goal of improving effectiveness and accessibility. As the amount
of modalities neuroimaging information and computational power grows, investigation
into using DL to diagnose AD is moving forward towards a model that includes only DL
algorithms instead of a hybrid approach, but methodologies to incorporate wholly distinct
templates of information in such a DL network must be established.
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