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Abstract

Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolariza-

tion phase of cardiac action potentials. They are considered as potential precursors to car-

diac arrhythmias and have recently gained much attention in the context of preclinical drug

safety testing under the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm.

From the viewpoint of multiple time scales theory, the onset of EADs has previously been

studied by means of mathematical action potential models with one slow ion channel gating

variable. In this article, we for the first time associate EADs with mixed mode oscillations in

dynamical systems with two slow gating variables and present a folded node singularity of

the slow flow as a novel mechanism for EADs genesis. We derive regions of the pharmacol-

ogy parameter space in which EADs occur using both the folded node analysis and a full

system bifurcation analysis, and we suggest the normal distance to the boundary of the

EADs region as a mechanism-based risk metric to computationally estimate a drug’s proar-

rhythmic liability.

Introduction

Early afterdepolarizations (EADs) are abnormal depolarizations during the repolarization

phase of the cardiac action potential and may be caused by drugs, oxidative stress or ion

channelopathies. EADs are an important cause of cardiac arrhythmias such as polymorphic

ventricular tachycardia (PVT) or torsades de pointes (TdP) [1], [2]. Recently, EADs propen-

sity, expressed in terms of the net charge carried by major ionic currents during an action

potential, has been chosen as an in-silico biomarker [3] for TdP risk evaluation of drugs within

the CiPA (Comprehensive in vitro Proarrhythmia Assay) initiative [4], [5], [6] to overhaul the

current cardiac drug safety regulations.

Computational models of cardiac cells [7] form the basis for the mathematical analysis of

EADs. The most common approach is to numerically simulate single cell action potential

models after on purpose or random model parameter variations such that EADs occur [8], [9],

[3], [10], [11], [12]. Numerical simulation studies have also been performed at the cardiac
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tissue and cardiac organ level in order to analyze the synchronization of EADs and the trigger-

ing of arrhythmic patterns due to EADs [13], [14], [15]. Furthermore, numerical continuation

has been used in [16] to explore the bifurcation structure of non-paced human ventricular

myocyte models and to relate it to parameter regions of EADs occurence in the periodically

paced model counterparts. EADs have also been investigated by bifurcation analysis applied to

parametrized families of fast subsystems that are obtained from separating a single slow vari-
able, related to ion channel gating, from the full cell model: while in [17], [18], [19], the onset

of EADs has been linked to the existence of a supercritical Hopf bifurcation in the fast subsys-

tem, it was shown in [20] that EADs may also arise in the presence of a subcritical Hopf bifur-

cation as well as in the complete absence of Hopf bifurcations in the fast subsystem.

In this study, we consider action potentials with EADs as mixed mode oscillations

(MMOs), see [21] for a review, of signature 1s that are comprised of 1 large amplitude oscilla-

tion and s small amplitude oscillations. As an example, see Fig 1A for a 12 pattern correspond-

ing to an action potential (AP) distorted by EADs and Fig 1B for a 10 pattern representing an

undisturbed AP. We again take advantage of the difference in time scales between the dynamic

variables of a cardiac cell model but apply—as opposed to previous multiple time scale investi-

gations of EADs—a fast/slow analysis technique that features two slow variables. We demon-

strate that the corresponding slow flow, which is restricted to a surface called critical manifold,

Fig 1. Failure of standard fast-slow analysis to clarify disappearance of EADs. A: Action potential with EADs in the form of a 12 mixed mode

oscillation, obtained with the default parameter setting from Table 1. B: Action potential with normal repolarization in the form of a 10 mixed mode

oscillation, obtained after changing GK from 0.04 to 0.06. C: Standard fast-slow analysis for the default parameter setting. The bifurcation diagram for

(2) with GK as continuation parameter contains a z-curve with three branches that are connected via two saddle node bifurcations SN2 and SN1: a

bottom branch of stable equilibria (solid line) of (2), a middle branch of unstable equilibria (dashed line), and a top branch of both stable and unstable

equilibria of (2). At the top branch, the stability changes at a subcritical Hopf bifurcation subHB from which unstable limit cycles emerge that terminate

at a saddle-homoclinic bifurcation HC. The blue dashed lines denote the maximum and minimum voltage values of the unstable limit cycles. The red

line shows the projection of the 12-trajectories from A onto the bifurcation diagrams, the yellow line is the nullcline of the variable x. D: Standard fast-

slow analysis for GK = 0.06. The arrangement of the z-curve, the subcritical Hopf bifurcation and the x-nullcline is similar to C and does not explain

why the EADs disappear in the transition from GK = 0.04 to GK = 0.06.

https://doi.org/10.1371/journal.pone.0209498.g001

EADs due to a folded node singularity
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admits a folded node singularity characterized by two real eigenvalues of the Jacobian that

have the same sign. Then, the theory of MMOs [22], [23] implies that the trajectories of the full

system are organized, locally near the folded node, by twisted slow manifolds [24]. This twist-

ing organizes the small amplitude oscillations which in combination with a global return

mechanism determined by the critical manifold gives rise to the MMO patterns that underlie

cardiac action potentials with EADs.

MMOs due to a folded node have been previously discussed, e.g., in the context of electrical

bursting in pituitary cells [25], [26], [27] or climate change models [28], [29]. However, to the

best of our knowledge, this study is the first that connects this particular MMO mechanism

with EADs in cardiac action potentials and hence makes a novel contribution to EADs analy-

sis. Furthermore, the conditions for the occurrence of such MMOs due to a folded node,

namely existence of a folded node singularity and return of the large amplitude oscillation to

the basin of attraction of the small amplitude oscillatory state, define borders of the EADs

region in the model parameter space, which—further away from the singular limit—may be

adapted by a complementary bifurcation analysis of the full system. This allows us to introduce

the normal distance of a pharmaceutical compound to these EADs boundaries as a mecha-

nism-based proarrhythmic risk metric, which may enrich the current discussion of computa-

tional biomarkers for the classification of a drug’s proarrhythmic liability within the CiPA

initiative.

Materials and methods

Cardiac action potential model

Computational models of cardiac action potentials describe the dynamics of the transmem-

brane voltage V in dependence of the ionic currents and, for more than 50 years [30], [31] are

an important tool in studying cardiac electrophysiology. Modern cardiac AP models [32], [9],

[3], [12] consist of dozens of state variables and hundreds of model parameters, a complexity

that results from the tremendous insight gained under the holistic paradigm of systems physi-

ology but often hampers model analysis and validation. An alternative approach is to use parsi-

monious cardiac AP models [33], [34], [35], [36] that are low dimensional and only permit to

address one or two phenomena but are amenable to mathematical analysis that goes beyond

pure numerical simulation. In the context of EADs analysis, the model

Cm
dV
dt

¼ � GCad1ðVÞf ðV � ECaÞ � GKxðV � EKÞ ¼: hðV; f ; xÞ;

df
dt
¼

f1ðVÞ � f
tf

¼: g1ðV; f ; xÞ;

dx
dt
¼

x1ðVÞ � x
tx

¼: g2ðV; f ; xÞ;

ð1Þ

has been introduded in [37] and subsequently also used in [38], [20]. In particular, this ODE

model of state dimension n = 3 features one inward calcium current

ICa ¼ GCad1ðVÞf ðV � ECaÞ

with the calcium channel conductance GCa and the dynamic inactivation variable f, as well as

one outward potassium current

IK ¼ GKxðV � EKÞ

with the potassium channel conductance GK and the dynamic activation variable x. The

EADs due to a folded node singularity
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corresponding steady state variables are given by

d1ðVÞ ¼
1

1þ e
V� VTd

kd

;

f1ðVÞ ¼
1

1þ e
V� VTf

kf

;

x1ðVÞ ¼
1

1þ e
V� VTx

kx

:

The default parameter values from [37] are given in Table 1 and correspond to an action

potential with EADs in form of a 12 mixed mode oscillation, see Fig 1.

Numerical methods

The model Eq (1) (and all of its subsystems, see the following subsections) were written

in Matlab R2017b [39]. Initial value problems were integrated using the ode15s solver with

relative and absolute error tolerances of 1e-10 and analytically derived Jacobian matrix,

boundary value problems were solved using the bvp4c solver. Numerical curve continuation

and bifurcation analysis was performed using both MATCONT 6.10 [40] and AUTO-07P

[41].

Preliminaries for standard fast-slow analysis

The state variables of cardiac action potential models typically change at different time scales.

With respect to the model (1) and the default parameter setting from Table 1, the time con-

stants of the variables f and x are given by τf = 80 and τx = 300, respectively. The time constant

of the variable V can be estimated as tV ¼
Cm

GCaþGK
¼ 15:38. Hence, τV< τf< τx, such that x is

the slowest and V is the fastest variable.

The standard approach of studying EADs by multiple time scale analysis [17], [18], [20],

[19] is to separate a single variable—namely the slowest one—from the faster ones. In case of

(1), this yields a (2, 1)-fast-slow system with the fast subsystem

Cm
dV
dt

¼ hðV; f ; xÞ;

df
dt
¼ g1ðV; f ; xÞ;

dx
dt
¼ 0;

ð2Þ

where τ denotes the fast time scale. Hence, the slow variable x acts as a constant model parame-

ter in the equations for the fast variables V and f. Formally, the fast subsystem (2) is obtained

by taking the singular limit τx!1 in (1).

Table 1. Default parameter values.

Cm ECa GCa EK GK VTf kf τf VTx kx τx VTd kd

1 100 0.025 -80 0.04 -20 8.6 80 -40 -5 300 -35 -6.24

μF/cm2 mV mS/cm2 mV mS/cm2 mV mV ms mV mV ms mV -mV

https://doi.org/10.1371/journal.pone.0209498.t001
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Preliminaries for (1, 2)-fast-slow analysis

An alternative to the standard fast-slow approach is to treat (1) as a (1, 2)-fast-slow system, in

which not only x but also f is considered as a slow variable. Taking the singular limit Cm! 0,

the trajectories of (1) converge during fast episodes to solutions of the fast subsystem or the

layer equations

dV
dt

¼ hðV; f ; xÞ;

df
dt
¼ 0;

dx
dt
¼ 0;

ð3Þ

where τ = t/Cm is the fast time scale. The equilibrium set of the system (3) is called the critical

manifold

C0 ¼ fðV; f ; xÞ j hðV; f ; xÞ ¼ 0g: ð4Þ

During slow episodes, the trajectories of (1) rather converge to solutions of the slow flow or

the reduced system

0 ¼ hðV; f ; xÞ;
df
dt
¼ g1ðV; f ; xÞ;

dx
dt
¼ g2ðV; f ; xÞ:

ð5Þ

Hence, the slow flow is described by a differential algebraic system whose phase space is

given by the critical manifold (4).

Fig 2 gives an example of the critical manifold (4) for the AP model (1), and shows that, for

the default parameter setting of Table 1, it is a folded surface with respect to the fast variable V.

It consists of three sheets Sþa , Sr, S�a separated by two disjoint fold curves F+, F−, i.e.,

C0 ¼ Sþa [ F
þ [ Sr [ F� [ S�a : ð6Þ

Here, Sþa and S�a are the attracting upper and lower sheets of C0 that are formed by stable

hyperpolarized and stable depolarized steady states of (3). While @h
@V < 0 for all points on Sþa or

S�a , the repelling sheet Sr is characterized by @h
@V > 0 which corresponds to the unstable steady

states of (3). Furthermore, the fold curves F+ and F− consist of all points on C0 with @h
@V ¼ 0 that

satisfy a nondegeneracy condition @2h
@V2 6¼ 0, i.e.,

F� ¼ ðV; f ; xÞ j hðV; f ; xÞ ¼ 0;
@h
@V
ðV; f ; xÞ ¼ 0;

@
2h

@V2
ðV; f ; xÞ 6¼ 0

� �

: ð7Þ

Taking the total time derivative of the constraint h(V, f, x) = 0, i.e,

@h
@V

dV
dt
þ
@h
@f

g1 þ
@h
@x

g2 ¼ 0;

EADs due to a folded node singularity
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Fig 2. Critical manifold C0 and singular periodic orbit so. The figure shows the critical manifold (4) associated with the cardiac AP

model (1) for two different values of the model parameter GK. C0 is a folded surface inR3
with attracting Sþa , S�a and repelling sheets

Sr separated by two fold lines F+ and F−. The projections of F+ and F− onto S�a and Sþa are denoted by P(F+) and P(F−). Also shown is

the singular orbit so that consists of slow segments on Sþa , S�a and fast jumps between them. Inside the funnel region, which is

bounded by the singular strong canard γs and F+, all trajectories approach the folded node FN allong the eigendirection e2 associated

with the singular weak canard γw. SF denotes a saddle-focus equilibrium of the full system (1). A: GK = 0.04. The singular orbit is

projected into the funnel, which is a key reason for the appearance of EADs in the solution of the full system (1). B: GK = 0.06. the

singular orbit so lands outside of the funnel. Consequently, EADs do not appear in the solution of the full system (1).

https://doi.org/10.1371/journal.pone.0209498.g002

EADs due to a folded node singularity
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the slow flow (5) can also be described by

�
@h
@V

dV
dt

¼
@h
@f

g1 þ
@h
@x

g2

dx
dt
¼ g2

ð8Þ

restricted to C0. The system (8) is singular at the fold curves F+, F−, which means that the veloc-

ity of a trajectory goes to infinity as it approaches F+ or F−. The removal of the singularity by

rescaling time according to td ¼ � @h
@V

� �� 1t leads to the desingularized system

dV
dtd

¼
@h
@f

g1 þ
@h
@x

g2

dx
dtd

¼ �
@h
@V

g2

ð9Þ

restricted to C0. The flow of (9) is equivalent to that of (8) on Sþa and S�a but is reversed on Sþr .

The equilibrium points of the desingularized flow (9) are classified into ordinary singulari-

ties defined by

h ¼ 0; g1 ¼ 0 and g2 ¼ 0

(then also equilibrium points of the full system (1)) and into folded singularities that lie on a

fold curve and satisfy

@h
@f

g1 þ
@h
@x

g2 ¼ 0: ð10Þ

Given a folded singularity p� = (V�, x�), the eigenvalues λ1, λ2 of the Jacobian of (9) evalu-

ated at p� decide whether p� is a folded node (l1; l2 2 R with λ1 � λ2 > 0), a folded saddle

(l1; l2 2 R with λ1 � λ2 < 0) or a folded focus (l1; l2 2 C with �l1 ¼ l2).

A key observation of this study, see the Results section, is that the desingularized slow flow

associated with the cardiac action potential model (1) in its default parameter setting features a

folded singularity of the folded node type.

Results

Failure of standard fast-slow analysis

A simulation of the cardiac model (1) with the default parameter values from Table 1 yields an

action potential with EADs in form of a 12 mixed mode oscillation, see Fig 1. When the potas-

sium channel conductance GK is increased from 0.04 to 0.06, the EADs disappear and a normal

action potential corresponding to a 10 oscillatory pattern is obtained. In a first attempt to

understand the disappearance of the EADs we performed a standard fast-slow analysis [17],

[18], [20], [19] and studied the bifurcations of the fast subsystem (2) with the slow variable x as

numerical continuation parameter. The bifurcation diagram, see Fig 1, features a z-curve with

three branches that are connected via two saddle node bifurcations SN2 and SN1: a bottom

branch of stable equilibria (solid line) of (2), a middle branch of unstable equilibria (dashed

line), and a top branch of both stable and unstable equilibria of (2). At the top branch, the sta-

bility changes at a subcritical Hopf bifurcation subHB from which unstable limit cycles emerge

that terminate at a saddle-homoclinic bifurcation HC. The blue dashed lines denote the maxi-

mum and minimum voltage values of the unstable limit cycles. Next, we projected the 12- and

EADs due to a folded node singularity
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the 10-trajectories onto the corresponding bifurcation diagrams and complemented the latter

by the nullcline of the variable x (solid yellow line), which is defined by g2(V, f, x) = 0 or x =

x1(V), respectively. Above the x-nullcline, the trajectories move to the right due to dx/dt> 0,

below, they move to the left due to dx/dt< 0 until they pass SN2 and are rejected, but in total,

they only roughly follow the z-curve. Both for GK = 0.04 and GK = 0.06, the stable equilibria at

the top branch are of the focus type, i.e., the eigenvalues are conjugate-complex with negative

real part, but only for GK = 0.04 the trajectory feels the attraction of the foci and is forced into

a transient spiraliform movement that gives rise to the EADs. While both for GK = 0.04 and

GK = 0.06 the x-nullcline crosses the z-curve in vicinity of SN1 to generate an unstable equilib-

rium of the full system (1), only for GK = 0.04, the x-nullcline also intersects the branch of

unstable limit cycles, which produces an unstable limit cycle of the the full system (1). Still, the

EADs start at x-values much lower than that of this intersection such that based on Fig 1 the

latter is not involved in the EADs genesis. Overall, the arrangement of the z-curve, the subcriti-

cal Hopf bifurcation and the x-nullcline is similar for GK = 0.04 and GK = 0.06, such that the

standard fast-slow analysis fails to explain the destruction of the EADs in the transition from

GK = 0.04 to GK = 0.06.

(1, 2)-fast-slow analysis reveals EADs genesis due to a folded node

singularity

As an alternative to the standard fast-slow analysis, we next related the intermediate variable f
to the slow variable x and determined the key objects of the resulting (1, 2)-fast-slow analysis.

Critical manifold, layer problem and desingularized system. The equation h = 0 that

defines the critical manifold (4) is linear in f and can be solved for f in dependence on V and x,

hence

C0 ¼ ðV; f ; xÞ j f ¼ f ðV; xÞ ¼ �
GKxðV � EKÞ

GCad1ðVÞðV � ECaÞ

� �

: ð11Þ

For the default parameter setting from Table 1, (11) corresponds to a folded surface in R3

that consists of two attracting sheets Sþa , S�a and one repelling sheet Sr, see Fig 2. Note that the

shape of C0 does not qualitatively change if GK is set to 0.06, as GK only acts as a scaling factor

in (11). With respect to the fold curves F+ and F− from (7), we considered

@h
@V
jf¼f ðV;xÞ ¼ � GCa

d1ðVÞ
dV

f ðV; xÞðV � ECaÞ � GCad1ðVÞf ðV; xÞ � GKx

¼ GCad1ðVÞf ðV; xÞ d1ðVÞðV � ECaÞ
1

kd
e
V� VTd

kd � 1

� �

� GKx

¼ �
GKxðV � EKÞ

ðV � ECaÞ
d1ðVÞðV � ECaÞ

1

kd
e
V� VTd

kd � 1

� �

� GKx

¼ � GKx d1ðVÞðV � EKÞ
1

kd
e
V� VTd

kd þ
EK � ECa

V � ECa

� �

:

Consequently, the constraint

@h
@V
jf¼f ðV;xÞ ¼ 0

EADs due to a folded node singularity
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is satisfied if x = 0 or if

EK � ECa

V � ECa
¼ � d1ðVÞðV � EKÞ

1

kd
e
V� VTd

kd : ð12Þ

As for x = 0 the nondegeneracy condition @2h
@V2 jf¼f ðV;xÞ 6¼ 0 is violated, we concentrated on

(12), which is independent of GK, and obtained the two solutions

Vþ � � 24:7923 and V � � � 73:5132 ð13Þ

for the default parameter setting. Hence, the two fold curves are given by

Fþ ¼ Vþ; �
GKxðVþ � EKÞ

GCad1ðVþÞðVþ � ECaÞ
; x

� �

j x 2 ð0; 1�
� �

;

F� ¼ V � ; �
GKxðV � � EKÞ

GCad1ðV � ÞðV � � ECaÞ
; x

� �

j x 2 ð0; 1�
� �

:

Fig 2 shows how F+ and F− organize the partitioning (6) of C0 into attracting and repelling

sheets.

The flow on the attracting sheets Sþa , S�a is described by the desingularized system

dV
dtd

¼ � GCad1ðVÞðV � ECaÞ
f1ðVÞ � f ðV; xÞ

tf
� GKðV � EKÞ

x1ðVÞ � x
tx

dx
dtd

¼ GKx d1ðVÞðV � EKÞ
1

kd
e
V� VTd

kd þ
EK � ECa

V � ECa

� �
x1ðVÞ � x

tx
;

ð14Þ

while transitions from one attracting sheet to another are described by the layer problem

dV
dt

¼ � GCad1ðVÞf ðV � ECaÞ � GKxðV � EKÞ;

df
dt
¼ 0;

dx
dt
¼ 0:

ð15Þ

In particular, trajectories of (15) that start on the fold curves F+ and F− land on the corre-

sponding projections P(F+) and P(F−), see Fig 2.

Folded node singularity, funnel and singular periodic orbit. Next, we focused on the

the folded singularities of the desingularized system (14) and constrained the defining Eq (10)

to F±. This led to

� GCad1ðV�ÞðV� � ECaÞ
f1ðV�Þ � f ðV�; xÞ

tf
� GKðV

� � EKÞ
x1ðV�Þ � x

tx
¼ 0

with V+ and V− given by (13) and f(V, x) defined in (11). Solving for x, we obtained

x� ¼
tf

tf � tx
x1ðV

�Þ þ
GCad1ðV�ÞðV� � ECaÞ

GKðV� � EKÞ

tx
tf � tx

f1ðV
�Þ

and consequently two folded singularities

FSþ ¼ ðVþ; f ðVþ; xþÞ; xþÞ and FS� ¼ ðV � ; f ðV � ; x� Þ; x� Þ:

EADs due to a folded node singularity
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An evaluation of the Jacobian matrix of (14) at (V+, x+) and (V−, x−) showed that FS+ is a

folded node singularity FN both for the default parameter values and the setting GK = 0.06 due

to l1; l2 2 R with λ1 � λ2 > 0, see Table 2, while FS− is a folded focus that lies outside of the

physiological range due to f(V−, x−)> 1.

The so-called singular strong canard γs is a particular trajectory of the desingularized system

(14) that reaches FN on Sþa along the eigendirection e1 related to the strong eigenvalue λ1,

where strongness follows from |λ1| > |λ2|. The singular strong canard γs can be calculated by a

shooting method and is plotted in Fig 2. Likewise, the singular weak canard γw is associated

with the eigendirection e2 corresponding to the weak eigenvalue λ2. the singular strong canard

γs and the fold line F+ bound a region of trajectories that is referred to as the singular funnel.

Inside the funnel, all trajectories approach the folded node FN along the weak eigendirection

e2, see the dashed line in Fig 2.

The final key object of the (1, 2)-fast-slow analysis is the singular periodic orbit so, that acts

as a global return mechanism and is generated via a continuous concatenation of trajectories

of the layer problem and the desingularized system. Starting at the folded node FN, the layer

problem (15) is solved until the trajectory hits P(F+). From there, the desingularized system

(14) is solved to continue the trajectory along S�a until the fold line F− is reached. The jump

from F− to P(F−) is obtained by again solving (15), after which the orbit is closed by returning

the trajectory back to FN via the slow flow on Sþa , see Fig 2. As will be discussed next, the deci-

sive difference between Fig 2A and 2B is that the singular periodic orbit so lands within the

funnel for GK = 0.04 while it lands and stays outside of it for GK = 0.06. That way the value of

GK will decide whether EADs occur or whether they do not.

EADs due to the folded node. The critical manifold C0 and the singular periodic

orbit so are objects that are defined in the singular limit Cm! 0. The theory of MMOs with

multiple time scales [21], [42] characterizes perturbations of these objects away from the sin-

gular limit, i.e., for Cm> 0, and allows us to draw conclusions about the dynamics of the full

system (1) with Cm > 0. In particular, for Cm> 0 and away from the folded node FN, the

critical manifold smoothly perturbs to a slow manifold with attracting manifolds Sþa;Cm , S�a;Cm
and a repelling manifold Sr;Cm according to geometric singular perturbation theory [43].

However, the theory of MMOs [44], [23], [24] implies that near the folded node FN, the crit-

ical manifold rather perturbs to twisted sheets. Fig 3B illustrates these twisted sheets in vicin-

ity of the folded node of (14) for GK = 0.04, which can be computed by continuation of

solutions to boundary value problems associated with (1), see [24], [42]. Furthermore, the

singular periodic orbit so, if injected into the funnel, perturbs to a trajectory of the full system

(1) that flows from Sþa;Cm to Sr;Cm in a rotating manner, see Fig 3. That way, a folded node

Table 2. Folded singularities of the desingularized system.

GK FS+ J(V+, x+) λ1 λ2 FS−

0.04 (−24.79, 0.57, 0.68) � 9:43 � 10� 4 � 2:02 � 10� 2

4:47 � 10� 6 � 2:7 � 10� 20

 !
−8.34 � 10−4 −1.08 � 10−4 (−73.51, 1.35, 0.05)

0.06 (−24.79, 0.43, 0.34) � 9:75 � 10� 4 � 3:04 � 10� 2

7:44 � 10� 6 2:79 � 10� 20

 !
−5.96 � 10−4 −3.79 � 10−4 (−73.51, 1.34, 0.03)

Both for GK = 0.04 and GK = 0.06, the singularity FS+ is a folded node due to l1; l2 2 R with λ1 � λ2 > 0. FS− lies outside of the pyhsiological range due to f(V−, x−) > 1,

an evaluation of the Jacobian of (14) yields conjugate-complex eigenvalues λ1, λ2 and hence a folded focus singularity.

https://doi.org/10.1371/journal.pone.0209498.t002
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singularity, in combination with a suitable global return mechanism, may give rise to cardiac

action potentials with EADs. If so passes by the funnel, as in case of GK = 0.06, then so per-

turbs to a relaxation oscillation of type 10, see Fig 1B, and a normal AP without EADs is

obtained.

Fig 3. Twisted slow manifold near the folded node. A: Periodic orbit of (1) with GK = 0.04 in phase space. The default parameter

setting leads to an action potential with EADs in form of a 12-MMO. B: The folded node causes a twisting of the slow manifolds and

of the trajectory of (1) such that EADs occur. The attracting manifold Sþa;Cm and the repelling manifold Sr;Cm were computed up to a

surface S containing the folded node and transverse to the fold line F+. The red line is the projection of the trajectory from A.

https://doi.org/10.1371/journal.pone.0209498.g003
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Parameter region of EADs occurence. If one denotes the ratio of the weak and strong

eigenvalues by

m ¼
l2

l1

;

the condition for the existence of a folded node singularity can be formulated as 0< μ< 1. In

this notation, the folded node is either destroyed at μ = 0, where λ2 passes through 0 and the

folded node turns into a folded saddle, or at μ = 1, where λ1 and λ2 coalesce and the folded

node turns into a folded focus. The second condition for the occurence of EADs, i.e., the rein-

jection of so into the funnel, can be quantified in terms of the distance δ of so from the singular

strong canard γs. More precisely, δmeasures the distance of the landing point of so on the pro-

jection P(F−) from γs along P(F−), see Fig 4 for an illustration of δ, and is positive if the landing

point is inside of the funnel. Given these definitions of μ and δ, we constructed a bifurcation

diagram that separates the (GK, GCa)-parameter space into areas of different qualitative behav-

iour, see Fig 4. The region for which the folded node theory predicts the appearance of EADs

is bounded by the curves defined by μ = 0 and δ = 0. Above the curve μ = 0, the theory predicts

convergence to a depolarized steady state, while below the curve δ = 0, a relaxation oscillation

of type 10 is expected.

Discussion

EADs in cardiac action potential models with different time scales may be considered as

mixed mode oscillations of the form 1s. MMOs arise in a variety of scientific areas [25], [26],

[27], [28], [29], and MMO theory [21], [42] discusses at least four different local mechanisms

that give rise to such a behaviour: i) the tourbillon mechanism of a dynamic Hopf bifurcation,

ii) a saddle focus equilibrium that goes through a singular Hopf bifurcation, iii) the passage

through a folded node, and iv) three-time-scale problems with a singular Hopf bifurcation.

Previous results of EADs analysis can either be linked with the tourbillon mechanism, see [17],

[18], [20] for the case of a dynamic supercritical Hopf bifurcation and [20] for the case of a

dynamic subcritical Hopf bifurcation, or with the saddle focus mechanism, see [20] and also

the discussion below. Here, we for the first time have linked EADs with the folded node mech-

anism by showing that cardiac AP models may feature a folded node singularity in the desin-

gularized slow subflow that is combined with a rejection of the singular periodic orbit so into

the funnel area. Away from the singular limit, the critical manifold near the folded node per-

turbs to a twisted slow manifold, see Fig 3, and its twisting finally organizes the small ampli-

tude oscillations observed as EADs in the trajectory of the full system. One conceptual

difference between i) and iii) is that i) is based on the separation of a single slow variable from

the full system while in iii) two slow variables are separated. In the example discussed in this

paper, the (1, 2)-fast-slow-analysis explained the occurrence of EADs in the parameter transi-

tion from GK = 0.06 to GK = 0.04, while the alternative (2, 1)-fast-slow-analysis could not give a

proper illumination.

Overestimation of EADs region by folded node theory

One shortcoming of the (1, 2)-fast-slow-analysis is that the predictive power of singular pertur-

bation theory is only guaranteed for Cm sufficiently small. While the sufficient smallness con-

dition could be made slightly more precise in terms of
ffiffiffi
ε
p

<< m, see [21], with ε = Cm/(Gmax �

τf) obtained from a nondimensionalisation of (1), it turns out that the region of EADs occur-

ence is overestimated in case of the default parameter value Cm = 1, see Fig 5 for an illustration

based on simulations of the full AP model (1) with different parameter values. For example,

EADs due to a folded node singularity
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both (GK, GCa) = (0.05, 0.025) and (GK, GCa) = (0.034, 0.025) lie inside of the shaded EADs

region of Fig 4, which is based on the folded node theory, but a simulation of (1) with Cm = 1

leads to a 10-oscillation corresponding to a normal action potential in the first case, and con-

vergence to a hyperpolarized steady state in the second case. However, the simulations are in

Fig 4. EADs boundaries according to folded node theory. A: The distance of the singular periodic orbit so from the singular strong

canard γs, measured along the projection P(F−) of the fold curve F−, is denoted by δ. For δ> 0 (as depicted), so enters the funnel and

perturbs to an action potential with EADs away from the singular limit. B: Two-parameter bifurcation diagram predicting the region

of parameter space for which EADs appear. The folded node singularity exists for 0< μ< 1, according to folded node theory the

occurence of EADs in addition requires δ> 0. For parameter combinations of GK and GCa that lie above the curve μ = 0, the theory

predicts convergence to a depolarized steady state. For parameter combinations of GK and GCa that lie below the curve δ = 0, a

relaxation oscillation of type 10 is predicted.

https://doi.org/10.1371/journal.pone.0209498.g004
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Fig 5. Predictive power of folded node theory depends on smallness of Cm. The figure shows simulations of the full

AP model (1) with different combinations of GK, GCa and Cm. A: GK = 0.05, GCa = 0.025. The point (0.05, 0.025) lies in

the EADs area of Fig 4, still, for Cm = 1 one obtains an oscillation of the l0-pattern. However, for Cm = 0.04 one obtains

EADs in accordance with the folded node theory. B: GK = 0.034, GCa = 0.025. The point (0.034, 0.025) lies in the EADs

area of Fig 4, still, for Cm = 1 the trajectory reaches a hyperpolarized steady state. However, for Cm = 0.04 one obtains

EADs due to a folded node singularity
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accordance with the prediction of Fig 4, if one reduces the capacitance to, e.g., Cm = 0.4, and

action potentials with EADs of the form 11 and 19 are obtained. Note that in the singular limit

Cm! 0, the trajectories converge to the singular periodic orbit so, see Fig 2. Hence, as Cm is

further reduced, the amplitudes of the small scale oscillations become smaller and smaller

until they no longer can be numerically detected.

In order to determine the actual EADs boundaries in the (GK, GCa)-parameter space, we

first performed a bifurcation analysis of the full system (1) with GK as continuation parameter.

Fig 6A shows the bifurcation diagram for the default parameter setting from Table 1 with Cm =

1. The curve corresponds to the equilibrium solutions of (1), which are unstable (dashed line)

between the subcritical Hopf subHB and the supercritical Hopf bifurcation supHB. The col-

oured curves below and above represent the minimum and maximum voltages of stable (solid

lines) and unstable (dashed lines) limit cycles of (1), which coalesce at saddle node of limit

cycle bifurcations. Of particular interest is the sequence SNLCs, s = 0, 1, 2, . . ., as its members

mark the transition from 1s to 1s+1-MMOs, that is from APs with s EADs to s + 1 EADs, as GK

is reduced. For instance, the default setting GK = 0.04 is located in the red area between SNLC1

and SNLC2 and hence features a 12-limit cycle as shown in Fig 1. The unstable limit cycles that

emerge from SNLCs terminate at period doubling bifurcations of limit cycles PDs. While cas-

cades of PDs often are associated with chaos, see [45] for an illustration of the PD-route to cha-

otic EADs dynamics, we did not observe any chaotic behaviour in the particular system at

hand. Due to numerical difficulties, only the first two unstable limit cycle branches could be

detected. Still, we conjecture that the branching pattern is repeated with ever smaller distances

as GK is decreased until the limit cycle behaviour finally terminates at subHB. Given that EADs

appear in the GK-interval between SNLC0 and subHB, we next studied how that interval

changes if the second channel conductance GCa is varied. Performing a sequence of curve con-

tinuations and tracking the locations of SNLC0 and subHB in the (GK, GCa)-space gave rise to

the region of EADs occurence shown in Fig 6C, which also visualizes the previously addressed

overestimation obtained by the folded node theory.

Distance to bifurcation as proarrhythmic risk metric

One possible benefit of calculating the region of EADs behaviour from computational cardiac

AP models is that distances from its boundaries could be used in quantifying the proarrhyth-

mic risk of pharmaceutical compounds. Currently, the CiPA initiative (Comprehensive in

vitro Proarrhythmic Assay) [4], [5] features the use of mathematical modelling of cardiac APs

as part of future preclinical drug safety testing. Recently, a computational proarrhythmic risk

metric called qNet was introduced in [3] and defined as the net charge carried by the key ionic

currents integrated from the beginning to the end of the simulated AP beat. Using statistical

classification algorithms, qNet was shown to correctly separate reference compounds into dif-

ferent risk categories, where drugs of high risk are linked to low values of qNet and drugs of

low risk are linked to high values of qNet, see Fig 5 in [3]. Furthermore, qNet was found to cor-

relate with the system’s robustness against EADs in the sense that EADs propensity is higher

the lower the value of qNet. In our opinion, a manifest and mechanism-based measure of

EADs propensity is the normal distance in parameter space from the SNLC0-bifurcation at

which EADs behaviour starts, see Fig 7A. The closer the system is to the boundary, the higher

is the proarrhythmic risk. Surprisingly, CiPA’s risk metric qNet, if computed with the AP

model (1), is a monotonically decreasing function of the normal distance, see Fig 7B. This

EADs in accordance with the folded node theory. C: Zoom into EADs area of B, which shows a 19-MMO pattern for

Cm = 0.4.

https://doi.org/10.1371/journal.pone.0209498.g005
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Fig 6. Actual EADs boundaries derived from full system analysis. A: Bifurcation diagram of the full system (1) with

default parameter setting Table 1 and GK as continuation parameter. Stable limit cycle oscillations of the type 10 are

born at the supercritical Hopf bifurcation supHB, turn into 1s+1-MMOs at the saddle node of limit cycle bifurcation

SNLCs and terminate at the subcritical Hopf bifurcation subHB. In particular, EADs occur in the GK-range between

SNLC0 and subHB. B: Zoom into A. C: Two-parameter bifurcation diagram showing the region of parameter space for

EADs due to a folded node singularity
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which EADs actually appear. For comparison, dashed lines depict the EADs boundaries predicted by the folded node

theory, see Fig 4B.

https://doi.org/10.1371/journal.pone.0209498.g006

Fig 7. Normal distance to bifurcation as proarrhythmic risk metric. The figure illustrates the normal distance from the parameter

region of EADs occurrence as a mechanism-based candidate measure of proarrhythmic risk. A: For instance, the AP system (1) with

(GK, GCa) = (0.042, 0.00835) is in normal distance 0.01 ms/cm2 from EADs occurrence. B: qNet computed with the AP model (1) is a

monotonically decreasing function of the normal distance from SNLC0. The result is independent of the location chosen on the

SNLC0-curve and in controversy to the qNet property found in [3].

https://doi.org/10.1371/journal.pone.0209498.g007
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would associate lower proarrhythmic risk with lower values of qNet, which is in complete con-

trast to the association found in [3]. While this observation only constitutes a preliminary

result that also might be influenced by the simplicity of (1), it still suggests a model dependency

of the link between qNet and EADs propensity and calls for further investigations.

Concurrence of folded node with saddle focus equilibrium

Finally, we return to Fig 5C and address the occurence of EADs in form of small scale oscilla-

tions with increasing amplitude. This behaviour is not an issue of the smallness of Cm but is

also present for the default setting with Cm = 1 and, e.g., GK = 0.035, see Fig 8A for a corre-

sponding simulation of (1). While the first few oscillations are still organized by the twisted

slow manifold associated with the folded node singularity FN, the growing oscillations are due

to the saddle-focus equilibrium SF of the full system (1). More precisely, the trajectory

approaches SF along its one-dimensional stable manifold, which is associated with the eigen-

vector es of the real eigenvalue λs< 0, and then spirals away along the unstable manifold with

its tangential space Mu spanned by the pair of complex conjugate eigenvectors with positive

real part, see Fig 8C. This mechanism has previously been related to the appearance of EADs

in [20], but then independent of the folded node mechanism. As illustrated in Fig 8, the two

mechanims may also coexist and consecutively shape the small scale oscillations, a phenome-

non that was discussed in [21] in the context of the Koper model. Note that FN and SF also

coexist for the parameter settings represented in Figs 2 and 3. However, the SF mechanism is

only activated if the trajectory is properly conveyed to the SF after passage through the slow

manifold, as exemplified in Fig 8B.

Conclusion

In this paper, we have studied EADs in cardiac action potentials from the mathematical view

point of mixed mode oscillations with multiple time scales. While the standard fast-slow analy-

sis based on a single slow variable failed to explain the appearance of EADs in a parsimonious

action potential model, a (1, 2)-fast-slow analysis based on two slow variables revealed that

EADs may be caused by a folded node singularity if combined with a suitable global return

mechanism. Furthermore, we have shown that the folded node coexists with a saddle focus

equilibrium of the full system. Hence, EADs may result from the concurrence of two dynam-

ical mechanisms, where the small scale oscillations first are induced by the twisted slow mani-

fold associated with the folded node and then caused by spiraling along the unstable manifold

of a saddle focus.

Our results form a novel contribution to EADs theory and may find application, e.g., in the

context of preclinical cardiac drug safety testing. Both the MMO theory of folded nodes and a

bifurcation analysis of the full system allow to compute regions in the ion channel conductance

parameter space where EADs occur. Pharmacology data of a test compound such as IC50 val-

ues then defines its location in that space, and the normal distance from the boundary of the

EADs region could be used as a mechanism based proarrhythmic risk metric. Interestingly

since in contrast to [3], the normal distance associates EADs propensity with high values of the

risk metric qNet, which is currently proposed by CiPA and defined based on statistical classifi-

cation rather than on a EADs generating mechanism. In order to further investigate the suit-

ability of the normal distance for preclinical cardiac safety testing, the concept needs to be

tested by means of the the optimized IKr-dyn ORd model [3], which was used to define and

validate the qNet risk metric. However, this in return requires to develop novel theoretical and

computational tools for the MMO analysis of medium-to-large scale AP models.
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Fig 8. Concurrence of folded node with saddle focus equilibrium. A: An action potential with EADs in form of a

115-MMO, obtained for the default parameter setting with Cm = 1 but GK = 0.035. B: Visualization of the perodic orbit

of A in the phase space. First, the EADs are organized by the twisted slow manifold due to the folded node FN, then

EADs are caused by the spiraling along the unstable manifold of the saddle-focus equilibrium SF with tangential space

Mu. C: Zoom into B.

https://doi.org/10.1371/journal.pone.0209498.g008
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State-of-the-art models [32], [9], [3], [12] comprise dozens of state variables and hundreds

of model parameters. Hence, one limitation of our study is that we only dealt with a parsimo-

nious cardiac action potential model, which in particular does not account for the sodium cur-

rent, a known contributor to EADs [19]. However, it is the model’s simplicity that made it

amenable to multiple time scale analysis [42], and the dynamical EADs mechanisms character-

ized by its help are likely to also be present in the more complex AP models. Future work will

include the performance of tailored experiments with human induced pluripotent stem cell

derived cardiomyocytes to challenge the EADs hypothesis generated in this paper. Further-

more, we aim to investigate whether a three-time-scale analysis of cardiac AP models can attri-

bute EADs also with the remaining MMO-mechanism iv) of the listing given at the beginning

of the discussion section.
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Investigation: Philipp Kügler.
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