
Development of a Toll-Like
Receptor-Based Gene Signature That
Can Predict Prognosis, Tumor
Microenvironment, and
Chemotherapy Response for
Hepatocellular Carcinoma
Lixia Liu1,2†, Bin Liu3†, Jie Yu1, Dongyun Zhang1, Jianhong Shi3 and Ping Liang1*

1Department of Interventional Ultrasound, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China,
2Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, China, 3Central Laboratory, Hebei Key Laboratory of
Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Institute of Life Science and Green Development,
Hebei University, Baoding, China

Objective: Emerging evidence highlights the implications of the toll-like receptor (TLR)
signaling pathway in the pathogenesis and therapeutic regimens of hepatocellular
carcinoma (HCC). Herein, a prognostic TLR-based gene signature was conducted
for HCC.

Methods: HCC-specific TLRs were screened in the TCGA cohort. A LASSO model was
constructed based on prognosis-related HCC-specific TLRs. The predictive efficacy,
sensitivity, and independency of this signature was then evaluated and externally
verified in the ICGC, GSE14520, and GSE76427 cohorts. The associations between
this signature and tumor microenvironment (stromal/immune score, immune checkpoint
expression, and immune cell infiltrations) and chemotherapy response were assessed in
HCC specimens. The expression of TLRs in this signature was verified in HCC and normal
liver tissues by Western blot. Following si-MAP2K2 transfection, colony formation and
apoptosis of Huh7 and HepG2 cells were examined.

Results: Herein, we identified 60 HCC-specific TLRs. A TLR-based gene signature
(MAP2K2, IRAK1, RAC1, TRAF3, MAP3K7, and SPP1) was conducted for HCC
prognosis. High-risk patients exhibited undesirable outcomes. ROC curves confirmed
the well prediction performance of this signature. Multivariate Cox regression analysis
demonstrated that the signature was an independent prognostic indicator. Also, high-risk
HCC was characterized by an increased immune score, immune checkpoint expression,

Edited by:
Leming Sun,

Northwestern Polytechnical
University, China

Reviewed by:
Qianqian Song,

Wake Forest Baptist Medical Center,
United States
Xinwei Han,

First Affiliated Hospital of Zhengzhou
University, China

Jiawei Rao,
First Affiliated Hospital of Sun Yat-sen

University, China

*Correspondence:
Ping Liang

liangping301@hotmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 23 June 2021
Accepted: 16 August 2021

Published: 21 September 2021

Citation:
Liu L, Liu B, Yu J, Zhang D, Shi J and
Liang P (2021) Development of a Toll-
Like Receptor-Based Gene Signature
That Can Predict Prognosis, Tumor

Microenvironment, and Chemotherapy
Response for

Hepatocellular Carcinoma.
Front. Mol. Biosci. 8:729789.

doi: 10.3389/fmolb.2021.729789

Abbreviations:HCC, hepatocellular carcinoma; TLRs, toll-like receptors; TME, tumor microenvironment; TCGA, The Cancer
Genome Atlas; ICGC, International Cancer Genome Consortium; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs,
differentially expressed genes; OS, overall survival; LASSO, Least Absolute Shrinkage and Selection Operator; RS, risk score;
ROC, receiver operator characteristic; GSEA, gene set enrichment analysis; ESTIMATE, Estimation of STromal and Immune
Cells in MAlignant Tumours using Expression data; ssGSEA, single-sample Gtene Set Enrichment Analysis; GDSC, Genomics
of Drug Sensitivity in Cancer; IC50, half maximal inhibitory concentration; qRT-PCR, quantitative real-time polymerase chain
reaction.

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 7297891

ORIGINAL RESEARCH
published: 21 September 2021

doi: 10.3389/fmolb.2021.729789

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.729789&domain=pdf&date_stamp=2021-09-21
https://www.frontiersin.org/articles/10.3389/fmolb.2021.729789/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.729789/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.729789/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.729789/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.729789/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.729789/full
http://creativecommons.org/licenses/by/4.0/
mailto:liangping301@hotmail.com
https://doi.org/10.3389/fmolb.2021.729789
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.729789


and immune cell infiltration. Meanwhile, high-risk patients displayed higher sensitivity to
gemcitabine and cisplatin. The dysregulation of TLRs in the signature was confirmed in
HCC. MAP2K2 knockdown weakened colony formation and elevated apoptosis of Huh7
and HepG2 cells.

Conclusion: Collectively, this TLR-based gene signature might assist clinicians to select
personalized therapy programs for HCC patients.

Keywords: toll-like receptor signaling pathway, hepatocellular carcinoma, prognosis, tumor microenvironment,
chemotherapy response, MAP2K2

INTRODUCTION

Hepatocellular carcinoma (HCC) represents the most frequent
visceral neoplasm, occupying 70–90% of all primary liver cancer
(Craig et al., 2020).Currently, surgery, transplantation, and
percutaneous ablations have become major therapeutic
strategies against HCC (Piñero et al., 2020; Yang et al., 2020).
Hepatitis B and C viral infections are the main risk factors of
HCC (Sagnelli et al., 2020). This neoplasm is characterized by
complex heterogeneity and high recurrence (Yang and
Heimbach, 2020). High-risk subjects with potentially
undesirable outcomes are required to be monitored, and
timely and effective therapeutic strategies should be adopted
for prolonging survival duration and improving their quality
of life (Liu et al., 2020). Hence, an in-depth understanding in the
precise molecular mechanisms of HCC pathogenesis and
progress is of importance for enabling prognosis prediction
and individualized therapy.

Toll-like receptors (TLRs) are a family of transmembrane
signaling receptors, which may activate the innate immune
system that is involved in maintaining homeostasis in the liver
by recognizing pathogen-associated molecular patterns (Zou
et al., 2016). TLRs enable recognizing foreign pathogens like
HBV, thereby inducing innate immunity (Campisano et al.,
2019). Emerging evidence has suggested that the TLR
signaling pathway in the liver could assist the illustration of
the mechanism of liver carcinogenesis, as well as to offer feasible
novel therapeutic targets against HCC (Sasaki et al., 2020). Hence,
this study screened HCC-specific TLRs as well as developed and
externally verified a TLR-based gene signature for HCC. This
signature enabled predicting survival outcomes and was in
relation to tumor microenvironment (TME) and responses to
chemotherapy drugs gemcitabine and cisplatin. Our experimental
verification confirmed the dysregulation of TLRs in the signature
and silencing MAP2K2 weakened colony formation and elevated
apoptosis of HCC cells. Thus, our findings might assist clinicians
to select personalized therapy programs for HCC patients and to
offer insights into the mechanisms of HCC.

MATERIALS AND METHODS

Data Collection
RNA sequencing profiles (FPKM format) and matched
clinicopathologic characteristics of 368 HCC samples were

retrieved from the Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/repository) through Genomic
Data Commons (https://portal.gdc.cancer.gov/) using TCGA
biolinks package (Colaprico et al., 2016) on May 16, 2020.
Meanwhile, the gene expression profiling of 49 normal liver
tissue specimens were also collected. RNA-seq profiles and
corresponding clinicopathologic features of 231 HCC
specimens were downloaded from the International Cancer
Genome Consortium portal (ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium, 2020)(https://dcc.
icgc.org/projects/LIRI-JP). The GSE14520 (Roessler et al.,
2010) and GSE76427 (Grinchuk et al., 2018) datasets were
retrieved from the Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/gds/). The GSE76427
dataset contained gene expression data and survival information
of 242 HCC patients. Furthermore, the GSE76427 dataset
included microarray expression profiling and prognostic data
of 115 HCC patients. Our research followed the TCGA, ICGC,
and GEO data access policies as well as publication guidelines.
For TCGA-HCC, FPKM format was converted to TPM value. For
the GSE14520 data from the Affymetrix platform, the raw “CEL”
file was background-checked and quantile normalized with a
robust multi-array averaging method using affy and simple affy
packages. For the GSE76427 data from the Illumina platform, the
normalized matrix file was directly downloaded. The gene set of
the TLR family was collected from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database (https://www.
kegg.jp/kegg) (Kanehisa and Goto, 2000) (Supplementary
Table 1). The original code of bioinformatics analysis is listed
in Supplementary table 2.

Differential Expression Analysis
For identifying HCC-specific TLRs, differentially expressed genes
(DEGs) between 368 HCC and 49 normal liver tissues were
screened in the TCGA cohort utilizing limma package (Ritchie
et al., 2015). The screening criteria of HCC-specific TLRs were |
log2 fold-change|>2 and adjusted p < 0.05.

Developing and Validating a TLR-Based
Gene Signature for HCC Prognosis
HCC-specific TLRs were utilized for univariate Cox regression
analyses of overall survival (OS) in the TCGA cohort. For
minimizing the risk of overfitting, TLRs with p < 0.05 were
retained for constructing a least absolute shrinkage and selection
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operator (LASSO) Cox regression model. Utilizing glmnet package,
variable selection and shrinkage were carried out (Engebretsen and
Bohlin, 2019). The penalty parameter (λ) was identified by 10-fold
cross-verification after the minimum criteria. The TLR-based risk
score (RS) of each HCC patient was calculated based on the
expression and coefficient of each candidate variables. Utilizing
survival ROC package, time-dependent receiver operator
characteristic (ROC) curves were depicted for evaluating the
predictive power of this model. After stratifying the subjects into
high- and low-RS groups according to the median RS, prognostic
analyses were presented through Kaplan–Meier curves and log-rank
tests. Moreover, the predictive performance of the TLR-based gene
signature was externally verified in the ICGC, GSE14520, and
GSE76427 cohorts.

Establishing and Verifying a
Prognosis-Related Nomogram
Prognostic independence of the TLR-based signature was
determined from other clinical features utilizing uni- and
multivariate Cox regression analyses. The independent
prognosis-related indicators were included for building a
nomogram in the TCGA and ICGC cohorts with rms package.
Time-dependent ROC curves were conducted for assessing the
predictive performance of the nomogram on one-, three-, and
five-year OS probabilities. The calibration diagrams were
presented for verifying the prediction accuracy of this model
compared with the actual survival time.

Gene Set Enrichment Analysis (GSEA)
For exploring the molecular mechanisms underlying the TLR-
based gene signature, the gene sets of Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways in C2 were curated from
the Molecular Signatures Database (https://www.gsea-msigdb.
org/gsea/msigdb) (Liberzon et al., 2015). The GSEA algorithm
was employed to compare the enrichment differences of the gene
sets between high- and low-risk groups according to the gene
expression profiles of HCC in the TCGA dataset (Subramanian
et al., 2005). Pathways with FDR<0.05 were significantly
enriched.

Prediction Sensitivity of the TLR-Based
Gene Signature by Subgroup Analyses
The distribution of the TLR-based RS among clinicopathologic
characteristics (grades and stages) for HCC subjects in the TCGA
cohort was compared via Kruskal–Wallis tests. After stratifying
the subjects into different subgroups according to
clinicopathologic characteristics, prognosis analyses were
carried out between high- and low-RS subjects.

Estimation of Tumor Microenvironment
By the Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data (ESTIMATE) method
(Yoshihara et al., 2013), immune and stromal scores were
determined for inferring the fractions of immune and stromal
cells in HCC tissues from the TCGA dataset. By combining

TABLE 1 | Identification of 60 HCC-specific TLRs in the TCGA cohort.

Gene Logfold-change t p-value Adjusted p-value Genes Logfold-change t p-value Adjusted p-value

MAP2K2 1.262,007 14.13751 1.76E-37 1.46E-35 JUN −0.91985 −5.67973 2.50E-08 6.70E-08
IRAK1 1.813,295 13.85387 2.71E-36 1.12E-34 RIPK1 0.459,955 5.637,478 3.15E-08 8.16E-08
MAPK3 1.277,511 13.54618 5.13E-35 1.42E-33 MAP2K3 −0.53643 −5.45495 8.32E-08 2.04E-07
IRF3 1.275,886 13.06273 4.95E-33 1.03E-31 IL1B −0.73002 −5.45383 8.37E-08 2.04E-07
FOS -2.87013 −11.3476 2.95E-26 4.89E-25 MAPK14 0.511,096 5.428,151 9.58E-08 2.27E-07
TAB1 0.936,151 11.03395 4.53E-25 6.27E-24 TBK1 0.485,042 5.362,917 1.35E-07 3.10E-07
RAC1 0.862,191 10.18781 5.84E-22 6.93E-21 SPP1 2.545,628 5.220,422 2.80E-07 6.27E-07
PIK3R3 0.920,451 9.727,353 2.50E-20 2.59E-19 CHUK 0.426,141 4.950,201 1.07E-06 2.34E-06
MAPK11 1.322,901 9.587,574 7.65E-20 7.06E-19 TICAM1 0.580,411 4.878,422 1.51E-06 3.22E-06
MAP2K7 0.709,382 9.322,688 6.20E-19 5.15E-18 CCL4 −0.79546 −4.84886 1.74E-06 3.62E-06
IRF5 1.022618 9.195,042 1.68E-18 1.27E-17 MAP2K1 −0.48377 −4.81614 2.04E-06 4.12E-06
RELA 0.654,615 8.85703 2.24E-17 1.55E-16 CTSK 0.911,693 4.633,718 4.78E-06 9.45E-06
MAPK9 0.82763 8.71183 6.68E-17 4.27E-16 TOLLIP 0.317,776 4.354,871 1.67E-05 3.22E-05
TRAF3 0.826,759 8.204,777 2.76E-15 1.64E-14 TLR5 0.52031 4.18539 3.46E-05 6.53E-05
FADD 0.798,302 8.109,337 5.47E-15 2.87E-14 MAPK13 0.935,497 4.124,942 4.46E-05 8.23E-05
CASP8 0.912,569 8.107,729 5.53E-15 2.87E-14 CXCL10 1.127,512 3.887,076 0.000118 0.000212
MAPK12 1.160,537 7.484,739 4.15E-13 2.03E-12 MYD88 −0.39647 −3.83452 0.000145 0.000256
MAP3K7 0.733,166 7.223,867 2.35E-12 1.08E-11 MAP2K6 0.594,048 3.818,365 0.000154 0.000267
IKBKG 1.04067 7.118,719 4.66E-12 2.03E-11 STAT1 0.67728 3.808,574 0.00016 0.000272
PIK3R2 0.437,359 7.053457 7.10E-12 2.95E-11 AKT2 0.338,982 3.793,519 0.00017 0.000282
PIK3CB 0.666,755 6.941,674 1.45E-11 5.74E-11 TLR3 −0.44792 −3.76962 0.000187 0.000304
CD14 −1.25511 −6.79309 3.71E-11 1.39E-10 IL6 −0.46209 −3.73557 0.000213 0.00034
IKBKE 1.07056 6.786,774 3.86E-11 1.39E-10 LY96 0.773,047 3.350,776 0.000878 0.001374
IRAK4 0.528,799 6.695,029 6.82E-11 2.36E-10 MAP3K8 0.502,467 3.175,544 0.001604 0.002466
TIRAP 0.650,435 6.391,471 4.32E-10 1.43E-09 CXCL11 0.587,711 3.026185 0.002627 0.003964
IKBKB 0.626,264 6.14836 1.80E-09 5.75E-09 MAPK8 0.230,296 2.720,881 0.006777 0.010045
MAPK1 0.680,265 6.074488 2.76E-09 8.48E-09 PIK3CA 0.219,792 2.492,356 0.013069 0.01903
TLR4 −0.73416 −5.90592 7.18E-09 2.13E-08 TLR2 −0.35231 −2.25282 0.024779 0.035459
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immune and stromal scores, tumor purity was then calculated.
The mRNA expression of immune checkpoints was calculated in
each HCC specimen. The infiltration levels of 28 immune cells
were estimated with the single-sample gene set enrichment
analysis (ssGSEA) method (Hänzelmann et al., 2013).

Responses to Chemotherapy Drugs
The responses to chemotherapy drugs including gemcitabine and
cisplatin were estimated with the Genomics of Drug Sensitivity in
Cancer (GDSC; https://www.cancerrxgene.org/) database (Yang
et al., 2013). The half maximal inhibitory concentration (IC50)
was quantified with pRRophetic package (Geeleher et al., 2014).

Patients and Specimens
This study collected 3 cases of HCC and corresponding adjacent
tissues from HCC patients who underwent surgical resection at
the Affiliated Hospital of Hebei University from January 1, 2021
to May 1, 2021. These subjects were diagnosed as HCC with
postoperative pathology. The adjacent tissue was normal liver

tissue that was more than 2 cm from the edge of the tumor. All
patients did not receive radiotherapy, chemotherapy, or other
adjuvant treatments before surgery. All fresh tissues obtained
were stored in liquid nitrogen as soon as possible after being
obtained. This study was reviewed and approved by the Ethics
Committee of Affiliated Hospital of Hebei University (2021013),
and the patients’ informed consent was obtained.

Western Blot
RIPA lysis buffer (Millipore, United States) was utilized for
extracting the total protein from tissue specimens. By using
the BCA protein quantification kit, the protein concentration
was determined. After protein denaturation treatment,
SDS–PAGE gel electrophoresis was used to separate cellular
proteins. The electrophoresis was stopped according to the
prestained marker band. The sample was then transferred to
the PVDF membrane. Then, the membrane was blocked by 3%
BSA prepared with TBS-T overnight at 4°C. After blocking, the
membrane was incubated with diluted primary antibodies against

FIGURE 1 | Developing and verifying a TLR-based gene signature in HCC. (A) Volcano diagram of the HCC-specific TLRs with |log2fold-change| >2 and adjusted
p < 0.05 by comparing 368 HCC and 49 normal tissue specimens in TCGA cohort. Blue represents low expression, while red represents high expression. (B)
Hierarchical clustering analyses of the expression patterns of previous HCC-specific DEGs in 368 HCC and 49 normal samples in TCGA cohort. Yellow indicates high
expression, while blue indicates low expression. (C) ROC curves of one-, three, and 5-year OS for HCC patients based on the RS in the TCGA cohort. (D)
Kaplan–Meier curves of high- and low-RS HCC patients in the TCGA cohort. Survival differences were estimated through log-rank tests. (E) ROC curves of one-, three-,
and five-year OS for HCC subjects according to the RS in the ICGC cohort. (F) Kaplan–Meier curves of high- and low-RS HCC subjects in the ICGC cohort.
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MAP2K2 (1/1,000; ab265586; Abcam, United States), IRAK1 (1/
1,000; ab238; Abcam, United States), RAC1 (1/1,000; ab97732;
Abcam, United States), TRAF3 (1/1,000; ab23935; Abcam,
United States), MAP3K7 (1/1,000; ab25879; Abcam,
United States), SPP1 (1/1,000; ab166709; Abcam,
United States), and GAPDH (1/1,000; ab8245; Abcam,
United States) overnight at 4°C, followed by being incubated
with goat anti-rabbit IgG–HRP antibody (Santa, United States) or
goat anti-mouse IgG-HRP antibody (Santa, United States) for 2 h
at room temperature. The protein was developed by ECL
luminescent agent. ImageJ software was utilized for detecting
the gray value.

Cell Culture and Transfection
Huh7 and HepG2 cells were purchased from ATCC
(United States), which were cultured in DMEM
(ThermoFisher Scientific, United States) containing 100 ml/L
fetal bovine serum (FBS; Gibco, United States), 100 U/mL
penicillin, and 100 mg/L streptomycin. Transfection was
carried out according to the instructions of LipofectamineTM

2000 reagent (Invitrogen, United States). Huh7 and HepG2 cells
were seeded in a 6-well plate and cultured until the cell confluence
was 50–70%; 24 h before transfection, FBS was replaced with
DMEM containing 100 ml/L FBS without double antibodies.
During transfection, 100 nmol siRNAs against MAP2K2 (si-
MAP2K2) and 100 nmol siRNA negative control (si-NC) were
transfected into Huh7 and HepG2 cells with LipofectamineTM

2000 transfection reagent. The siRNAs were synthesized by
Genecopoeia company (United States). After continuing the
culture for 8 h with DMEM containing 100 ml/L FBS without
a double antibody, the culture medium was replaced with
medium and continued to culture. The cells were collected for
48 h after transfection.

Quantitative Real-Time Polymerase Chain
Reaction
Trizol reagent (Solarbio, Beijing, China) was utilized for extracting
total RNA from Huh7 and HepG2 cells. A spectrophotometer was
used to measure RNA concentration. The extracted RNA was
detected by agarose gel electrophoresis. Reverse transcription of
RNA into cDNA was carried out based on the following conditions:
at 37°C for 15 min and at 85°C for 5 s. The PikoRealTM RT-PCR
detection system (Thermo Fisher, United States), SYBR Premix Ex
Taq Ⅱ reagent, and qRT-PCR were used for detecting the mRNA
expression of MAP2K2 as follows: at 95 C predenaturation for
5 min, a total of 40 cycles of denaturation at 95 C for 10 s,
annealing at 59 C for 30 s, and annealing at 60 C for 30 s. The
primer sequences of MAP2K2 and GAPDH included MAP2K2, 5′-
CCAAGGTCGGCGAACTCAAA-3’ (F), 5′-TCTCAAGGTGGA
TCAGCTTCC-3’ (R), GAPDH, 5′-GGCAAGTTCAACGGCACA
G-3’ (F), and 5′-ACGCCAGTAGACTCCACGAC-3’ (R). Image-
Pro Plus image analysis system was applied for calculating the OD
value, with GAPDH as an internal control. The relative expression of
MAP2K2 mRNA was determined with the 2-ΔΔCt method.

Clone Formation Assay
Huh7 and HepG2 cells were seeded in a 6-well plate (1,000 cells
per well). After placing the cells in the incubator for 2 weeks, the
supernatant was discarded. The cells were stained with crystal
violet for 30 min. After being washed with PBS 3 times, the
number of colonies was counted.

Flow Cytometry
An annexin Ⅴ–fluorescein isothiocyanate (FITC)/propidium
iodide (PI) apoptosis detection kit (BestBio, Shanghai, China)
was utilized for examining cell apoptosis. Huh7 and HepG2 cells
were cultured normally to the logarithmic growth phase. After
0.25% trypsinization of the cells, the cell pellet was collected and
resuspended in 100 μL PBS. Using the FACSCalibur flow
cytometer (Becton Dickinson, United States), the fluorescence
signal intensity was tested.

Statistical Analysis
R language (version 3.5.2) and GraphPad Prism software (version
8.0.1) were applied for statistical analyses. Student’s t-test or the
Wilcoxon test was applied for comparing the differences between
two groups. The Kruskal–Wallis test was utilized for comparisons
between multiple groups. A p-value less than 0.05 indicates
statistical significance.

RESULTS

Identification of HCC-specific TLRs
Here, we collected the expression profiling of 368 HCC and 49
normal liver tissues from the TCGA cohort. With the |log2 fold-
change|>2 and adjusted p < 0.05, we identified 60 HCC-specific
TLRs (Table 1). Among them, 14 TLRs were downregulated,
while 46 were upregulated in the HCC tissues in comparison with
the normal tissues (Figures 1A,B). This indicated that

TABLE 2 | Univariate Cox regression analyses for prognosis-related HCC-specific
TLRs in the TCGA cohort.

TLRs HR HR.95L HR.95H p-value

MAP2K2 1.542,385 1.184,561 2.008297 0.001293
IRAK1 1.465,424 1.206,621 1.779,735 0.000116
MAPK3 1.594,620 1.218,688 2.086517 0.000670
IRF3 1.404,824 1.083381 1.821,639 0.010345
RAC1 1.809,247 1.394,231 2.347,799 8.20E-06
IRF5 1.423,168 1.111,840 1.821,672 0.005084
RELA 1.598,045 1.108,498 2.303,791 0.012008
TRAF3 1.620,687 1.265,701 2.075233 0.000129
FADD 1.396,471 1.085862 1.795,930 0.009276
CASP8 1.374,547 1.084153 1.742,723 0.008608
MAPK12 1.216,302 1.047768 1.411,945 0.010078
MAP3K7 1.473,969 1.132,725 1.918,015 0.003883
PIK3CB 1.454,172 1.124,791 1.880,008 0.004272
IKBKE 1.302,939 1.115,145 1.522,358 0.000861
MAPK1 1.296,421 1.028318 1.634,422 0.028078
IFNAR2 1.419,409 1.068899 1.884,856 0.015502
TBK1 1.353,146 1.011841 1.809,577 0.041416
SPP1 1.131,800 1.074585 1.192,060 2.90E-06
LY96 1.129,772 1.014696 1.257,898 0.026005
TLR2 1.198,885 1.029720 1.395,840 0.019421

Frontiers in Molecular Biosciences | www.frontiersin.org September 2021 | Volume 8 | Article 7297895

Liu et al. TLR-Based Gene Signature For HCC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


dysregulation of these TLRs might contribute to HCC
progression.

Establishing a Robust TLR-Based Signature
for HCC Prognosis
Univariate Cox regression analyses were carried out for investigating
the associations between HCC-specific TLRs and survival outcomes

of HCC in the TCGA cohort. In Table 2, twenty TLRs were
distinctly in relation to HCC prognosis. By using the LASSO
method, six candidate TLRs were included for establishing a
prognostic signature (Supplementary figure 1A, B). The TLR-
based RS was determined in each HCC subject as follows: RS �
MAP2K2 expression * 0.0335734255703416 + IRAK1 expression *
0.0992603217488045 + RAC1 expression * 0.186397323163475 +
TRAF3 expression * 0.112022105244872 + MAP3K7 expression *

FIGURE 2 | External validation of the TLR-based gene signature in the GSE14520 and GSE76427 datasets. (A) Kaplan-Meier curves of high and low RS HCC
patients in the GSE14520 dataset. Survival differences were estimated through log-rank tests. (B) ROC curve of 3-year OS for HCC patients according to the RS in the
GSE14520 dataset. (C) Kaplan-Meier curves of high and low RS HCC patients in the GSE76427 dataset. Survival differences were estimated through log-rank tests. (D)
ROC curve of 3-year OS for HCC patients according to the RS in the GSE76427 dataset.
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0.0570747003763387 + SPP1 expression * 0.0601842657782517.
ROC curves were conducted for estimating whether RS could be
predictive of HCCprognosis. TheAUCs of one-, three- and five-year
OS were 0.744, 0.656, and 0.662, indicating that the RS was a robust
prognostic signature (Figure 1C). With the median RS, this study
separated the HCC patients in the TCGA cohort into two groups.
Prognostic analysis showed that high-RS patients displayed
depressing OS outcomes in comparison to low-RS patients (p �
2.127e-05; Figure 1D).

External Validation of the TLR-Based
Signature
The predictive performance of the TLR-based signature was
externally verified in the ICGC, GSE14520, and GSE76427
cohorts. The AUCs of one-, three-, and five-year OS were 0.720,
0.675, and 0.668 in the ICGC cohort (Figure 1E). In Figure 1F, high
RS was indicative of gloomy OS for HCC subjects (p � 1.225e-03) in
the ICGC cohort. Similarly, in the GSE14520 dataset, patients with
high-risk exhibited poorer OS than those with low risk (p � 3.384e-
02; Figure 2A). And the AUC at three-year OS was 0.601 in the

GSE14520 dataset (Figure 2B). Also, we observed the distinct
survival advantage for low-risk patients in the GSE76427 dataset
(p � 1.186e-02; Figure 2C). As shown in Figure 2D, the AUC at
three-year OS was 0.622 in the GSE76427 dataset. Following the
previous validation, the TLR-based signature was a reliable
prognostic predictor of breast cancer.

Developing a Nomogram by Incorporating
Stage and the TLR-Based Signature for Risk
Stratification and Survival Prediction
of HCC
In the TCGA cohort, we found that stage (HR: 1.643 (1.354–1.994);
p � 4.86e-07) and the TLR-based signature (HR: 1.055
(1.039–1.072); p � 3.81e-11) displayed significant associations
with HCC prognosis according to univariate Cox regression
analyses (Figure 3A). Following multivariate Cox regression
analyses, stage (HR: 1.511 (1.235–1.850); p � 6.20e-05) and the
TLR-bases signature (HR: 1.048 (1.031–1.065); p � 1.74e-08) were
independent prognostic markers of breast cancer. For facilitating
clinical application, we established a nomogram by incorporating

FIGURE 3 | Establishment of a nomogram by incorporating stage and TLR-based RS for HCC prognosis in the TCGA cohort. (A) Uni- and multivariate Cox
regression analyses of the associations between survival outcomes and age, gender, grade, stage, and TLR RS of HCC patients. (B) Constructing a prognostic
nomogram that included stage and TLR RS for prediction of one-, three-, and 5-year OS probabilities. (C) ROC curves under one-, three-, and 5-year OS for HCC
subjects based on the nomogram model. (D–F) Calibration curves of this model-estimated and observed one-, three-, and 5-year OS probabilities.
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stage and the TLR-based signature for estimating one-, three-, and
five-year OS (Figure 3B). ROC curves confirmed the well-predictive
performance for one- (AUC � 0.746), three- (AUC � 0.729), and
five-year (AUC � 0.744) OS of HCC patients (Figure 3C). As shown
in calibration curves, themodel-estimated and observed one-, three-,
and five-yearOS probabilities were highly close (Figures 3D–F). The
well-predictive efficacy of the nomogram was confirmed in the
ICGC cohort (Supplementary figure 2A-F).

Signaling Pathways Involving the TLR
Signature
Our GSEA results demonstrated that apoptosis (NES � 2.09
and FDR � 0.001), cell cycle (NES � 1.97 and FDR � 0.003),

epithelial cell signaling in helicobacter pylori
infection (NES � 2.08 and FDR � 0.004), oocyte
meiosis (NES � 2.16 and FDR < 0.0001), pathway in
cancer (NES � 1.99 and FDR � 0.003), and spliceosomes
(NES � 1.99 and FDR � 0.003) were distinctly activated
in HCC subjects with high TLR-based RS
(Figure 4A). Moreover, metabolism of cytochrome P450
(NES � −1.80 and FDR � 0.032), fatty acid metabolism
(NES � −1.81 and FDR � 0.036), glycine serine and
threonine metabolism (NES � −1.87 and FDR � 0.030),
PPAR signaling pathway (NES � −1.65 and FDR � 0.021),
and primary bile acid biosynthesis (NES � −1.92 and FDR �
0.038) were markedly activated in HCC subjects with low
TLR-based RS (Figure 4B).

FIGURE 4 | Signaling pathways involving the TLR signature through GSEA. (A) KEGG pathways that were activated in HCC subjects with high TLR-based RS:
apoptosis, cell cycle, epithelial cell signaling in Helicobacter pylori infection, oocyte meiosis, pathway in cancer, and spliceosome. (B) KEGG pathways that were
activated in HCC subjects with low TLR-based RS: metabolism cytochrome P450, fatty acid metabolism, glycine serine and threonine metabolism, PPAR signaling
pathway, and primary bile acid biosynthesis.
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Estimation of the Predictive Sensitivity of
the TLR-Based Signature for HCC
Prognosis
The distribution of the TLR-based RS was analyzed among grades
and stages in HCC patients from the TCGA cohort. In Figure 5A,
compared with G1, the RS gradually elevated as the grade
increased. Furthermore, there were higher RSs in stages II and
III than in stage I (Figure 5B). These data indicated that the TLR-
based RS was in relation to HCC progression. For analyzing the
predictive sensitivity of this signature, we carried out subgroup
analyses in the TCGA–HCC cohort. Prognostic analyses showed

that high RS was indicative of poorer OS than low RS in each
subgroup: ≥ 65 (p < 0.001; Figure 5C) and age<65 (p � 0.012;
Figure 5D); female (p � 0.076; Figure 5E) and male (p < 0.001;
Figure 5F); G1-2 (p � 0.010; Figure 5G) and G3-4 (p < 0.001;
Figure 5H); stage I-II (p < 0.001; Figure 5I), and stage III-IV (p �
0.067; Figure 5J).

Associations Between the TLR-Based
Signature and TME of HCC
By using the ESTIMATE method, we inferred the infractions of
immune and stromal cells in HCC specimens. We found that there

FIGURE 5 | Assessment of the predictive sensitivity of the TLR-based signature for HCC prognosis in the TCGA cohort. (A) The distribution of the TLR-based RS in
different grades (G1-4) of HCC. (B) The distribution of the TLR-based RS in different stages (stage I-IV) of HCC. p values were estimated with Kruskal–Wallis tests. (C–J)
Subgroup analysis of prognostic value of the TLR-based signature for HCC patients by Kaplan–Meier curves according to clinicopathologic characteristics: (C) age > �
65 and (D) age < 65; (E) female and (F) male; (G) grade 1–2 and (H) grade 3–4; (I) stage I-II and (J) stage III-IV. Survival differences were estimated through log-
rank tests.
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was no significant difference in the stromal score between high- and
low-RS groups (Figure 6A). In Figure 6B, high-RS samples
displayed increased the immune score in comparison to low-RS
samples (p < 0.001). Also, high RS was characterized by reduced
tumor purity compared with low RS (p < 0.01; Figure 6C). The
differences in immune checkpoint expression were compared
between groups. In Figure 6D, we found that high-RS samples

displayed an increased mRNA expression of immune checkpoints
including CD86, CTLA4, TNFSF15, TNFSF14, TNFRSF18, IDO1,
CD27, CD160, CD274, BTLA, TNFRSF9, LAIR1, HHLA2, CD244,
CD70, TIGIT, BTNL2, TNFSF9, TNFSF18, NRP1, CD200, CD276,
HAVCR2, TNFRSF8, LGALS9, CD28, CD80, PDCD1, CD44,
PDCD1LG2, TNFRSF25, TNFRSF14, IDO2, TNFRSF4, CD48,
CD40, VTCN1, CD40LG, TNFSF4, and CD200R1. Moreover, the

FIGURE 6 | Estimation of the associations between the TLR-based signature and TME of HCC in the TCGA cohort. (A–C) Comparisons of stromal score, immune
score, and tumor purity between high and low TLR-based RS groups using the ESTIMATE method. (D) Comparisons of immune checkpoints between high and low
TLR-based RS groups. p values were estimated with Wilcoxon rank-sum tests. *p < 0.05; **p < 0.01; ***p < 0.001; ns: not significant.
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infiltration levels of immune cells were estimated by using the
ssGSEA method. As shown in Figure 7A, high-RS specimens
were characterized by increased infiltrations of activated B cell,
activated CD4 T cell, central memory CD4 T cell, central
memory CD8 T cell, effector memory CD4 T cell, gamma delta
T cell, immature B cell, regulatory T cell, T follicular helper cell, type
1 T helper cell, type 17 T helper cell, type 2 T helper cell, activated
dendritic cell, CD56dim natural killer cell, eosinophil, immature
dendritic cell, macrophage, MDSC, natural killer cell, natural killer
T cell, neutrophil, and plasmacytoid dendritic cell. The significant

associations between the signature and immune cell infiltrations
were also found in HCC (Supplementary figure 3A-N).

Associations Between the TLR-Based
Signature and Responses to Chemotherapy
Drugs
Using the GDSC database, the responses to chemotherapy drugs
were estimated in HCC patients from the TCGA cohort. Here, we
analyzed the associations between the TLR-based signature and

FIGURE 7 | Associations between the TLR-based signature and immune cell infiltrations and chemosensitivity of HCC in the TCGA cohort. (A) Comparisons of
infiltration levels of immune cells between high and low TLR-based RS groups using the ssGSEA method. (B, C) Comparisons of the responses to gemcitabine and
cisplatin between high and low TLR-based RS groups by GDSC database. p values were estimated utilizingWilcoxon rank-sum tests. *p < 0.05; **p < 0.01; ***p < 0.001;
ns: not significant.
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responses to chemotherapy drugs. Our data showed that high-RS
patients displayed lower IC50 values of gemcitabine (p � 5.94e-
13; Figure 7B) and cisplatin (p � 4.81e-05; Figure 7C) than low-
RS patients. Hence, high RS predicted better responses to
gemcitabine and cisplatin for HCC patients.

Verification of TLRs in This Prognostic
Signature for HCC
This study collected three paired HCC and normal liver tissues.
Western blot was applied for examining the expression of TLRs in
this prognostic signature in the aforementioned specimens (Figure 8A).
Our results confirmed thatMAP2K2 (p< 0.01;Figure 8B), IRAK1 (p<
0.01; Figure 8C), RAC1 (p < 0.05; Figure 8D), TRAF3 (p < 0.01;
Figure 8E), MAP3K7 (p < 0.05; Figure 8F), and SPP1 (p < 0.001;
Figure 8G) were all markedly upregulated in HCC compared with
normal liver tissues at the protein levels.

MAP2K2 Deficiency Weakens Colony
Formation Capacity and Enhances
Apoptosis in HCC Cells
For observing the influence of MAP2K2 on HCC pathogenesis,
MAP2K2 expression was markedly decreased in Huh7 and

HepG2 cells by si-MAP2K2 transfection (Figures 9A,B).
Colony formation capacity was then observed. We found that
MAP2K2 deficiency distinctly reduced colony formation of Huh7
and HepG2 cells (Figures 9C–E). Also, MAP2K2 knockdown
elevated the apoptotic levels of HCC cells (Figures 9F–H). Thus,
MAP2K2 deficiency weakened colony formation capacity and
enhanced apoptosis in HCC cells.

DISCUSSION

As microarrays and high-throughput sequencing step forward
(Song et al., 2020; Su et al., 2020; Song et al., 2021; Song and Su,
2021), gene signatures on the basis of mRNA expression profiles
exhibit much potential for prediction of HCC outcomes. Several
single genes may independently estimate survival outcomes of
HCC subjects. For instance, PRIM1 can be used for predicting
HCC prognosis, and its upregulation accelerates HCC
progression through activation of the AKT/mTOR pathway
and UBE2C-induced P53 ubiquitination (Zhu et al., 2021).
Moreover, a few prognosis-related signatures according to
multiple mRNAs have been conducted for HCC, which might
be utilized for preclinical and clinical therapies (Long et al., 2019;
Hong et al., 2020; Liang et al., 2020), such as a risk signature based

FIGURE 8 | Verification of the expression of genes in the TLR-based signature in HCC and normal tissue specimens. (A) Western blot for detecting MAP2K2,
IRAK1, RAC1, TRAF, and MAP3K7 proteins in three paired HCC and normal tissues. (B–G) Quantification of the expression of (B) MAP2K2, (C) IRAK1, (D) RAC1, (E)
TRAF, (F)MAP3K7, and (G) SPP1 proteins in three paired HCC and normal tissues. Comparisons between groups were evaluated with Student’s t tests. *p < 0.05; **p <
0.01; ***p < 0.001.
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on N6-methyladenosine RNA methylation regulators (Bian et al.,
2020). Nevertheless, additional signature models should be
conducted for accurately predicting HCC prognosis due to
complexity and heterogeneity of the neoplasm. Here, we
conducted a TLR-based gene signature (including MAP2K2,
IRAK1, RAC1, TRAF3, MAP3K7, and SPP1) for HCC
prognosis. Following verification, this signature acted as a
robust prognostic indicator of HCC.

Cancer is driven by genetic alterations (2020). According to
the previous research, the TLRs in this signature exerted key
functions in HCC progression. Our Western blot confirmed the
dysregulation of the TLRs in HCC. USP21-mediated de-
ubiquitination and stabilization of MAP2K2 promotes tumor
growth of HCC (Li et al., 2018). MAP2K2 upregulation that is
mediated by c-Myb enhances proliferation and invasion of HCC
(Zhuang et al., 2019). MAP2K2 knockdown prevents ERK1/2

FIGURE 9 | Silencing MAP2K2 weakened colony formation capacity and induced apoptosis of HCC cells. (A, B) RT-qPCR of the mRNA expression of MAP2K2 in
Huh7 and HeG2 cells with si-MAP2K2 transfection. (C–E) Colony formation assays of the number of colonies of Huh7 and HeG2 cells with si-MAP2K2 transfection.
(F–H) Flow cytometry assays of the apoptotic levels of Huh7 and HeG2 cells under transfection with si-MAP2K2. p values were estimated with ANOVA tests. ***p <
0.001; ****p < 0.0001.
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activation and abolishes HCC progression (Gailhouste et al.,
2010). Our data confirmed that MAP2K2 knockdown
weakened colony formation capacity and enhanced apoptosis
in HCC cells. IRAK1 enhances cancer stemness and weakens the
sensitivity to doxorubicin and sorafenib using the AP-1/
AKR1B10 axis in HCC (Cheng et al., 2018). Suppression of
IRAK1 protects against chronic inflammation–associated HCC
(Li et al., 2015). Analyses of immunohistochemistry and RNA-seq
profiling reveal that IRAK1 acts as an oncogene and a diagnostic
and treatment target against HCC (Ye et al., 2017). IRAK1
heightens cellular proliferative capacity and protects against
apoptosis for HCC (Li et al., 2016). RAC1 enhances cancer
stemness and self-renewal capacity in HCC (Ran et al., 2019).
RAC1 promotes diethylnitrosamine-mediated formation of HCC
(Bopp et al., 2015). TRAF3 that is activated by SMAC weakens
HCC growth (Ding et al., 2020). MAP3K7 knockdown drives
liver fibrosis and HCC via RIPK1 kinase-dependent
inflammatory response (Tan et al., 2020). SPP1 possesses the
potential for risk stratification and OS prediction of HCC patients
(Ouyang et al., 2020).

HCC represents a heterogeneous malignancy, which happens
via distinct pathway activation andmolecular alterations (Li et al.,
2019). Our GSEA demonstrated that high TLR-based RS was
distinct in relation to apoptosis, cell cycle, epithelial cell signaling
in Helicobacter pylori infection, oocyte meiosis, pathway in
cancer, and spliceosome, while low TLR-based RS was related
to metabolism cytochrome P450; fatty acid metabolism; glycine,
serine, and threonine metabolism; PPAR signaling pathway; and
primary bile acid biosynthesis. Although epithelial cell signaling
in Helicobacter pylori infection and oocyte meiosis are not
associated with HCC progression, evidence suggests that TLR
is involved in modulating the previous pathways (Smith et al.,
2011; Gilbert, 2019). The tumor microenvironment including
fibroblasts, myofibroblasts, endothelial cells, immune cells, and
extracellular matrix plays a critical role in the initiation, growth,
and dissemination of HCC (Zhang et al., 2020). Here, we
observed that high RS was characterized by a high immune
score, immune checkpoint expression, and immune cell
infiltration in HCC. TLR, a pattern recognition receptor, is
mainly expressed in immune cells containing dendritic cell,
macrophage, natural killer cell, and other antigen-presenting
cells (Karapetyan et al., 2020). TLR activation induces
inflammatory response, thereby resulting in the enhanced
uptake and killing of cancer cells and the generation of
adaptive immune response (Karapetyan et al., 2020). This also
confirmed the implications of the TLR-based signature in
immune activation. Despite the progress of therapeutic
strategies, patients with intermediate–advanced HCC exhibit
low efficacy, partly due to chemoresistance (Zhang et al.,
2021). Here, our results showed that high RS was predictive of
better responses to gemcitabine and cisplatin for HCC patients.

A nomogram model represents a robust tool for providing
probabilistic prediction of persons. Herein, a TLR-based
nomogram was conducted, which might estimate HCC
outcomes. Our ROC and calibration curves confirmed the
favorable predictive performance of this nomogram. Although
this study identified a prognostic TLR-based signature that

exhibited underlying substantial clinical implications, there are
still a few shortcomings. To consider the much heterogeneity of
HCC, several candidate TLRs that could affectHCCprognosismight
be removed before establishing this prognosis-related TLR-based
signature, which might decrease the predictive efficacy of this
signature. Furthermore, the mechanism of post-curative relapse
and metastases that are the main clinical features that could assist
in the interpretation of the relatively poor diagnosis efficacy, except
for the follow-up containing post-curative relapse and metastasis
information, was lacking in these collected specimens. Additionally,
this prognosis-related TLR signature will be observed by an in-depth
experiment validation and the clinical applications assessed utilizing
a multicenter randomized controlled study.

CONCLUSION

Collectively, combining conventional clinicopathologic characteristics,
the TLR-based signature displayed the advantage in predicting
survival outcomes, TME, and responses to chemotherapeutics in
HCC. Hence, this signature had the well prospect in clinical practice.
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