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Background: Clinical testing, including food-specific skin and
serum IgE level tests, provides limited accuracy to predict food
allergy. Confirmatory oral food challenges (OFCs) are often
required, but the associated risks, cost, and logistic difficulties
comprise a barrier to proper diagnosis.
Objective: We sought to utilize advanced machine learning
methodologies to integrate clinical variables associated with
peanut allergy to create a predictive model for OFCs to improve
predictive performance over that of purely statistical methods.
Methods: Machine learning was applied to the Learning Early
about Peanut Allergy (LEAP) study of 463 peanut OFCs and
associated clinical variables. Patient-wise cross-validation was
used to create ensemble models that were evaluated on holdout
test sets. These models were further evaluated by using 2
additional peanut allergy OFC cohorts: the IMPACT study
cohort and a local University of Michigan cohort.
Results: In the LEAP data set, the ensemble models achieved a
maximum mean area under the curve of 0.997, with a sensitivity
and specificity of 0.994 and 1.00, respectively. In the combined
validation data sets, the top ensemble model achieved a
maximum area under the curve of 0.871, with a sensitivity and
specificity of 0.763 and 0.980, respectively.
Conclusions: Machine learning models for predicting peanut
OFC results have the potential to accurately predict OFC
outcomes, potentially minimizing the need for OFCs while
increasing confidence in food allergy diagnoses. (J Allergy Clin
Immunol Global 2024;3:100252.)
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Food allergy (FA) affects 8% of children in the United States,
and peanut allergy affects approximately 2.2%.1 FA causes food
anaphylaxis, leading to 200,000 US emergency room visits annu-
ally.2,3 Diagnosis of FA currently relies heavily on patient history
and oral food challenges (OFCs) because noninvasive FA diag-
nostics give false-positive rates of 30% to 50% in general and
perhaps 90% among children with atopic dermatitis.4-6 Unfortu-
nately, patients and allergists may avoid OFCs because of the
cost, perceived risk, or logistic constraints involved.7 In addition,
factors such as geography may affect OFC availability for a given
individual.8 Therefore, improvements to FA diagnosis that clarify
the perceived risk and might expand the accessibility of allergy
diagnoses are sorely needed.

Prior efforts have sought to combine FA-related variables to
make predictive models for peanut OFCs. In DunnGalvin et al,9 a
logistic regression (LR) model was created by using 6 variables,
namely, total and specific IgE levels, skin prick test (SPT) wheal
size, symptom severity score, age, and sex. Although the LR
model achieved good performance on a holdout set, the model
relied primarily on the severity of prior symptoms, making it
less useful in predicting OFCs without a clinical history. In a sys-
tematic review of various studies assessing the diagnostic accu-
racy of a variety of peanut allergy tests, such as SPT results,
total specific IgE level, and IgE level in response to peanut com-
ponents, Klemans et al10 found quite varied but overall limited ac-
curacy across a variety of testing contexts.

In prior work by members of our research group,11 a machine
learning methodology was developed on a retrospective data set
from theUniversity ofMichigan (UM) containing features similar
to those in prior work.9 The work tested multiple machine
learning models, such as Learning Using Concave and Convex
Kernels (LUCCK)12 and random forest, along with multiple
feature selection and cross-validation strategies to create predic-
tive models for peanut, egg, and milk challenges. The model for
predicting peanut OFCs performed reasonably well, achieving
an area under the curve (AUC), sensitivity, and specificity of
0.91, 0.89, and 0.92, respectively, on a holdout test set.
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Leveraging the framework developed previously, in this study
we utilized 2 publicly available retrospective data sets from the
UK-based Learning Early about Peanut Allergy (LEAP) study13

and the IMPACT study,14 as well as a separate, recent internal
UM OFC data set,15 all of which included variables such as
serum-specific peanut component IgEs, to determine whether
the addition of these now-common clinical tests would improve
predictive performance. The resulting model achieved excellent
test characteristics in the primary training/testing data set (the
LEAP data set) and performed well in replication within the com-
bined replication data sets (the IMPACT and UM data sets).
Should the results of this use of this model be validated through
the future application to prospective, multicenter data, the model
has the potential to clarify the perceived risk to patients associated
with OFCs while increasing confidence in FA diagnoses.
METHODS

Study cohorts
A secondary analysis of publicly available data via ITN Trial

Share16 that were collected as part of the LEAP study13 was un-
dertaken. The LEAP study was a single site randomized
controlled trial to determine the effect of peanut avoidance or con-
sumption on the development of peanut allergy in infants.
Enrolled participants had to be between the ages of 4 and 11
months and be diagnosed with an egg allergy, severe eczema, or
both conditions. Participants were randomly assigned to a peanut
avoidance or consumption arm. Please note that each cohort
measured the peanut skin test wheal size as the average of 2
perpendicular diameters per their respective protocols.13,16

An additional secondary analysis of similarly publicly avail-
able data16 from the IMPACT study14 was used in replication. The
IMPACT study was a multicenter oral immunotherapy study in
peanut allergy in an age group similar to that in the LEAP study.
The entry OFCs were used in the present work.

Finally, all of the peanut OFCs from an internal multifood UM
repository were deployed as a separate replication data set. This
repository has been described previously.15 Briefly, patients un-
dergoing clinical OFCs performed in the UMFoodAllergy Clinic
were screened for enrollment, and baseline FA data and challenge
outcome data were collected and deployed in this study.
OFCs
Each participant in the LEAP study was administered an OFC

to assess peanut allergy at age 60 months. The challenges were a
combination of open and double-blind, placebo-controlled chal-
lenges. Each participant in the IMPACT study underwent an entry
double-blind, placebo-controlled food challenge before enroll-
ment when within the age range of 12 to 48 months. Each
participant in the internal UM data set underwent an open OFC.
Before OFC administration, SPT and serum IgE level tests were
performed and recorded in all studies.
Variable selection
Although the various data sets contain numerous data modal-

ities, such as immunologic assays, genetic profiling, and meta-
bolic panels, the variables chosen for inclusion in the machine
learning model were those considered to be commonly collected
and utilized in clinical practice. These include demographic
features such as age, sex, and race; SPT results, including wheal
and flare size measurements (flare if available); and serum IgE
levels, including total IgE, peanut-specific IgE, and peanut
component levels. In total, 15 variables were included, with the
race categories other and unknown being dropped on account of
low prevalence. Tables I to III provide the complete list of
variables.
Machine learning
In Zhang et al,11 a machine learning methodology was devel-

oped to predict OFCs for patients with suspected peanut, egg,
or milk allergies. Multiple machine learning models and cross-
validation strategies were evaluated, with the best-performing
predictive models constructed by using an ensemble of models
obtained via the LUCCK algorithm.12 For this study, predictive
models comprising ensembles of naive Bayes, support vector ma-
chine, random forest, and LUCCK models were trained and eval-
uated, one of which considered OFCs solely from patients in the
avoidance arm of the LEAP study and the other of which utilized
challenges from patients in both arms (ie, the avoidance and con-
sumption arms). No separate model was made for the
consumption-only arm owing to the low percentage of failed
OFCs (3%) in that arm. Unlike in our previous model,11 no addi-
tional feature selection beyond those in Table I was used. The data
set was shuffled and split participant-wise into a 5-fold cross-
validation data set (83%) and test data set (16%) and then strati-
fied to preserve the pass-to-fail ratio of approximately 8:1, after
which the predictive models were constructed. For the IMPACT
and UM replication cohorts, the LEAP-trained machine learning
models were applied directly. For a detailed description of the
technical methods used, see the Supplemental Materials (avail-
able in the Online Repository at www.jaci-global.org).
Missing data
The UM study did not test for component Arapis hypogaea

(Ara h) 9. The missing data were imputed by using the mean
Ara h 9 values within the LEAP data set (0.170 kU/L). In 1 UM
sample, all of the components (Ara h 1, Ara h 2, Ara h 3, Ara h
8, and Ara h 9) were missing and similarly imputed by using their
respective LEAP study means. The IMPACT study did not collect
flare, Ara h 8, or Ara h 9 data; as such, these values were imputed
by using their associated LEAP study mean values of 2.43 mm,
1.23 kU/L, and 0.170 kU/L, respectively.
Model interpretation
Shapley Additive Explanations (SHAP) is a model interpreta-

tion method that uses the game-theoretic notion of Shapley values
to determine the contribution of each feature to a model’s
output.17 SHAP provides a means by which to elucidate a model’s
decision regarding individual samples and the aggregate impor-
tance of particular features. In the context of predicting OFCs, a
positive Shapley value for a given feature and sample will
contribute toward the model predicting an OFC pass, whereas
negative values will contribute to the model predicting an OFC
failure.

https://www.jaci-global.org


TABLE I. Demographic and clinical characteristics of patients in the LEAP group

Characteristic Passed OFC (n 5 412) Failed OFC (n 5 52) P value

Age (mo), mean (95% CI) 7.78 (7.61-7.95) 7.61 (7.09 - 8.12) .53

Sex (male), no. (%) 240 (58.3%) 36 (70.6%) .09

Race, no. (%) .46

White 306 (74.3%) 31 (60.8%)

Black 31 (7.5%) 5 (9.8%)

Asian 13 (3.2%) 2 (3.9%)

Mixed 57 (13.8%) 10 (19.6%)

Wheal size (mm), mean (95% CI) 0.41 (0.30-0.52) 10.04 (8.65-11.43) <.001

Flare size (mm), mean (95% CI) 0.67 (0.47-0.87) 17.73 (15.60-19.85) <.001

Total IgE level (kU/L), mean (95% CI) 499.84 (370.63-629.06) 868.51 (494.25-1242.77) .08

Peanut IgE level (kU/L), mean (95% CI) 1.04 (0.62-1.46) 43.82 (24.04-63.59) <.001

Ara h 1 level (kU/L), mean (95% CI) 0.07 (0.02-0.12) 17.38 (4.60-30.15) .01

Ara h 2 level (kU/L), mean (95% CI) 0.04 (0.02-0.06) 36.88 (15.76-58.00) .00

Ara h 3 level (kU/L), mean (95% CI) 0.14 (0.03-0.25) 4.58 (0.33-8.82) .05

Ara h 8 level (kU/L), mean (95% CI) 1.10 (0.54-1.65) 5.47 (0.14-10.81) .12

Ara h 9 level (kU/L), mean (95% CI) 0.28 (0.00-0.57) 0.73 (0.00-1.54) .31

TABLE II. Demographic and clinical characteristics of patients in the IMPACT cohort

Characteristic Passed OFC (n 5 0) Failed OFC (n 5 140) P value

Age (mo), mean (95% CI) N/A 36.81 (35.30-38.33) N/A

Sex (male), no. (%) N/A 94 (67.14%) N/A

Race, no. (%) N/A

White N/A 93 (66.43%)

Black N/A 6 (4.29%)

Asian N/A 15 (10.71%)

Mixed N/A 26 (18.57%)

Wheal size (mm), mean (95% CI) N/A 15.91 (14.97-16.86) N/A

Flare size (mm), mean (95% CI) N/A N/A N/A

Total IgE level (kU/L), mean (95% CI) N/A 606.79 (471.85-741.73) N/A

Peanut IgE level (kU/L), mean (95% CI) N/A 133.93 (100.58-167.29) N/A

Ara h 1 level (kU/L), mean (95% CI) N/A 17.79 (13.23-22.35) N/A

Ara h 2 level (kU/L), mean (95% CI) N/A 70.29 (56.69-83.90) N/A

Ara h 3 level (kU/L), mean (95% CI) N/A 4.10 (2.75-5.45) N/A

Ara h 8 level (kU/L), mean (95% CI) N/A 1.23 (1.23-1.23) N/A

Ara h 9 level (kU/L), mean (95% CI) N/A N/A N/A

N/A, Not applicable.

No P values are available for this group because all of the participants reacted on food challenge.
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Statistical comparison
LR models for OFC outcome prediction were constructed by

using the same variables as used in the aforementioned machine
learning methodology for each data set (Table I). Additionally,
ensembles of LR models were created for a more commensurate
comparison with the LUCCK ensemble models.
Study approval
The LEAP and IMPACT deidentified data sets are publicly

available as already stated. The internal UM study was approved by
the UM institutional review board under identifier HUM00165471,
and all participants or their parent/guardian(s) provided informed
consent; pediatric patients provided age-appropriate assent (assent
was waived for those aged 6 or younger).
Data availability
The LEAP and IMPACT deidentified data sets are publicly

available, as stated earlier. For the internal UM data set, all data
pertain to human participants, and data requests would require a data
transfer agreement subject to standard UM Data Office oversight,
with the initial request directed to the corresponding author.
RESULTS
The LEAP data set used for this study’s analysis contained

463 challenges, of which 52 (11.2%) resulted in reactions (ie,
the patients undergoing the challenge experienced an adverse
reaction), whereas all of the other challenged participants
passed (ie, no adverse reaction was observed) (Table I). The
mean age of initial enrollment was approximately 8 months,
and all challenges were performed in patients aged 60 months.
Compared with the nonreactors, those participants who experi-
enced reactions had larger skin test wheals (10 mm vs 0 mm)
and flares (18 mm vs 1 mm) as well as higher levels of
peanut-specific IgE (43.8 vs 1.0 kU/L) and Ara h 2 IgE (36.9
vs 0.04 kU/L).

The IMPACT data set contained 140 entry OFCs, with all 140
of the participants who underwent OFC (100%) experiencing



TABLE III. Demographic and clinical characteristics of patients in the UM cohort

Characteristic Passed OFC (n 5 38) Failed OFC (n 5 8) P value

Age (mo), mean (95% CI) 136.01 (92.07-179.95) 86.24 (44.42-128.05) .14

Sex (male), no. (%) 19 (50.00%) 6 (75.00%) .20

Race, no. (%) .51

White 28 (73.68%) 7 (87.50%)

Black 3 (7.89%) 0 (0.00%)

Asian 4 (10.53%) 2 (25.00%)

Mixed 1 (2.63%) 1 (12.50%)

Wheal size (mm), mean (95% CI) 3.84 (2.77-4.92) 11.25 (7.54-14.96) .01

Flare size (mm), mean (95% CI) 12.68 (8.12-17.25) 29.25 (19.11-39.39) .02

Total IgE level (kU/L), mean (95% CI) 275.08 (54.00-496.15) 184.25 (54.75-313.75) .50

Peanut IgE level (kU/L), mean (95% CI) 0.91 (0.49-1.33) 9.25 (0.00-21.23) .24

Ara h 1 level (kU/L), mean (95% CI) 0.54 (0.05-1.02) 0.30 (0.00-0.70) .48

Ara h 2 level (kU/L), mean (95% CI) 0.27 (0.11-0.42) 4.52 (0.00-11.32) .29

Ara h 3 level (kU/L), mean (95% CI) 0.14 (0.09-0.19) 0.28 (0.00-0.60) .44

Ara h 8 level (kU/L), mean (95% CI) 0.27 (0.09-0.45) 1.24 (0.00-3.05) .36

Ara h 9 level (kU/L), mean (95% CI) N/A N/A N/A

TABLE IV. Demographic and clinical characteristics of patients in the combined UM and IMPACT cohort

Characteristic Passed OFC (n 538) Failed OFC (n 5 148) P value

Age (mo), mean (95% CI) 136.01 (92.07-179.95) 39.49 (36.26-42.71) <.001

Sex (male), no. (%) 19 (50.00%) 100 (67.57%) .04

Race, no. (%) .11

White 28 (73.68%) 100 (67.57%)

Black 3 (7.89%) 6 (4.05%)

Asian 4 (10.53%) 17 (11.49%)

Mixed 1 (2.63%) 27 (18.24%)

Wheal size (mm), mean (95% CI) 3.84 (2.77-4.92) 15.66 (14.73-16.59) <.001

Flare size (mm), mean (95% CI) 12.68 (8.12-17.25) 3.88 (2.76-5.00) <.001

Total IgE level (kU/L), mean (95% CI) 275.08 (54.00-496.15) 583.95 (455.19-712.71) .02

Peanut IgE level (kU/L), mean (95% CI) 0.91 (0.49-1.33) 127.19 (95.31-159.07) <.001

Ara h 1 level (kU/L), mean (95% CI) 0.54 (0.05-1.02) 16.84 (12.49-21.20) <.001

Ara h 2 level (kU/L), mean (95% CI) 0.27 (0.11-0.42) 66.74 (53.64-79.83) <.001

Ara h 3 level (kU/L), mean (95% CI) 0.14 (0.09-0.19) 3.89 (2.61-5.18) <.001

Ara h 8 level (kU/L), mean (95% CI) 0.27 (0.09-0.45) 1.23 (1.13-1.32) <.001

Ara h 9 level (kU/L), mean (95% CI) N/A N/A N/A

Flare (for IMPACT cohort members) and Ara h 9 (for all cohort members) values are imputed from the LEAP study data, as earlier.
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FIG 1. Summary of the performancemetrics of the OFC outcome prediction

models for the LEAP and combined UM-IMPACT data sets. The top

machine learning (ML) approach versus the ensemble LR is shown for

the 2 cohorts.
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reactions (Table II). The mean age of enrollment was approxi-
mately 37 months, with all challenges occurring at enrollment.
Because all of the participants had reactions, comparisons be-
tween reacting and nonreacting groups are not feasible; hence,
the lack of P values in Table II. The mean skin test wheal size
was 16 mm; flare was not reported in this study. The mean
serum-specific peanut IgE level was 133.9 kU/L, and the mean
Ara h 2 level was 70.3 kU/L.

The UM internal data set contained 46 patients who underwent
OFC, of whom 8 (17%) experienced reactions (Table III). The
mean age at challenge was approximately 127 months. Those
with reactions had larger skin test wheals (11 mm vs 4 mm) and
flares (29 mm vs 13 mm) than the nonreactors did, as well as
higher levels of peanut-specific IgE (9.3 vs 0.9 kU/L) and Ara h
2 IgE (4.5 vs 0.04 kU/L).

Given the high rate of reactions in the IMPACT data set and the
high rate of nonreactions in the UM data set, we combined these
data sets to evaluate how the machine learning approaches would
perform in a larger, aggregate data set containing a mix of higher-
risk and lower-risk peanut OFCs covering various outcomes. This
aggregate ‘‘combined’’ validation data set is summarized in
Table IV; it contains data on a total of 186 OFCs, with a total of
148 reactions (80%).

The results of the top-performing machine learning model
versus the LR results in the LEAP and combined UM-IMPACT



TABLE V. Summary statistics of most accurate machine learning analysis outcomes by cohort

Data set/metric AUC F1 Accuracy Sensitivity Specificity PPV NPV Best model

LEAP test data set (avoidance) 0.985 0.985 0.976 0.971 1 1 0.875 LUCCK ensemble

LEAP test data set (all) 0.993 0.993 0.987 0.986 1 1 0.9 LUCCK ensemble

UM validation 0.816 0.774 0.696 0.632 1 1 0.364 LUCCK ensemble

IMPACT validation (baseline) N/A 0 0.993 N/A 0.993 0 1 SVM ensemble

UM-IMPACT combined data set 0.871 0.829 0.935 0.763 0.980 0.906 0.942 Naive Bayes ensemble

% Difference between the LEAP and UM-IMPACT data sets –12% –17% –5% –23% –2% –9% 5%

NPV, Negative predictive value; PPV, positive predictive value; SVM, support vector machine. The bolded datasets were used in the calculation of the % difference.
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data sets are each presented in Fig 1 and in Table V. The LUCCK
ensemble model performed best in the LEAP data set, providing
an AUC of 0.993, sensitivity of 0.986, and specificity of 1.000.
These results compared favorably with those provided by the
LR ensemble in LEAP, which gave an AUC of 0.860, sensitivity
of 0.942, and specificity of 0.778. In the replication combined
UM-IMPACT data set, the naive Bayes ensemble machine
learning model performed best, providing an AUC of 0.871,
sensitivity of 0.763, and specificity of 0.980. These results also
compared favorably with those provided by the relevant LR
ensemble, which provided an AUC of 0.526, sensitivity of
0.053, and specificity of 1.000. Full details regarding each ma-
chine learning model’s performance in each group are available
in Table E1 (see the Online Repository at www.jaci-global.org).

The predictive model for the LEAP and combined UM-
IMPACT cohorts were each analyzed via SHAP to understand
the data components onwhich themodel relied tomake decisions.
Fig 2 presents the mean absolute Shapley values for each cohort,
which allow us to investigate the relative contribution of each
feature irrespective of class. On average in LEAP (Fig 2, A), flare
size had the highest mean Shapley value, closely followed by
wheal size. Rounding out the top 5 in decreasing order of mean
values were total IgE level, serum-specific peanut IgE level,
and age. Component peanut IgE features such as Ara h 3 and
Ara h 9 comprised the lowest-contributing factors, with the
exception of Asian race, which ranked 14th among the 15 features
in terms of overall contribution. In the combined UM-IMPACT
cohort (Fig 2, B), wheal size and Ara h 2 IgE were the top 2 con-
tributors, and flare ranked third. Interestingly, total IgE level was
much less important than peanut-specific IgE and/or component
level testing and skin test results.

The per-sample SHAP analyses for the top 4 features—flare
size, wheal size, total IgE level, and peanut IgE levels—are
presented in Fig 3 for both the LEAP and combined UM-
IMPACT cohorts. In the graphs in Fig 3, each point represents
a sample in the test set, with the blue points representing those
samples that the model predicts will not react in OFC, and the
red points being those that the model predicts will result in a
reactive OFC. The x-axis corresponds to Shapley value, with
positive values indicating that the given feature contributes to-
ward the model making a prediction of OFC pass and negative
values associated with predictions of OFC failure. The y-axis
corresponds to the numeric value of the feature. For example,
in Fig 3, which compares model predictions with wheal size,
one can observe that large wheal sizes have negative Shapley
values, which indicates that on the basis of wheal size alone,
the model would predict a failed OFC, and this is indeed the
prediction made by the model for many samples, as indicated
by the red points.
Fig 4 displays the degree to which each data point correlated
positively or negatively with all of the other data points included
in the machine learning model. Of note, the SPT wheal and flare
size results were positively correlated with each other as well as
with peanut-specific total IgE and Ara h 1, Ara h 2, and Ara h 3
IgE level results. Consistent with the SHAP analysis, both SPT
wheal and flare size correlated strongly with a reaction on OFC.
DISCUSSION
Given the known limitations of current testing paradigms,

interest in new diagnostic approaches for FA is strong.18

Although attempts have been made to use advanced statistical
methods to enhance the accuracy of prediction of peanut OFC
outcome, these attempts have rarely result in AUC values greater
than 0.90.10,19 In the present study, even a well-defined clinical
trial population (the LEAP population) produced an AUC of
only 0.85 with use of LR ensemble models for OFC outcome
(see Table E1). The relatively poor performance of SPT and
IgE level results alone in predicting OFC outcome, particularly
in the context of equivocal histories of allergy, has prompted at-
tempts to develop novel test modalities.20,21 Novel FA diag-
nostic approaches include component-resolved
diagnostics,22,23 ex vivo allergen activation of allergic cell
types,24-28 and epitope mapping.29 Although these are of great
interest and potential, various logistic or biologic aspects of
these tests make their widespread adoption difficult.

Machine learning–based approaches provide 2 potential ad-
vantages to add to FA diagnostic development. First, machine
learning can rely on existing data sets, meaning that secondary
use of extant data can be reanalyzed by usingmachine learning, as
has been done herein. Second, machine learning can be applied to
new data sets as they are developed, meaning that nearly any
approach to FA can be folded into a machine learning context to
test the additive effect of new test modalities. Furthermore, if
machine learning approaches can become successful, the
increasing ubiquity of internet access could result in relatively
rapid adoption at the clinical level, avoiding the logistic and
biologic hurdles mentioned for advanced testing via other means.

To our knowledge, this study is the first in FA to use machine
learning on a well-reported, well-controlled, clinical trial data
set to quantify OFC likelihood based on readily available
clinical parameters. This study can be viewed in part as
validating the prior work from our group in Zhang et al11 and
also as demonstrating how machine learning models trained
on one FA data set may be made readily applicable to other
data sets. We are aware of a similar report of machine learning
used in cooked egg allergy30; that study is notable as an analysis
of a clinical retrospective cooked egg challenge cohort, although

http://www.jaci-global.org


FIG 2. Mean absolute Shapley values for the final ensemble machine learning model with the greatest

accuracy for the LEAP cohort (A) and combined UM-IMPACT cohort (B). Higher values for a given feature

indicate a greater contribution toward the model’s prediction over the test set.
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the predictive power of the machine learning model was rela-
tively low, perhaps partly because of the total number of OFCs
analyzed (n 5 67). Machine learning has been applied in other
FA contexts. One intriguing work described analyzing the infant
gut microbiome by using machine learning–based approaches to
define ultimate FA risk.31 Another study focused on epigenetic
markers associated with FA, although this work was not clearly
defined by OFC.32 A final study used machine learning to eval-
uate physician diagnoses of FA in the Canadian Primary Care
Sentinel Surveillance Network, but that study was not neces-
sarily defined by OFC either.33 Given the limited reports on ma-
chine learning in FA, multiple experts have called for machine



FIG 3. A comparison of Shapley values for the top 4 features each for the LEAP cohort (A) and combined

UM-IMPACT cohort (B). Note that these are shown in order of model reliance on the feature in question,

such that there is a different order in (A) versus in (B).
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learning–based approaches to be applied in FA and to multi-
omics approaches related to FA.34-36 The current work helps
to answer this call.

One key goal of this study was to determine whether a
machine learning model trained on a specific data set can
accurately predict outcomes in another data set. The LEAP-
trained and LEAP-tested machine learning model provided
outstanding accuracy in predicting LEAP OFC outcomes.
Crucially, machine learning approaches trained on the LEAP
data set still provided good predictive capacity when applied
to the combined UM-IMPACT data set. Given that these 3 data
sets are fundamentally different, the generalizability between
the data sets is a very useful observation from this work. For
example, the fact that open and double-blinded OFCs results
were used in the different studies shows that these models may
be able to generalize between result types. These results
suggest that a larger, multisite, coordinated study has potential
to develop a trained machine learning model that might
provide a clinically usable prediction approach for OFC
outcomes.



FIG 4. Correlation heatmap of all values included in the LUCCK machine learning model for LEAP.
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Although skin testing alone may not fully predict OFC
outcomes, in the machine learning context such data points can
contribute to accurate predictions. Flare size was the most
contributive feature in predicting OFC outcome as determined
by SHAP for the LEAP cohort. This corroborates the finding in
Zhang et al,11 which utilized a data set distinct from that used in
this study. As shown in Fig 3, A, larger flare sizes are associated
with adverse OFC outcomes, with all cases having a flare size
of at least 17 mm resulting in reactive OFCs. The relatively
high importance of flare size is intriguing, given the low emphasis
placed on flare sizes in predicting peanut OFC results in clinical
practice.4,37 In addition, the importance of wheal size as deter-
mined by SHAP can be readily understood by looking at the indi-
vidual values presented in Fig 3. Reactive OFCs are associated
with higher wheal sizes, with all of the OFCs for which the wheal
was at least 8 mm in size corresponding to OFC failures; this re-
produces the cutoff reported in Roberts et al.38 For wheal sizes of
5 mm and lower, there is a plurality of OFCs (clustered between
Shapley values of 0.0 and 0.4), for which wheal size contributes to
a prediction of a passed OFC; yet, there are still a sizeable number
of OFCs (the cluster between Shapley values of –20 and –5) for
which the wheal size suggests an OFC failure. When applied to
the combined UM-IMPACT data set, similar, but not identical,
patterns emerge. Although flare size was not the top feature in
this data set, it did rank third, still showing some importance.
Whether the potential relative importance of flare size bears out
in future data sets remains to be seen, but whether flare size
does hold predictive meaning, defining its role could help
improve OFC prediction in the future.

One potential concern might be whether the highly correlated
values of wheal size and flare size each improve the model
independently. Individual models trained via LUCCK mitigate
this issue by determining the importance of similarity in each
feature individually and by class, allowing for a better integration
of features derived from similar and different modalities.
Moreover, the use of ensemble models, which were the highest-
performing models on both the LEAP and combined UM-
IMPACT data sets, greatly reduces (but does not entirely
eliminate) the likelihood of overfitting,39 especially when trained
against fewer training examples, which is a major issue in other
complex machine learning methods for OFC prediction.

This study has several limitations. The data utilized in this
retrospective study were for a single food. In addition, the
validation cohort was amalgamated from 2 data sets to better
cover a range of OFC outcomes. As such, validation utilizing a
multicenter data set with standardized data inputs and minimal
missing data, as well as in multiple food allergies, is necessary to
ensure that the models can be generalizable. Furthermore, given
that various factors such as skin tone, ‘‘sensitive skin’’ status, and
UV light exposure may affect the measurement of wheal and flare
size, future work will require attention to how consistency of SPT
results might affect these models’ outputs.40 In addition, the pea-
nut introduction or avoidance methods (either condition was pur-
sued until age 60 months) in the LEAP study could produce
results that differ from real-world food introductions. Confirma-
tion of these results by using a separate data set with more typical
food introduction methods will address this potential confounder.
Moreover, the LEAP study inclusion criteria required participants
to have either an egg allergy, severe eczema, or both, which likely
led to the observed higher prevalence of peanut allergy in the
study population (11%) than in the general population (2%).41

Additional data modalities, such as prior ingestions or reactions,
the presence of comorbid allergic disease (including atopic
dermatitis and/or multiple food allergies), family history,
patient-reported symptoms, novel diagnostics, and genomic in-
formation, were not included in the models. Such modalities
could improve model performance and should be included in
future models for OFC prediction.

In the future, comparing the outcome of a refined machine
learning approach to predictions made by trained, experienced
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allergists and then conducting OFCs prospectively would be the
most definitive method to decide whether a machine learning–
based approach can accurately predict OFC outcomes and
potentially identify which features should be included and/or
weighted to predict those outcomes. In addition, future work to
determine the most accurate machine learning algorithm and
approach would require a software system implementation. This
would likely include the creation of a website and/or smartphone
app to process inputs and deliver validated predictions, followed
by testing in the appropriate context. Thismight include a primary
care–focused or underserved region(s) study to definewhether the
approach could actually deliver an expansion of accurate allergy
care beyond the allergy office.

In conclusion, although machine learning–based approaches to
FA diagnosis hold promise, limited reports of such approaches
exist. The present work demonstrates that machine learning–
based approaches using clinically available FA data can provide
accurate assessments of OFC risk and may improve on the
accuracy gained via standard statistical models. Novel diagnos-
tics, genomic and epigenomic data, and perhaps as-yet undefined
factors may further enhance the potential accuracy of this
approach. Future work to define machine learning as a diagnostic
contributor in populations with allergy to other foods and more
heterogeneous FA populations is needed, as the models, features,
and/or weighting of features may ultimately vary by food allergen
or other features. In addition, future work may seek to deploy
machine learning in predicting the severity of an OFC reaction
and not just the likelihood of a reaction. The approach used here
can serve as a blueprint for the necessary work that can follow.
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