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Abstract

Background: Genome-wide association studies have revealed that rare variants are responsible for a large portion
of the heritability of some complex human diseases. This highlights the increasing importance of detecting and
screening for rare variants. Although the massively parallel sequencing technologies have greatly reduced the cost
of DNA sequencing, the identification of rare variant carriers by large-scale re-sequencing remains prohibitively
expensive because of the huge challenge of constructing libraries for thousands of samples. Recently, several studies
have reported that techniques from group testing theory and compressed sensing could help identify rare variant
carriers in large-scale samples with few pooled sequencing experiments and a dramatically reduced cost.

Results: Based on quantitative group testing, we propose an efficient overlapping pool sequencing strategy that
allows the efficient recovery of variant carriers in numerous individuals with much lower costs than conventional
methods. We used random k-set pool designs to mix samples, and optimized the design parameters according to an
indicative probability. Based on a mathematical model of sequencing depth distribution, an optimal threshold was
selected to declare a pool positive or negative. Then, using the quantitative information contained in the sequencing
results, we designed a heuristic Bayesian probability decoding algorithm to identify variant carriers. Finally, we
conducted in silico experiments to find variant carriers among 200 simulated Escherichia coli strains. With the
simulated pools and publicly available Illumina sequencing data, our method correctly identified the variant
carriers for 91.5–97.9% variants with the variant frequency ranging from 0.5 to 1.5%.

Conclusions: Using the number of reads, variant carriers could be identified precisely even though samples were
randomly selected and pooled. Our method performed better than the published DNA Sudoku design and
compressed sequencing, especially in reducing the required data throughput and cost.
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Background
Rare variants are responsible for a large portion of the
heritability of some common complex human diseases
[1,2]. Genome-wide association studies have focused on
the contribution of variants of low minor allele fre-
quency (MAF 0.5–5%), or of rare variants (MAF < 0.5%)
[2]. The functional and evolutionary impacts of rare var-
iants have been reported; therefore, large-scale screening
for disease-associated rare variants is becoming increas-
ingly important [3,4]. One major application of rare vari-
ants genotyping is in screens for rare genetic disorders
such as Tay–Sachs disease and thalassemia [5].
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Because of the extremely low frequency of rare variants,
sample sizes must be large enough to guarantee efficient
observations. The cost of DNA sequencing has dropped
dramatically with the introduction of the massively paral-
lel sequencing technologies. However, identifying rare
variant carriers by sequencing individual samples separ-
ately remains prohibitively expensive because of the huge
challenge of constructing sequencing libraries for thou-
sands of samples [6,7]. Barcoding has been developed as a
powerful approach to cost-effectively determine the geno-
type of each individual [7]. To further reduce the cost of
large-scale screens for rare variant carriers, several tech-
niques based on the group testing theory [8] and com-
pressed sensing [9,10] to construct overlapping pool
sequencing strategies have been used. These strategies
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have helped decrease the sequencing times for rare variant
carrier identification and further lower the cost [11-14].
Because a large number of samples are pooled together

and then sequenced, overlapping pool sequencing uses
fewer pools to identify rare variant carriers among large
numbers of individuals. Thus, overlapping pool sequen-
cing can vastly reduce the time and cost for DNA library
preparation. Some overlapping pool sequencing programs
return true/false values after testing each pool; this
scheme was adopted by Erlich et al. [11], Prabhu and Pe’Er
[12], and Cao et al. [14], who used the number of normal
and variant reads in each pool to determine whether a
pool contained carriers. However, the quantitative infor-
mation in the sequencing data, which can be used to esti-
mate the percentage of variant chromosomes in a pool, is
missed in these methods. Quantitative group testing is an
alternative scheme that takes the quantitative information
into account, thus rare variant carriers can be identified
efficiently [13].
We propose an efficient random overlapping pool se-

quencing strategy with quantitative group testing for the
identification of rare variant carriers using massively par-
allel sequencing data. Because of the excellent perform-
ance of random designs in classic group testing [15,16],
we employed a random k-set pool design [17] to mix
samples. The parameters of the random k-set pool de-
sign can be selected appropriately according to an indi-
cative probability value. Based on a depth model for
pooled sequencing, we calculated the optimal cut-off of
the number of reads containing variants to distinguish
pools containing variant carriers from those that do not.
Using the quantitative information contained in the se-
quencing data, we designed a heuristic Bayesian decod-
ing algorithm to identify variant carriers accurately.
Compared with the DNA Sudoku algorithm [11] and
compressed sequencing [13], our method required less
data throughput. Finally, we applied our method to
identify variant carriers among 200 simulated Escherichia
coli strains using simulated pools and publicly available
Illumina sequencing data. The results showed that our
method could successfully identify carriers for 91.5–97.9%
of the variants with frequencies ranging from 0.5 to 1.5%.

Methods
Random k-set pool design
Random k-set pool designs were first proposed by Bruno
et al. [15] for efficient DNA clone library screening. In
such a design, each clone is pooled in exact k pools that
are chosen with equal chance. Random k-set pool de-
signs are easy to specify for any number of pools and are
known to be efficient in classic group testing, but they
have not been used in real situations, partly because of
the presence of different sample sets with identical test
sets that are indistinguishable when the test results are
qualitative [16]. However, this problem can be overcome
by quantitative tests such as sequencing experiments.
For n samples containing d positive samples, the basic

objective of a random k-set pool design is to identify all
the positive samples with a small number of pooled
tests. In such a design, each sample occurs in exact k
pools, and a pool is defined as positive only when it con-
tains at least one positive sample; otherwise, it is defined
as negative. For a random k-set pool design with t pools,
Hwang [17] calculated the probability that a given set of
i pools is a negative one (Eq. (1)) and the expected num-
ber of negative pools (Eq. (2).
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where n_min and n_max are the minimum and maximum
number of negative pools, respectively, and h is a tempor-
ary variable. n_max = t - k, and n_min = 0 (if dk ≥ t) or
t - dk (if dk < t).
To evaluate the performance of random designs, Barillot

et al. [18] proposed that the number of unresolved negative
samples ( �N ) can be taken as a criterion. An unresolved
negative sample is defined as a negative sample that oc-
curred only in positive pools, as a result, its status can only
be confirmed by testing it separately. Negative samples that
are contained in at least one negative pool can confidently
be determined as negative; therefore, Hwang [17] calcu-
lated the expectation (Eq. (3)) and probability distributions
(Eq. (4)) for the number of unresolved negative samples.
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For quantitative group testing, negative pools are used

to recognize the negative samples and the test results of
positive pools are used to distinguish real positive samples
from unresolved negative samples. When the number of
positive pools is less than the sum of unresolved negative
samples and positive samples, numerous solutions are
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possible. Intuitively, a design that has more positive pools
and fewer unresolved negative samples will have a higher
probability of identifying all the positive samples correctly.
Therefore, we designed an indicative probability (PI;
Eq. (5)) to evaluate the performance of random k-set de-
signs in quantitative group testing. PI is the probability that
positive pools are more than the sum of unresolved nega-
tive samples and real positive samples; therefore, designs
with high PIs will perform better than designs with low PIs.

PI ¼
Xp max

i¼p min

t
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where p_min and p_max are the minimum and max-
imum number of positive pools, respectively, p_min = t -
n_max, and p_max = t - n_min. The derivation of Eq. (5)
is given in Appendix 1.

Optimal cut-off value for pooled sequencing
For overlapping pool sequencing, the DNA samples are
mixed and then sequenced. Samples from variant carriers
are treated as positive and samples from normal individ-
uals are treated as negative. To distinguish positive pools
containing variant carriers from negative pools consisting
of normal individuals, the cut-off for the number of reads
containing variants must be selected carefully to declare
whether a pool contains carriers or not. Ideally, the cut-off
value must guarantee that the minimum error rates are
obtained, including false-positive and false-negative rates.
The variation of sequencing depth distribution is sig-

nificantly greater than the mean [19,20]; therefore, in
recent studies, negative binomial distribution rather than
Poisson distribution has been used to model sequencing
depth. Following the study reported by Miller et al. [21],
we used a negative binomial model to estimate the se-
quencing depth distribution. Given the average sequen-
cing depth D, the depth that represents the number of
times a nucleotide is read follows a negative binomial
distribution NB D

r−1 ;
1
r

� �
where r is the variance/mean

ratio; r is related to sequencing platforms and genomes
and can be estimated from sequencing results (Eq. (6)).
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For a pool with N samples, given sequencing depth D
and average sequencing error rate perror, the probabilities
Pnv(Nv) and Ppv(Nv) that Nv reads containing variants are
observed in negative pools and positive pools, respectively,
are given by Eqs. (7) and (8). For a locus sequenced i
times, the number of sequencing errors follows a binomial
distribution Bin(i, perror).
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Similarly, the probabilities Pnn(Nn) and Ppn(Nn) that Nn

reads without variants are observed in negative pools and
positive pools, respectively, are given by Eqs. (9) and (10).
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where p is the percentage of variant chromosomes in
the pool. In a positive pool with N diploid DNA samples
and c heterozygous variant carriers, ignoring the bias in
mixing samples, the percentage of the variant chromo-
somes is p = c/(2N), while for haploid samples p = c/N.
The derivations of Eqs. (7)–(10) are given in Appendix 1.
Given Pnv(Nv) and Ppv(Nv), the formula for the false-

positive rate Fp and false-negative rate Fn in classifying pools
with a cut-off value T can be constructed (Eqs. (11) and (12)).

Fp ¼
X∞
i¼T

Pnv ið Þ ð11Þ

Fn ¼
XT−1
i¼0

Ppv ið Þ ð12Þ

The optimal cut-off T can be defined as the value that
minimizes the maximum values of Fn and Fp.

T ¼ argmin max Fn; Fpð Þ T∈ 1;D½ �gjf

Decoding algorithm
Our decoding procedure involves two steps. In the first
step, we identify negative pools according to the sequen-
cing results and cut-off values for each pool. Samples
that participate in any negative pools are classified as
from normal individuals. Then, separate the real positive
samples from unresolved negative samples according to
the quantitative information in the sequencing results.
The probability of observing the sequencing results under
the exact set of variant carriers should be greater than
taking other set of samples as variant carriers. Assuming
A is the set of variant carriers, the probability that the
sequencing result O is observed is given by Eq. (13).

PðOjAÞ ¼
Yt
i¼1

P Oiv;Oin AÞjð ð13Þ
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where Oiv and Oin are the number of reads with and
without variants in the ith pool. Given that A is the
set of variant carriers, if the ith pool is negative, then
P(Oiv, Oin|A) = Pnv(Oiv)Pnn(Oin); otherwise, P(Oiv, Oin|A) =
Ppv(Oiv)Ppn(Oin).
For the second step, we designed a Bayesian decoding

algorithm based on Eq. (13). To identify variant carriers
among haploid samples, after excluding resolved negative
samples, the rest of the samples form a set A0 = {S1,…,Sc}.
First, assuming that all the samples in A0 are variant
Algorithm 1 

Input: the set of possible variant carri

Output: the set of variant carriers Ai. 

1: For i = 0,…,c do

2: if i = 0 then

3: Pmax_0 = P(O | A0

sequencin
 is the set of variant carr

4: else

5: Ai = ∅

6: Pmax_i = 0 

7: for j = 1,…,c-i+1 do

8: Bj  replace t

9: Pj = P(O | Bj

10: if Pj ≥ Pmax_i then

11: Pmax_i = Pj; 

12: Ai  Bj; 

13: End if

14: End for

15: End if

16: End for

17: Return Ai with the maximum va
carriers, we calculate the probability of observing the se-
quencing results and denote it as Pmax_0. Next, replace
one positive sample in set A0 with a negative sample in
turn and repeat the probability calculation. Denote the
derived set that results in the maximum probability as A1

and the corresponding probability as Pmax_1. Replace A0

with A1 and repeat this step until Ac and Pmax_c are
obtained. Finally, the set Ai that results in the maximum
corresponding probability Pmax_i is defined as the set of
variant carriers. These steps are written as Algorithm 1.
ers A0, c = |A0| 

g results assuming A0

iers 

he jth

sample 

Bj is the set of variant carriers 

lue of Pmax_i
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Two kinds of positive samples need to be considered
while identifying variant carriers among diploid samples:
heterozygous carriers and homozygous carriers. First, sup-
pose that there are only heterozygous variant carriers; this
is analogous to finding variant carriers among haploid
samples. Then we present Algorithm 2 which is very simi-
lar to Algorithm 1 to recognize heterozygous and homozy-
gous variant carriers.
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Our decoding procedure to identify variant carriers
among diploid samples is summarized in Algorithm 3.
First, we suppose that only heterozygous variant carriers
exist and run Algorithm 1 to find the set of variant car-
riers C0. Then, run Algorithm 2 to recognize heterozy-
gous and homozygous variant carriers..

Results and discussion
Optimal cut-off value
To approximate the sequencing depth distribution for
data obtained by using Illumina sequencing platforms,
Miller et al. [21] found that the negative binomial distri-
bution with the variance/mean ratio r of 3 performed
much better than the Poisson distribution. Therefore, r
was set to 3 in our simulation unless otherwise stated.
For a pool consisting of 10 diploid samples, we calcu-

lated the false-positive and false-negative probabilities
Figure 1 Optimal cut-off values for pooled sequencing of 10 diploid s
whether a pool contains variant carriers. (b) Expected number of errors in
30 negative pools and 10 positive pools.
with different cut-off values when only one heterozygous
variant carrier was allowed in the positive pool. The
average sequencing error rate and whole depth were set
to 0.01 and 600×, respectively (Figure 1a). The results
verified the importance of selecting an appropriate cut-
off value. With smaller cut-off values, the probability of
misclassifying negative pools as positive is high. With
higher cut-off values, some positive pools will be mis-
classified. Both will lower the speed and accuracy of
decoding. From the results we can infer that the optimal
cut-off value is 14; here both the false-negative and
false-positive probabilities are very low (Figure 1a).
In most studies, because of the rarity of positive

samples, the number of positive and negative pools is
unequal. Therefore, selecting a cut-off value based on
the expected number of errors in classifying pools is a
more practical approach. For instance, when there are
30 negative and 10 positive pools mentioned above, the
optimal cut-off value is 16 (Figure 1b). In the following
simulation experiments, we adopted this kind of scheme
unless otherwise stated.
As mentioned, the variance/mean ratio r is related to

the sequencing platforms and genomes. Because the ob-
served variation is significantly greater than the mean of
the sequencing depth, r is larger than 1. Different values
for r yield distinct distributions. The pooling design
mentioned above consisting of 30 negative and 10 posi-
tive pools was used to estimate the effect of r on our
methods. We calculated the least depth required for
each pool to make the expected number of errors in
amples. (a) False-positive and false-negative probabilities for declaring
classifying pools for an overlapping pool sequencing experiment with
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classifying pools smaller than 1 by increasing the depth
gradually (see Additional file 1: Figure S1). From the re-
sults, we can see that our method performed even better
for smaller r, which required less data throughput.

Performance of the pipeline
To evaluate the performance of our method, we con-
ducted substantial simulations to identify four heterozy-
gous variant carriers among 100 haploid samples. 1000
replicates were done for each pair of design parameters:
pool number t and column weight k. The pooling matrix
was designed by collecting random binary vectors with
length t and weight k, meaning that each sample was
mixed in k of t pools. Identical vectors were deleted and
the steps were repeated until 100 vectors were obtained
to form the matrix.
We used the random function in Perl to simulate the

number of reads with and without variants in pooled se-
quencing. Sequencing error and mixing bias were added
to the simulation procedure to bring it closer to a real
situation. Sequencing error follows a binomial distribu-
tion in sequencing results, and in the simulation the
average sequencing error rate was set as 0.01. Mixing
bias is caused by the practical difficulty of mixing exactly
equal amounts of DNA samples. Based on the study
conducted by Shental et al. [13], a random variable
following the Gaussian distribution was added to each
non-zero element of the pooling matrix to simulate
Figure 2 Correct decoding rates for different column weights. Correct
all the variant carriers correctly.
mixing bias. The standard deviation of the Gaussian
distribution was 0.05, reflecting up to 5% average noise
in the mixed quantities of each sample.
After simulating the pooled sequencing results con-

taining the sequencing errors and mixing bias, the geno-
types of the 100 samples were reconstructed using our
decoding algorithm. The correct decoding rates, namely
the percentages of simulations that identified all the
variant carriers correctly, were determined (Figure 2).
The results showed that either a too large or too small k
negatively influenced the correct decoding rates. More-
over, a large k meant more pooling procedures and in-
creased experimental costs. Therefore, a proper column
weight k is critical for conducting experiments success-
fully and efficiently.

Cost-effective overlapping pool sequencing
The column weight k denotes the mixing times for each
sample in a random k-set pool design. For a given num-
ber of pools, a k that is too large or too small will lower
the decoding accuracy. We designed an indicative prob-
ability PI, which reflects the performance of random k-set
designs that could be used to choose the optimal column
weight k.
We calculated the correct decoding rates for different

k under the condition that 30 pools were allowed to
identify four heterozygous variant carriers among 100
diploid samples by conducting 1000 replicates for each
decoding rates represent the percentage of simulations that identify
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k. Next, PI was computed based on Eq. (5) and the
results are shown in Figure 3. A strong correlation was
observed between PI and the correct decoding rate
(Pearson correlation coefficient = 0.92, p-value = 9.8e-
06), especially before the correct decoding rate reached
the saturation point (k = 6, Pearson correlation coeffi-
cient = 0.98, p-value = 3.4e-3). The PI values and cor-
rect decoding rates for identifying variant carriers were
also obtained under different scenarios (see Additional
file 1: Figure S2). All the scenarios showed strong
correlations between PI and the correct decoding rate
before the correct decoding rate reached the saturation
point.
For a given pool number t, we defined the optimal k

as the minimum that obtains the maximum PI value,
which could maximize the correct decoding rate. De-
signs with optimal k require fewer pools or lower
sequencing depth. In practice, the optimal k is selected
by calculating the PI value without the need to conduct
simulations, thereby greatly reducing the computational
time required.
Next, we conducted a series of simulated overlapping

pool sequencing experiments with 20–90 pools and
10,000–40,000× overall sequencing data throughput
(Figure 4). One thousand replicates were conducted for
each scenario, and the column weight was set as the
optimal value (see Additional file 1: Table S1). The
correct decoding rates were low when few pools or data
throughput were used. However, adequate pools and
Figure 3 Correlation between the PI value and the correct decoding r
carriers among 100 diploid samples with a depth of 60× for each sample f
data throughput achieved higher accuracy but increased
the cost, which conflicted with our motivation in this
study. There is a trade-off between the number of pools
and data throughput. Hence, numerous simulations need
to be performed to verify whether a pool number and
data throughput pair can succeed in achieving high ac-
curacy (e.g., 95%). Clearly, the optimal design parameters
should be selected based on the whole cost of the
sequencing experiment.
For a given population with 100 diploid individuals

containing one heterozygous variant carrier, we gener-
ated several candidate designs in which over 95% of
the simulations correctly identified the variant carrier
(Table 1). The sequencing region was set to 30 Mb to fit
the human exome sequencing project [22]. The cost of a
sequencing experiment includes library construction and
data production. Using the cost model from our previ-
ous work [14], we inferred that the lowest cost design
was design II in Table 1. Compared with sequencing sep-
arately, which requires sequencing depths of 24.2× for
each sample to obtain correct decoding rates over 95%,
our method can save at least 50% of the cost. With the
same procedure, we generated the most cost-effective
designs for variants with different frequencies and differ-
ent sequencing region sizes (Table 2). For smaller se-
quencing regions and variants with lower frequencies,
there are greater cost reductions with our method com-
pared with those for larger regions and variants with
higher frequencies.
ate. Thirty pools were used to identify four heterozygous variant
or pooled sequencing. The range of the column weight k was 2–14.



Figure 4 Performance of overlapping pool sequencing using random k-set pool design. Column weight for each scenario was set to the
optimal value to identify four variant carriers among 100 samples.
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Comparisons with current methods
In 2009, benefiting from the Chinese remainder theorem,
Erlich et al. [11] put forward the DNA Sudoku design for
overlapping pool sequencing. A pattern consistency de-
coding algorithm was also developed by Erlich et al. [11]
to identify variant carriers with the DNA Sudoku design.
In 2010, Shental et al. [13] developed a method called
compressed sequencing to identify rare variants and their
carriers by borrowing techniques from compressed sens-
ing. Two designs were proposed in compressed sequen-
cing: one used pools with a random half of the samples
and the other used pools with sizes equal to the square
root of the number of samples. We compared the
Table 1 Five candidate designs to identify one heterozygous
variant carrier among 100 individuals

ID of candidate
design

# of
pools

Data throughput
(Gb)a

Cost

I 10 567.0 $35,051.0

II 20 292.8 $25,518.4

III 30 268.8 $29,246.4

IV 40 272.4 $34,437.2

V 50 265.2 $39,055.6

Sequencing separatelyb 100 72.6 $53,847.8
aAverage value from five simulations. Gb is short for gigabases. Data
throughput is the sequencing depth multiplied by the length of the
sequencing region. bSequencing separately is the strategy when each sample
is sequenced independently. All the candidate designs can identify the variant
carrier correctly in 95% of the simulations. The costs were estimated at $500
for one library preparation and $5300 for 100 Gb of data.
performance of our method in identifying rare variant
carriers with the performances of these two methods.
To identify variant carriers in 100 diploid samples, the

DNA Sudoku design with parameter d0 = 2 was employed
that required 36 pools. To maintain consistency, only 36
pools were allowed for the random k-set pool design and
compressed sequencing. Since the expected number of
positive and negative pools was not clear for the DNA
Sudoku design, the cut-off value for the number of reads
containing variants to declare a pool to be positive was set
based on the false-negative and false-positive rates, and
not on the expected number of errors in the classifying
pools.
With 36 pools, we computed the least sequencing data

throughput required for all the methods by increasing
the depth gradually, until 95% of the simulations identi-
fied all the carriers correctly for various percentages of
heterozygous variant carriers (Figure 5, Additional file 1:
Table S2). Our method performed better than both the
designs in compressed sequencing. The advantages of
our method were significant with large numbers of
variant carriers. The performance of the DNA Sudoku
design was similar to our method when the number of
variant carriers was no more than two, but it did not
perform well for variants with higher frequencies be-
cause of the limited efficiency of the pattern consistency
decoding algorithm. For these cases, more pools are
required for the DNA Sudoku design than for both our
method and compressed sequencing.



Table 2 Most cost-effective designs for different scenarios

Sequencing region (Mb) Sample size Frequency of variant # of pools Data throughput (Gb) Cost saving

Haploid sample 5 200 0.5% 20 83.4 85.7%

5 200 1% 30 124.8 78.6%

5 200 1.5% 40 128.8 73.4%

Diploid sample 30 200 0.25% 30 669.6 53.4%

30 100 0.5% 20 292.8 52.6%

30 100 1% 30 534.6 20.3%

The sequencing region for haploid samples was set as 5 Mb to fit the average length of the bacterial genome. The sequencing region for diploid samples was set
as 30 Mb to fit the human exome sequencing.
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The DNA Sudoku design is hard to specify for any num-
ber of pools. Therefore, we compared only the perform-
ance of compressed sequencing with that of our method
to identify four heterozygous variant carriers among 100
diploid samples by using the same amounts of pools
and sequencing throughput (Figure 6, Additional file 1:
Figure S3). Our method performed better for most
scenarios, especially when the sequencing throughput
was limited.

Simulation experiment
We applied our method to identify variant carriers
among 200 simulated E. coli strains. Illumina sequencing
reads of two E. coli strains were downloaded from
Figure 5 Least sequencing data throughput required to achieve a 95%
heterozygous variant carriers among 100 diploid samples. ‘Compressed seq
‘compressed sequencing (b)’ used pools with sizes equal to the square roo
GenBank’s Short Read Archive (O157:H7 strain [SRA:
ERR018562]) and BGI’s FTP site (O104:H4 strain, ftp://
ftp.genomics.org.cn/pub/Ecoli_TY-2482). We treated the
O157:H7 strain as the variant carrier and the O104:H4
strain as the normal sample. Bowtie0.12.9 [23] was used
to map the O157:H7 reads to the O104:H4 genome, and
SAMtools 0.1.19 [24] was used to call single base muta-
tions. Because the mean depth was 134× for O157:H7,
mutations with depths lower than 130 or higher than
140 were removed to control the quality; the remaining
1271 mutations were used in the analysis.
We conducted three simulation experiments to valid-

ate the ability of our method to identify carriers of vari-
ants with frequencies ranging from 0.5 to 1.5%. Based
correct decoding rate. Only 36 pools were allowed to identify
uencing (a)’ used pools with a random half of the samples, and
t of the number of samples.

ftp://ftp.genomics.org.cn/pub/Ecoli_TY-2482
ftp://ftp.genomics.org.cn/pub/Ecoli_TY-2482


Figure 6 Difference in correct decoding rate between our method and compressed sequencing. The design that harnessed pools with a
random half of the samples was used for compressed sequencing. The heat map indicates the correct decoding rates using our method minus that of
compressed sequencing. Our method performed much better than compressed sequencing, especially when the data throughput was limited.
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on the results in Table 2, we designed the pooling matrix
and sequencing depth so that 95% of the simulations
correctly identified the variant carriers. Next, pooled
sequencing was conducted by selecting reads randomly
from the data set and mixing them in silico. Considering
up to 5% average noise in the DNA quantities of each
sample in the pooling procedure, the number of reads
for each sample was revised with a random coefficient
following a Gaussian distribution to simulate reality.
Bowtie was used to map pooled reads, and Perl scripts
were used to count the reads with and without variants
that were mapped at the loci of variants. After the
decoding procedure, variant carriers could be identified
correctly for 91.5–97.9% variants. This result was con-
sistent with the design capability (Table 3).

Conclusions
Here, an efficient method that harnesses random k-set pool
designs and massively parallel sequencing technologies to
Table 3 Correct decoding rate of our method in the
identification of variant carriers

Experiment Frequency
of variant

Variant
carriers

Correct
decoding rate

1 0.5% 4th 97.9%

2 1% 164th, 193rd 93.5%

3 1.5% 31st, 90th, 141st 91.5%
identify rare variant carriers is presented. The parameters
of the random k-set pool design can be selected appropri-
ately depending on an indicative probability. According to
the depth model for pooled sequencing, the optimal cut-
off value to separate negative pools from positive pools
was designed. Taking advantage of the quantitative infor-
mation in the sequencing results, a heuristic Bayesian
decoding algorithm to identify the variant carriers was
developed. Compared with the DNA Sudoku design and
compressed sequencing, our method showed potential
advantages, especially in decreasing the required data
throughput. Finally, we applied our method to identify
variant carriers among 200 simulated E. coli strains using
simulated pools and Illumina sequencing data. Our
method successfully identified variant carriers at reduced
experimental costs.
For the accurate identification of variant carriers, the

sequencing depth and pool number must be adequate to
overcome sequencing errors and mixing bias. Consider-
ing the trade-off between the pool number and data
throughput, substantial simulations need to be per-
formed to verify whether a design is capable of identify-
ing all the variant carriers correctly. Because the overall
cost of overlapping pool sequencing stems from the
pooling procedure, library construction, and data pro-
duction, the optimal design depends on the whole cost.
Our decoding algorithm identifies the variant carriers

by maximizing the posterior probability, and does not
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depend too much on the rarity of variants. Therefore,
our approach can succeed even for low frequency vari-
ants. Furthermore, the sequencing qualities that indicate
the sequencing error probabilities could be integrated
into the calculation of the posterior probability in the
decoding procedure to improve the accuracy. Compared
with compressed sequencing, our decoding procedure
was very time-consuming because of the substantial
calculation of the posterior probability. This will be
improved in future work.
Further improvement could be made with a reasonable

depth model. Although in many studies negative bino-
mial distribution rather than Poisson distribution has
been used to fit the sequencing depth, numerous differ-
ent models exist. We could not determine which model
fit the depth distribution best because, in previous stud-
ies, these models have not been compared. Additionally,
different sequencing procedures and platforms, such as
exome sequencing and whole genome sequencing, pro-
duce distinct depth distributions. We aim to employ a
better depth model to improve the performance of our
method.
Our method has the advantage over compressed

sequencing because required data throughput is reduced.
However, because each sample is sequenced multiple
times, the required data throughput is still substantial.
Third-generation sequencing technologies [25,26], which
significantly reduce the cost for data production, may
help to overcome this drawback. We expect that our
method could be applied not only in sequencing experi-
ments but also in other fields as long as the pooled experi-
mental results contain quantitative information about the
number of positive samples.

Appendix 1: Derivations of Eq. (5) and Eqs. (7)–(10)
Eq. (5): The indicative probability PI is the probability
that positive pools are more than the sum of unresolved
negative samples and real positive samples. If, Np is the
number of positive pools, �N is the number of unresolved
negative samples, and d is the number of positive sam-
ples, then PI can be written as A(1).

PI ¼
Xp max

i¼p min

P Np ¼ i
� �

P �N þ d ≤ ið Þ ðA1Þ

where p_min and p_max are the minimum and max-
imum number of positive pools, respectively.
Because Np=i indicates that there are t - i negative pools,

P(Np=i) can be formulated as A(2). Because P �N þ d≤ið Þ =
P �N≤i−dð Þ , P �N þ d≤ið Þ can be formulated as A(3). After
integrating A(1)–A(3), PI can be formulated as A(4).

P Np ¼ i
� � ¼ t

t−i

� �
NEG t−ið Þ ðA2Þ
P �N þ d ≤ ið Þ ¼
Xi−d
j¼0

P �N ¼ jð Þ ðA3Þ

PI ¼
Xp max

i¼p min

t
t−i

� �
NEG t−ið Þ

Xi−d
j¼0

P �N ¼ jð Þ ðA4Þ

Eq. (7) and Eq. (9): These equations define the prob-
abilities that Nv reads containing variants are observed
in a negative pool (Pnv(Nv)), and Nn reads without vari-
ants are observed in a negative pool (Pnn(Nn)), respect-
ively. Briefly, Pnv(Nv) can be written as A(5).

Pnv Nvð Þ ¼
X∞
i¼Nv

P ið ÞPe Nv iÞjð ðA5Þ

where P(i) is the probability that i reads are obtained,
and Pe(Nv|i) is the probability that Nv errors occur
among these i reads. Because the depth follows a nega-
tive binomial distribution and sequencing errors follow a
binomial distribution, these two probabilities can be for-
mulated as A(6) and A(7). In A(6), D and r are the mean
depth of coverage for pooled sequencing and the vari-
ance/mean ratio, respectively. In A(7), perror is the mean
sequencing error rate.

P ið Þ ¼ NB i;
D
r−1

;
1
r

� �
ðA6Þ

Pe Nv iÞ ¼ Bin Nv; i; perrorð Þjð ðA7Þ
After integrating A(5)–A(7), Pnv(Nv) can be formulated

as A(8).

Pnv Nvð Þ ¼
X∞
i¼Nv

NB i;
D
r−1

;
1
r

� �
Bin Nv; i; perrorð Þ ðA8Þ

The derivation of the formula for Pnn(Nn) (A(9)) is
similar to the derivation for Pnv(Nv).

Pnn Nnð Þ ¼
X∞
i¼Nn

NB i;
D
r−1

;
1
r

� �
Bin i−Nn; i; perrorð Þ

ðA9Þ
Eq. (8) and Eq. (10): These equations define the prob-

ability that Nv reads containing variants are observed
in a positive pool (Ppv(Nv)) and Nn reads without vari-
ants are observed in a positive pool (Ppn(Nn)), respect-
ively. The observations of a variant in a positive pool
consist of two parts: real variants from variant chro-
mosomes, and false variants resulting from sequencing
errors. Briefly, Ppv(Nv) can be written as A(10) where
PN(x) stands for the probability that x reads containing
variants stemming from the sequencing results of
normal chromosomes, and PP(O - x) denotes the
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probability that O - x reads contain variants from variant
chromosomes.

Ppv Nvð Þ ¼
XNv

x¼0

PN xð ÞPP Nv−xð Þ ðA10Þ

By applying a similar procedure to the one used to
obtain A(8) and A(9), PN(x) and PP(Nv - x) can be for-
mulated as A(11) and A(12). The only difference is the
mean sequencing depth of coverage. Because the per-
centages of variant chromosomes and normal chromo-
somes are p and 1 - p, respectively, the mean depths of
coverage for sequencing variant chromosomes and nor-
mal chromosomes are pD and (1 - p)D, respectively.

Pn xð Þ ¼
X∞
i¼x

NB i;
1−pð ÞD
r−1

;
1
r

� �
Bin x; i; perrorð Þ ðA11Þ

PP O−xð Þ ¼
X∞
j¼O−x

NB j;
pD
r−1

;
1
r

� �
Bin j−Oþ x; j; perrorð Þ

ðA12Þ

In the same way, Ppv(Nv) can be obtained by integrat-
ing A(10)–A(12), which is shown as A(13).

Ppv Nvð Þ ¼
XNv

x¼0

X∞
i¼x

NB i;
1−pð ÞD
r−1

;
1
r

� �
Bin x; i; perrorð Þ �

X∞
j¼Nv−x

NB j;
pD
r−1

;
1
r

� �
Bin j−Nv þ x; j; perrorð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

ðA13Þ

Similarly, Ppn(Nn) can be obtained as shown in A(14).

Ppn Nnð Þ ¼
XNn

x¼0

X∞
i¼x

NB i;
1−pð ÞD
r−1

;
1
r

� �
Bin i−x; i; perrorð Þ �

X∞
j¼Nn−x

NB j;
pD
r−1

;
1
r

� �
Bin Nn−x; j; perrorð Þ

�
8>>>><
>>>>:

9>>>>=
>>>>;

ðA14Þ
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