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Storing and processing of large DNA sequences has always been a major problem due to increasing volume of DNA sequence
data. However, a number of solutions have been proposed but they require significant computation and memory. Therefore, an
efficient storage and pattern matching solution is required for DNA sequencing data. Bloom filters (BFs) represent an efficient data
structure, which is mostly used in the domain of bioinformatics for classification of DNA sequences. In this paper, we explore more
dimensions where BFs can be used other than classification. A proposed solution is based on Multiple Bloom Filters (MBFs) that
finds all the locations and number of repetitions of the specified pattern inside a DNA sequence. Both of these factors are extremely
important in determining the type and intensity of any disease. This paper serves as a first effort towards optimizing the search for
location and frequency of substrings inDNA sequences usingMBFs.We expect that further optimizations in the proposed solution
can bring remarkable results as this paper presents a proof of concept implementation for a given set of data using proposed MBFs
technique. Performance evaluation shows improved accuracy and time efficiency of the proposed approach.

1. Introduction

DNA sequencing is paving the way in practical applications
including life sciences and agricultural fields. However, mas-
sive size of DNA sequence data sets available today poses
significant computational challenges. Several algorithmshave
been proposed over the years to address these issues. The
compression-based algorithms have gained the attention of
researchers recently due to their efficient data storage and
processing capabilities for DNA sequencing. Bloom filters
(BFs) are such techniques used in bioinformatics domain for
classification where a set of known DNA sequences facilitate
the classification of the unknown sequences. It is due to the
inherent capability of BFs that allows it to answer any query
in either yes or no. Suppose a bloom filter is created for a set
of elements and the set is used to answer the query if a certain
element is present in the set or not. Further, to determine

if the queried element is part of the set, m hash functions
are applied to that element. The index positions obtained
through hashing are checked in the BF. If all those indexes
(or bits) of BF are set to 1, this means that the element is most
probably part of the set (false positives can arise in BF), else
the element is certainly not in the set. The query response
time is fast as it takes O(m), where m is the number of hash
functions applied to the element. Likewise, a BF created for a
known DNA sequence can determine if the given unknown
sequence has any similarity with the known DNA sequence
(for which BF is created) and this can quickly be answered in
a series of yes or no.Thus, BFs highly assist in determining the
origin of the given unknown sequence. In addition to their
use as classifiers, some work exists on compression side as
well. However, there are certain problems that limit the use
of this fast and memory efficient data structure in other areas
of bioinformatics.
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As mentioned earlier, a bloom filter can only answer any
query in yes or no. For example, if there exists a BF for a
human chromosome 16 and if a certain disease pattern needs
to be checked whether it is present in that chromosome or
not, the BF can answer the query in “yes” if the pattern is
present or “no” if the pattern is not present. However, in
medical science, it is significant to determine the presence
of the pattern in the certain chromosome but also the
position of that pattern in the chromosome. It is because the
location of the disease pattern can also determine the type
of the disease; e.g., Maturity Onset Diabetes of the Young
(MODY), which is an inherited form of diabetes mellitus,
has more than ten different types. Based on the location of
the pattern, the type of the disease can be found. Moreover,
the number of times a certain pattern is reported in the
DNA sequence is also important as it shows the intensity of
the disease. For example, the high repetition of the pattern
CTG/CAG is often linked with the Huntington’s disease.
However, algorithms have been previously proposed where
compression is achieved through BFs but to retrieve the
original sequence it must be decompressed. Through this
paper, we addressed some of these problems due to which
BFs are not particularly preferred for pattern matching and
sequence compression. Following are the main contributions
of this work:

(i) We propose an algorithm using multiple BFs to com-
press DNA sequences which eliminates the need to
store the originalDNAsequence for pattern searching
tasks

(ii) We propose and integrate techniques for identifying
the exact location of the pattern as well as the number
of times the pattern is repeated in the sequence,
within the compressed sequence

(iii) We provide initial experimental results for evaluating
the accuracy and time efficiency of the proposed
approach along with deficiencies observed and iden-
tify potential future research directions

The remainder of this paper is organized as follows: Section 2
covers the related work. The proposed algorithm is discussed
in Section 3. Section 4 presents the experimental results and
finally the last section presents the conclusions.

2. Literature Review

Compression algorithms for DNA or genome generally fall
into four categories. The first category is naive-bit encoding
where one or more characters are represented by a certain
codeword. For example, the simplest encoding for DNA
sequence can be obtained by assigning 2 unique pair of bits to
each of the unique alphabet present in a DNA sequence like
A=00, C=01, G=10, and T=11 [1–3]. The second category is a
dictionary-based or substitutional compression. It is mostly
observed that a DNA sequence consists of a lot of repeated
sequences. As a result, the repeated sequences can be replaced
by references to a dictionary that is either built offline or is
maintained at runtime [4]. The most common dictionary-
based algorithms include LZ77 and LZ78.

Further, there are statistical methods that achieve
extremely good compression rates by generating probabilistic
models based on genome datasets [5–7]. The fourth category
is referential compression where any repeated sequence
in an input dataset is replaced with a reference to one or
more external DNA sequences [8–11]. A data structure
plays a critical role in any algorithm designed for achieving
good compression ratios, fast searching of patterns inside
sequences, or both. Many algorithms proposed in the area of
bioinformatics make use of self-index-based data structures
to achieve above mention goals. They can be used to avoid
the need of keeping large files of text along with the index
[12–15]. The index itself contains sufficient information that
any part of the text can be recreated. Some of the examples of
self-indexes include compressed suffix array (CSA), Succinct
Suffix Array (SSA), and FM-index [16–19]. In addition to
this, there are other variations of indexes as well [20] and
some of them are shown under different categories in Table 1.

Bloom filter (BF), a probabilistic data structure, is often
seen being used in different algorithms. In [21], BF is used
to store the DeBruijn graph created for storing genome;
otherwise DeBruijn itself consumes lot of memory to store
the data. However, this leads to false nodes and branching
due to false positives induced by BF but the authors have
proposed a mechanism to reduce them. Rozov et al. [22]
proposed BARCODE that makes use of reference sequence
as mentioned previously to achieve compression. The bloom
filters are core part of their algorithm; they hash all the reads
in the BF and decode them later for querying. Stranneheim
et al. [23] proposed FACS that uses BF to classify sequences
and the classification speed is high as the searching time
is independent of the BF size. In [24], Sequence Bloom
Tree (SBT) is proposed that also makes use of BF for fast
classification of sequences.

Similarly, in bioinformatics, DNA error correction is
another interesting problem where blood filter is used. Due
to large-sized data sets, error correction is a time-consuming
process. Therefore, a number of algorithms have been pro-
posed for error correction. A. Ramachandran et al. [25]
have proposed an FPGA based accelerated error-correction
algorithm. It is designed to improve the throughput of DNA.
The proposed algorithm is based on BLESS which used
bloom filter as a main data structure due to its memory
efficiency.

The genomic process generates a huge amount of data
which is often difficult to store. Therefore, many techniques
have been proposed to store the data in compressed form.
In [26], Sebastian proposed a compression algorithm to
process single and paired reads. The proposed technique
is based on partial matching and dynamic Markov coder
algorithm. However, the main drawback of the proposed
work is slow processing and large memory usage. The slow
process is due to the query searching process typically for
incomplete k-mers. Similarly, in [27], the authors proposed
a newmechanism to generate an index of similar strings. The
proposed technique can also manage redundancies. Tomasz
et al. [28] proposed a new technique to store and index the
NGS reads in memory. The proposed technique is based on
the traditional technique of counting and locating k-mers.
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Table 1: Classification of data structures.

Data Structure Variants
Full-Text Index Suffix Array [20]
Full-Text Index Suffix Tree [20]
Self-Index Compressed Suffix Array (CSA) [16]
Self-Index Run Length Compressed Suffix Array (RLCSA) [12]
Self-Index Succinct Suffix Array [13]
Self-Index FM-Index [17]
Self-Index Alphabet Friendly FM-Index [18]
Self-Index LZ-Index [19]
Word-based Self-Index Word based Compressed Suffix Array (WCSA) [14]
Word-based Self-Index Word based Succinct suffix array (WSSA) [14]
Word-based Self-Index Byte oriented Codes wavelet Tree (BOC-WT) [37]
Probabilistic-Index Fast and Accurate Classification of Sequences (FACS) [23]
Probabilistic-Index Probabilistic de Bruijn Graph [21]

Probabilistic-Index Bloom filter Alignment-free reference-based Compression and Decompression
(BARCIDE) [22]

Probabilistic-Index Sequence Bloom Tree [24]

The proposed technique is more compact compared to GkA
and CGkA solutions.

Heo. Y. et al. [29] have proposed bloom filter based
error correction for Next Generation Sequencing (NGS)
data. With tremendous increase in the size of data, the
NGS data contains far more errors compared to tradi-
tional sequencing methods. The traditional algorithms are
not memory efficient. Therefore, the authors proposed an
algorithm based on bloom filters to reduce the memory
overhead and produce much more accurate results. Bloom
filters are widely used for pattern matching; however, there
are many applications where bloom filters are not suitable,
e.g., deleting one attribute based on the other. Jiangbo Qian
et al. [30] proposed bloom filter based associative deletion
algorithms. Reem Khairy et al. [31] presented the accelerated
bloom filter approach using high level synthesis. The authors
presented the portable solution that can be incorporated in
many applications to take benefit of bloomfilter performance.
In bioinformatics, most of the algorithms proposed using
bloom filter belong to the category of classification. The BF
can easily determine if a sequence belongs to the text being
searched or not but it cannot accurately determine the exact
location of the pattern and the number of times the pattern
is repeated in the sequence. These are important factors to
be determined if the exact disease or intensity of the disease
is to be identified as discussed in the previous section. The
next section covers the proposed approach which is based on
Multiple Bloom Filters to identify the location of pattern in a
given sequence.

Similarly, an efficient storing collection of large popula-
tions of genomes and timely searching of data is a challenging
problem. Techniques exist to reduce the space requirement
such as reference-based compression. However, such storing
techniques adversely impact the search techniques. There-
fore, Sebastian et al. proposed a framework based on Multi-
Reference Compressed Search Indexes (MRCSI) [32]. The

proposed MRCSI has achieved increased compression rates
and support string searching. In genomes, aligning sequenc-
ing reads is one of the key operations performed against a
large collection of genomedata.The aligning process required
a significant amount ofmemory. In [33]Danek et al. proposed
a Multiple Genome Index (MuGI) to find the occurrences
in a large collection of genomes. The MuGI used small size
customizable indexes and easily runs on commodity systems
with 8GB RAM.

The next section covers the multiple bloom filter based
proposed approach for storing chromosome data and search-
ing patterns.

3. Multiple Bloom Filters (MBFs) Based
Proposed Approach

This section presents the proposed method of storing chro-
mosome data and searching patterns in the data as shown
in Figure 1. First, we describe the method of using MBFs or
an array of BFs to store chromosome data in the compressed
format. Subsequently, we describe the procedure to search
patterns in the DNA sequences that are stored in MBFs
without decompressing them.

3.1. Compression. This phase comprises of three important
steps:

(1) Formation of k-mers of the given chromosome
(2) Storing locations of each unique k-mer in the Key-

Value (KV) store on disk
(3) Storing location data for each unique k-mer of chro-

mosome in a separate BF

The first step is critical to determine the length (k) of DNA
words where a DNA word is simply a sequence of characters
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Figure 1: Overview of proposed approach.

(A,C,G,T) of length k. If the length ofDNAword “k” is chosen
as 4, 5, or 6, the associated words of a given DNA sequence is
referred to as 4-mers, 5-mers, and 6-mers, respectively. If the
length of the sequence (N) is segmented into words is already
known, then the number of total words formed can easily be
determined based on the selected k-mer size (k), for example,

given sequence: ACGTTCCACGTTCA,
total characters: N=14,
k-mer size k=5,
total no. of words= N-k+1 =14-5+1= 10.

Figure 2 shows the formation of words for the above
sequence. As we increase k-mer size, the number of unique
k-mers increases by the factor 4k. When k is increased, the
number of unique k-mers or words increases; on the other
hand k-mer occurrences in the sequence reduce. We carried
an experiment for different chromosomes; Figure 3 shows
this trend particularly for chromosome 1 (Chr 1). Instead of
displaying each k-mer with characters (e.g., AAAA, AAAC,
and AAAG for k=4) on x-axis, we have just shown their
numbers like k-mer 1, k-mer 2, and k-mer 3.The y-axis shows
the number of occurrences of each particular k-mer in the
sequence. It is an important observation that increasing k-
mer size increases number of unique k-mers whereas the
frequency of occurrence of the k-mers gets reduced in the
sequence as length of the DNA words is increased. Thus, k-
mer size is a critical parameter and has different impact on
the size of KV store and MBF.This is further discussed in the
experimental results section.

Next, a Key-Value (KV) storage is required to store all the
locations of each unique k-mer in the given chromosome.
Here, Key is the k-mer (or DNA word), e.g., ACGTT, and
Value is the sequence of locations where that specific k-mer
is located in the chromosome. Table 2 shows how location
data is saved in KV store corresponding to each unique k-mer
and it resides on the disk. The left side of the table maintains
k-mers and right side stores the indexes or locations of
each corresponding k-mer in the sequence that needs to be
compressed. This step is performed only once and in offline
mode before pattern matching process starts. It has special
significance in this proposed solution as it is used to answer

ACGTTCCACGTTCA
ACGTTCCACGTTCA
ACGTTCC ACGTTCA
ACGTTCCA CGTTCA
ACGTTCCACGTTCA
ACGTTCCACGTTCA
ACGTTCCACGTTCA
ACGTTCCACGTTCA
ACGTTCCACGTTCA
ACGTTCCACGTTCA

ACGTT
CGTTC
GTTCC
TTCCA
TCCAC
CCACG
CACGT
ACGTT
CGTTC
GTTCA

Figure 2: Formation of words.

Table 2: Key-Value store.

Key Value (K-mer
positions)

ACGTT 0 7
CACGT 6
CCACG 5
CGTTC 1 8
GTTCA 9
GTTCC 2
TCCAC 4
TTCCA 3

a single query per pattern. This is further discussed in the
pattern matching section.

The next step is the construction of Multiple Bloom
Filters (MBFs) for each single chromosome. The MBFs are
an integral part of the proposed scheme. Bloom filter (BF),
a probabilistic data structure, is used here to store all the
location data of each unique k-mer in a separate BF. As a
result, there exists a BF for each distinctive k-mer present in
the chromosome. This consequently leads to the formation
of MBFs as shown in Figure 4. A BF is just like a vector that
stores Boolean values: 0 and 1. By default, all the values are set
to false (0) and to store the locations of the specified k-mer
in BF, first hash function is applied to the location (or index
value) of the k-mer and the resultant value is used to find that
index of the BF,which is then set to true (1).Thus, there exists
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Figure 3: Shows the number of occurrences of k-mers in chromo-
somes.

a BF for each unique k-mer and the BF has all of its indexes
set to true that are found after applying a hash function to
each location (or index) where that k-mer is present in the
chromosome.

The size of the BF plays a significant role in achieving
compression. To determine the accurate size of the BF,
following parameters should be known: n= number of items
to be stored in the BF:

p= probability of false positives (FPs);
m= number of bits in the filter;
k= number of hash functions (used for index finding
in BF).

𝑚 =
𝑛𝑙𝑛𝑝

𝑙𝑛2
(1)

𝑘 =
𝑚

𝑛
𝑙𝑛2 (2)

Here, false positives refer to the situation where a k-mer
is not present at a particular location in the chromosome
whereas the hash function results in indexes that are set to
true in BF, which means k-mer is present at that location.

For instance, we need to store one of the locations (which is
a 20th index of chromosome string) of k-mer TTTT, a hash
function is applied on 20, and the result is an index 10 of BF
corresponding to TTTT. Index 10 of BF is then set to true.
Further, a query needs to be answered if TTTT is present at
index 30 of the chromosome string or not, a hash function is
applied to it (i.e., 30), and the result comes out to be index 10,
which is earlier set to true. Results show that TTTT is present
at index 30 of the chromosome string whereas BF is set to true
at index 10 due to 20. In this way, false positives can create
a discrepancy in results. The false positive can be reduced if
“p”, i.e., FP, is kept low and large number of hash functions
(i.e., “k”) is used in (1) and (2), respectively. In the proposed
solution, we kept FP probability neither too high nor too low,
i.e., 0.01 but n varies as each k-mer has a different number of
occurrences in the chromosome. Consequently, m that is the
size of the bloom filter in bits varies for each unique k-mer of
the specified chromosome.

3.2. Pattern Searching. A pattern is a sequence of DNA char-
acters (A,C,G,T) that is to be searched in a DNA sequence
or chromosome. Before the pattern matching process starts,
a pattern is decomposed into k-mers of size k. DNA word or
k-mer size is set to 4 when KV store is built as discussed in
the previous section. The 4 is selected as the final value of
k and a pattern is decomposed into (N-k+1) k-mers where
N is the length of the pattern sequence. Afterwards, one k-
mer that is part of the pattern is selected such that it has
the least number of occurrences in the chromosome (target
string to be searched) among all other k-mers that are part of
a pattern. For example, a KV store andMBFs are created for a
DNAsequence. Now, a patternACGTTGCA is to be searched
inside that sequence. As k is already set to 4 when KV store
is built, therefore 8-4+1=5 words of size 4 each is formed for
the pattern, which is as follows:

ACGT CGTT GTTG TTGC TGCA
The next step is to select the k-mer from the pattern with the
least number of occurrences in the sequence. In case, there
is a tie between two or more k-mers then the one that comes
first in the sorted list of k-mers is selected. Suppose ACGT
is one such k-mer in the present example with only three
occurrences in the sequence. Then, a query is sent to KV
store to provide the location data of ACGT that comprises
of all the index positions of DNA sequence where ACGT has
occurred (indexes 10, 30, and 40). Afterwards, this data has to
be reduced to make pattern matching process faster. For that
quick check step is performed, that requires the bloom filter
of the last or the first k-mer of the pattern depending on the
position of the k-mer chosen in the previous step.

In the given example, BF of TGCA,which is the last k-mer
of pattern, is extracted. Since the distance between ACGT
and TGCA is 4; therefore, for each location index of ACGT
present in the location data extracted from KV store, 4 is
added, e.g., 10+4, 30+4, and 40+4. The resultant value (i.e.,
14 first) is hashed and the result of the hash function (index)
is checked in the BF of TGCA if it is set to 1 or not. If it is
set to 1 then there is a high possibility that the given pattern
exists in the chromosome; otherwise pattern does not exist.
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Key Value
ACGT
CGTT
GTTG
TTGC
TGCA

10 20 30
11 50 70 95 …..
12 51 73 84 ….
13 34 65 99 …
14 32 100 200 345

Step 2:

Select that k-mer from the pattern that has 
the least number of occurrences in 
chromosome and extract its location data..

Step 1:

ACGTTGCA

k=4

ACGT CGTT GTTG TTGC TGCA

Segment the given pattern into words/k-
mers of size k by sliding window

Step 3: Quick Check

Key Value
ACGT 10 20 30

HASH 
FUNCTION

10+4=14

20+4=24

30+4=34

Indexes 0 1 2 3 4 ………. 14
BF-TGCA 0 0 1 1 0 ………. 1

ACGT 10

Step 4: Searching remaining k-mers of 
pattern

ACGT CGTT GTTG TTGC TGCA 

ACGT 10

10+1=11 check CGTT_BF

10+2=12 check GTTG_BF 

10+3=13 check TTGC_BF

HASH 
FUNCTION

Multiple Bloom Filters
BF_ACGT 1 1 0 1 1 0 1 0
BF_CGTT 1 1 0 1 1 0 1 0

BF_GTTG 1 1 1 1 1 0 1 0

BF_TTGC 1 1 0 1 1 1 1 0
BF_TGCA 1 1 0 1 1 0 0 0

Figure 4: Illustration of usage of MBFs.

For each location of ACGT for which the BF of TGCA gives
back a positive response, the location is preserved and for
the ones that give a negative response, those locations are
discarded from the temporary array. In this way, this array
often gets reduced in size as the pattern matching process
proceeds as illustrated in Figure 4 as well. The usefulness of
this step is highlighted when patterns are longer and it can
also be observed in the experimental section that large length
patterns give many accurate results compared to smaller
patterns.

Now, the 10th index is the only index left in the temporary
location array after quick check process. So, this index, i.e.,
10, is incremented by 1 and the resultant index 11 is hashed.
The result of the hash is used to find out if that place in
the bloom filter of CGTT (which is the second k-mer of the
pattern) is set to 1 or 0. Since it is set to 1, this means ACGTT
(ACGTandCGTT) is present in the sequence.Next, the same
procedure is performed for GTTG and TTGC with location
indexes 12 and 13, respectively. In the given example, BFs of
both GTTG and TTGC give positive results. However, if any
BF returns a negative response in the form of 0 then pattern
matching process does not need to proceed further as the
pattern does not exist. By the end of this pattern matching
process, the temporary array of ACGT is left with only those
indexes where the pattern exists.

4. Experimental Results

First, an experiment is performed to determine the impact
of k-mer size on Key-Value (KV) store. As mentioned earlier,

KV store is an integral part of the proposed solution, which
stores all the locations of each unique k-mer present in
the chromosome. We used LevelDB [34] for this purpose,
which is a fast on-disk KV store that stores sorted data on
the basis of the key in the compressed form (“LevelDB”,
2011). Table 3 shows the size of KV store for Chr 1, Chr 12,
and Chr 21 for the different k-mer sizes (4, 5, and 6). The
chromosomedatasets are obtained fromNCBI and all the “N”
characters are removed from the datasets before conducting
the experiments on them [35].

The results show that, by incrementing the k-mer size by
one, the size of the KV store increases drastically. Therefore,
we chose k-mer of size 4 for the main experiments that
are discussed in this section. The KV store can be created
offline and stored on disk before the start of pattern matching
process as a result construction time is not discussed here.
Further, some experiments are performed to see the impact
of k-mer size on the size of Multiple Bloom Filters (MBFs)
for each corresponding chromosome. The false positive
probability of each of the bloom filter is set to 0.01. In Table 4,
it is observed that incrementing the k-mer size keeps theMBF
size nearly constant for each corresponding chromosome.
For example, MBF size of Chr 1 is 268 MB, 270 MB, and
271 MB for k-mer sizes 4, 5, and 6, respectively. Moreover,
construction of MBF for chromosomes is fast and is nearly
the same for a certain chromosome irrespective of its k-
mer size. The false positive (FP) probability of a bloom
filter plays a significant role in achieving compression; see
Table 5. We determined the size of MBF for Chr 1, Chr 12,
and Chr 21 on three different FP probabilities: 0.1, 0.01, and
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Table 3: Impact of k-mer size on Key-Value store.

K-mer size Chr 1 Chr 12 Chr 21
KV Store Size (GB) KV Store Size (MB) KV Store Size (MB)

4 1.2 700 195.1
5 1.3 756.8 209.8
6 1.4 816.4 226.4

Table 4: Impact of k-mer size on MBFs and construction time (false positive probability of bloom filters= 0.01).

K-mer Size
Chr 1 Chr 12 Chr 21

MBF Size (MB) Construction Time
(Secs) MBF Size (MB) Construction Time

(Secs) MBF Size (MB) Construction Time
(Secs)

4 268 25.4 153 14.68 41.5 4.21
5 270 30.9 154.8 16.29 41.9 4.5
6 271.5 33.2 155.4 17.49 42.04 5.01

Table 5: Impact of false positive probability on MBF size (k-mer size=4).

Chromosome FP Prob=0.1 FP Prob=0.01 FP Prob=0.001
Original file size (MB) MBF Size (MB) MBF size (MB) MBF size (MB)

Chromosome 1 230.8 134.5 268 402.2
Chromosome 12 131.9 76.9 153 230.6
Chromosome 21 35.9 20.81 41.5 62.24

0.001. It is observed that high FP probability achieves good
compression as compared to low FP probability. However,
choosing high FP probability can have a negative impact on
pattern matching results whereas the increase in pattern size
can reduce the effect on results as discussed later in this
section.

Next, we evaluated the performance of the proposed solu-
tion by measuring the time it takes to find the pattern inside
the chromosome. The results are listed in Table 6, where
the first column represents the pattern used for evaluation,
followed by the length of the pattern and afterward the time
taken to identify the stated number of occurrences of that
pattern inside the string of the specific chromosome. In all
these experiments, k-mer size is kept 4 and FP probability
is 0.01. If we increase FP probability, the MBFs get highly
compressed; however at the same time the number of false
positives in the pattern matching process increases that leads
to increase in pattern matching time. The number of false
positives for Chr 1, Chr 12, and Chr 21 is reported in Table 7
for two cases. In the first case, FP probability is set to 0.1
and for the second case, it is 0.01. It shows that increasing FP
probability drastically increases the number of false positives;
on the other hand, as we increase the length of the pattern, the
number of FPs gets highly reduced as shown for the pattern
TTTATTGGAAATATGGGAT present in Chr 12. Thus, this
problem can be resolved with large length of patterns (20-
25) used for identification. In addition to this, a restriction
can be placed on the number of occurrences of the pattern to
be identified. We compared the results with another pattern
matching tool named Seeq [36] that is based on a Levenshtein
distance metric. The results are shown in Table 8. It is

observed that MBF based pattern matching is fast but its
speed is not comparable with other pattern matching tools.
Thus, some optimizations are required to make this pattern
matching process faster.

5. Conclusion

Problems related to storage and processing are not unknown
in the field of bioinformatics due to the large volume of DNA
sequence data. In this paper, bloom filters are explored to
provide a solution other than the simple classification of DNA
sequences. The proposed approach using MBFs allows find-
ing the exact location of the patterns and the number of times
the pattern is repeated in the compressed sequence, without
using original DNA sequence in its decompressed form.
The experiments are carried out on human chromosomes
to provide a proof of concept application of the proposed
MBFs technique in real life data. Optimizations on various
levels are still required and in future, we aim to work on
all such areas that lack efficiency, e.g., KV store size and
search time of patterns. We expect that this solution can bring
highly promising results if optimizations are taken in the right
direction. The ability to look for patterns inside compressed
DNA sequences makes the proposed solution feasible for
real-world applications and is anticipated to be highly sought
after in the near future.

Appendix

The code and dataset used to benchmark the proposed tech-
nique is available at https://github.com/mrhua2019/Pattern-

https://github.com/mrhua2019/Pattern-Matching-for-DNA-Sequencing-Data-using-Multiple-Bloom-Filters.git
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Table 6: Pattern searching time (k-mer size=4; FP probability =0.01).

Pattern Length Chr 1 Chr 12 Chr 21
Occurrences Time (Secs) Occurrences Time (Secs) Occurrences Time (Secs)

TTTGAT 6 98196 137.10 59222 36.27 16169 2.31
CATCAT 6 77840 83.81 46203 25.41 12202 1.85
GTGTCTGT 8 8615 88.87 5035 23.70 1471 1.50
TGGAATGGGA 10 552 116.64 286 28.70 108 1.85
TTTTTTAGAAT 11 327 81.48 208 23.14 60 1.48
GAGGCAGGAGGATCCC 16 82 32.14 44 9.28 13 0.65
TTTATTGGAAATATGGGAT 19 0 34.37 1 9.93 0 0.66
AGCATATTTTTACTGTAGGAGAA 23 0 34.08 1 9.97 0 0.66

Table 7: Number of false positives for FP probability=0.1 and 0.01.

Pattern Length Chr 1 Chr 12 Chr 21
FB Prob=0.1 FB Prob=0.01 FB Prob=0.1 FB Prob=0.01 FB Prob=0.1 FB Prob=0.01

TTTGAT 6 39260 9172 23743 5666 6438 1549
CATCAT 6 39567 9906 23097 6007 6453 1620
GTGTCTGT 8 7309 1251 3982 756 1207 206
TGGAATGGGA 10 636 104 339 49 55 14
TTTTTTAGAAT 11 431 75 261 50 69 9
GAGGCAGGAGGATCCC 16 36 18 29 10 3 0
TTTATTGGAAATATGGGAT 19 0 0 1 1 0 0
AGCATATTTTTACTGTAGGAGAA 23 0 0 1 1 0 0

Table 8: Pattern searching time in seeq.

Pattern Length Chr 1 Chr 12 Chr 21
Occurrences Time (Secs) Occurrences Time (Secs) Occurrences Time (Secs)

TTTGAT 6 98196 1.624 59222 0.932 16169 0.258
CATCAT 6 77840 1.606 46203 0.902 12202 0.275
GTGTCTGT 8 8615 1.49 5035 0.856 1471 0.261
TGGAATGGGA 10 552 1.341 286 0.807 108 0.22
TTTTTTAGAAT 11 327 1.36 208 0.79 60 0.215
GAGGCAGGAGGATCCC 16 82 1.224 44 0.721 13 0.204

Matching-for-DNA-Sequencing-Data-using-Multiple-Bloom-
Filters.git.
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