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ABSTRACT

Neuropathy is the most common complication of diabetes. As a consequence of longstanding hyperglycemia, a downstream
metabolic cascade leads to peripheral nerve injury through an increased flux of the polyol pathway, enhanced advanced glycation
end-products formation, excessive release of cytokines, activation of protein kinase C and exaggerated oxidative stress, as well as
other confounding factors. Although these metabolic aberrations are deemed as the main stream for the pathogenesis of diabetic
microvascular complications, organ-specific histological and biochemical characteristics constitute distinct mechanistic processes of
neuropathy different from retinopathy or nephropathy. Extremely long axons originating in the small neuronal body are vulnerable
on the most distal side as a result of malnutritional axonal support or environmental insults. Sparse vascular supply with impaired
autoregulation is likely to cause hypoxic damage in the nerve. Such dual influences exerted by long-term hyperglycemia are critical
for peripheral nerve damage, resulting in distal-predominant nerve fiber degeneration. More recently, cellular factors derived from
the bone marrow also appear to have a strong impact on the development of peripheral nerve pathology. As evident from such
complicated processes, inhibition of single metabolic factors might not be sufficient for the treatment of neuropathy, but a combina-
tion of several inhibitors might be a promising approach to overcome this serious disorder. (J Diabetes Invest, doi: 10.1111/j.2040-
1124.2010.00070.x, 2010)
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INTRODUCTION
Peripheral neuropathy is the most common and intractable
complication of diabetes1,2. It involves somatic sensory and
motor nerves, as well as autonomic nerves. In fact, the preva-
lence of diabetic neuropathy ranges from 7% within 1 year of
diagnosis to 50% for those with diabetes for >25 years3. If
patients with subclinical levels of neuropathic disturbances are
included, the prevalence might exceed 90%4. The presence of
cardiovascular autonomic neuropathy dramatically shortens the
patients’ longevity and increases the mortality5,6. Loss of feeling
in the lower limbs is a high risk for limb amputation, which
occurs in 1–2% of diabetic patients and necessitates extreme
cost4,7.

Despite efforts to make an early diagnosis and to halt the pro-
gression of diabetic neuropathy, currently there is no effective
treatment available at a global level, except for tight control of
blood glucose. This might be as a result, at least in part, of insuf-
ficient clarification of the pathogenesis of diabetic neuropathy,
complicated clinical pictures that do not necessarily reflect
proper progression of the disease, or inadequate design of clini-
cal trials. There might also be a possibility that the development

of a candidate drug might not be based on genuine inciting fac-
tors. To overcome this serious disorder, it is therefore essential
to explore the precise role of causative factors in nerve fiber dys-
function and fiber loss. The present review summarizes the most
up-to-date considerations on the pathogenesis of diabetic neu-
ropathy and discusses the direction of its treatment.

RISK FACTORS FOR PROGRESSION OF
NEUROPATHY
The duration of diabetes and glycated hemoglobin levels have
been well associated with a high incidence of neuropathy8,9.
Classically, the Diabetes Control and Complications Trials
(DCCT) confirmed the beneficial effects of meticulous control
of blood glucose on the incidence of chronic complications in
1441 type 1 diabetic patients10. In that study, intensive insulin
treatment for 6.5 years lowered HbA1c levels (average 7%) by
2% compared with a conventionally treated group (average 9%)
and successfully decreased the incidence of neuropathy by 60%
(13 vs 5%)10. More striking are the so-called ‘legacy effects’ (glu-
cose memory) of tight blood glucose control for the suppression
of new development of neuropathy during a post-trial obser-
vation period for 8 years11. In type 2 diabetic patients, the
Kumamoto study showed that intensive insulin treatment for
7 years improved nerve conduction velocity (NCV) and the
vibration perception threshold (VPT) compared with those con-
ventionally treated12. In contrast, the UK prospective diabetes
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study (UKPDS) on 3867 type 2 diabetic patients did not find
the effects of glucose control (to the extent of a 0.9% decrease in
HbA1c) on the prevalence of neuropathy, whereas there was a
significant reduction in the risk for retinopathy and nephro-
pathy13. Tesfaye et al. in the EURO-Diab group reported that
blood glucose control, duration of diabetes, hypertension, hyper-
lipidemia and smoking were all significant risk factors for the
development of neuropathy in type 1 diabetic patients14. The
impact of hyperlipidemia has also been emphasized by a follow-
up study of the DCCT trial15. However, this trend is different in
cohorts of other countries, because Japanese studies could not
find a significant influence of the blood concentrations of tri-
glyceride or cholesterol on the prevalence of neuropathy16. It is
clear after all that high blood glucose leads to peripheral nerve
injury through a downstream metabolic cascade. The following
section will concentrate on how hyperglycemia leads to periph-
eral nerve injury.

ANATOMY AND VASCULAR SUPPLY OF PERIPHERAL
NERVOUS SYSTEM
Anatomical characteristics of the peripheral nervous system
might explain why the pathogenesis of neuropathy is distinct
from other microvascular complications17,18. Peripheral nerves
are covered by perineurium, where only a few transperineurial
arterioles penetrate into the endoneurium (Figure 1). The vascu-
lar supply in peripheral nerves is sparse and blood flow is likely
to be compromised and lacks autoregulation19. This system
makes peripheral nerves vulnerable to ischemia. Endoneurial
microvessels are tightly connected with endothelial cells on their

inner surface, but when destroyed they are leaky and affect the
endoneurial tissue components20. Leaky vessels are mainly
located in the ganglion with fenestrated vessels, and nerve termi-
nals on the distal side are directly exposed to environments not
covered by perineurium and are susceptible to traumatic injury.

Innervation of epineurial microvessels is involved in diabetes,
resulting in impaired blood supply in diabetic nerves21,22. Endo-
neurial microvessels show thickened and multilayered basement
membranes, cell debris of pericytes, as well as disrupted endo-
thelial cells, and thus constitute salient structural changes in dia-
betic nerves.

Independent of vascular supply, three dimensions of neuronal
architecture specific to the peripheral nervous system might
account for the reason why the most distal side is susceptible in
diabetes. Ganglion cells have extensively long axons covered by
Schwann cells. The neuronal cell body is relatively small com-
pared with the extremely long distance of axonal neurites, and
thereby distal axons are innately too weak to support themselves
for the long transport of nutrients, nerve trophic factors, as well
as other signals.

PATHOLOGICAL BACKGROUND OF NEUROPATHY
Most characteristic findings of the peripheral nervous system in
diabetic patients are distal and sensory predominant nerve fiber
degeneration, axonal loss and endoneurial microangiopathy23,24.
Both large and small caliber sizes of nerve fibers are affected.
Based on this anatomical condition, Dyck et al. proposed that
microvascular injury is the most probable factor for focal fiber
loss and its summation appears to be the cause of diffuse fiber
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Figure 1 | Vascular supply of the peripheral nervous system is sparse and transperineurial arteriole penetrates into endoneurium. Autonomic nerve
endings contact with the wall of arterioles, but vascular autoregulation is lacking in peripheral nerves as a result of sparse innervations. In diabetes,
autonomic nerve endings to the arteriole are likely to be lost and therefore vasoregulation is further impaired (modified from Pathology of Diabetes
Mellitus for Clinicians by Soroku Yagihashi, Shindan-to-Chiryo Co., Tokyo, 2004, page 110).
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loss of distal predominant axonal neuropathy in diabetes25,26.
However, this explanation is too simplistic and does not explain
why hyperglycemia and duration of diabetes are crucial for its
occurrence. There also emerges a controversy as to whether
there is any predominance for the involvement of small fibers in
early diabetic neuropathy. Questions on this issue were further
raised by the report that the focality of nerve fiber loss was not
universally demonstrated, indicating that microangiopathy does
not always account for the fiber loss27. Nevertheless, vascular
influence on the development of neuropathy was further sup-
ported by subsequent studies on humans. Malik et al. showed
that patients who did not have clinically evident neuropathy at
the time of nerve biopsy, but who showed high-grade microang-
iopathic changes of endoneurial microvessels later, developed
overt neuropathy, whereas the patients without microvessel
changes did not develop neuropathy28. The extent of microang-
iopathic changes correlated well with subsequent nerve fiber loss
in diabetic nerves29. We ourselves found a correlation between
the thickness of the basement membrane of endoneurial micro-
vessels and reduced myelinated fiber density30.

The most distal axons of small fibers distribute in the epider-
mis of the skin, sensing pain or pricking. Currently, punched
skin biopsy immunostained with protein gene product (PGP)-
9.5 is widely used for the evaluation of peripheral neuropathy31.
The method is simple and minimally invasive, but requires the
equipment of confocal laser scan microscopy and skills for the
staining and measurement. Usually, skin over the calf muscle is
used, but other sites might also be added. In diabetes, the nerve
fibers in the epidermis of the skin are significantly affected,
resulting in distortion, twisting, focal swelling or beading, and
finally, disappearance of nerve fibers32–34 (Figure 2). The reduc-
tion was found even in subjects of impaired glucose tolerance
(IGT) and the extent of fiber loss was marked in established dia-
betic patients35,36. The nerve fiber loss in the skin was associated
with fiber loss in the nerve trunk of the sural nerve, thus in
keeping with the presence of clinically evident neuropathy32. In
relation to the alteration of epidermal innervation, a non-inva-
sive method using corneal confocal microscopy has now been
developed for the evaluation of neuropathy37,38. With this
method, small nerve fibers distributed in the cornea can be
observed without tissue sampling in live conditions38,39. Diabetic
patients showed significant loss of nerve fibers, twisting and
increased branching on the cornea38,39. Taking advantage of
non-invasiveness, it is easy to follow by repeated observations
and to evaluate the treatment effects on neuropathy by this
method. In fact, the recovery of nerve fibers by regeneration was
detected in long-standing type 1 diabetic patients 6 months after
pancreas transplantation40. To understand the cause and the
development of neuropathy, spatial and temporal changes of
nerve pathology and their clinical significance should be
explored in more detail.

To compensate for the paucity of information on human
materials, animal models have served the basis of functional and
biochemical changes that might be translated into human

diabetic neuropathy. Unfortunately, diabetic animal models did
not show the pathological features in the peripheral nerves trunk
observed in human diabetic patients. However, recent studies
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Figure 2 | Epidermal innervation in diabetic patients as shown by
immunostaining with PGP9.5. (a) In a normal subject (a 32-year-old
man), small branching fibers (arrows) penetrating to basal lamina (arrow-
head) derived from dermis distribute diffusely and end in the surface of
the epidermis of the skin. (b) In contrast, in a type 2 diabetic subject
with symptomatic neuropathy (a 52-year-old woman with 15 years
duration of diabetes), fibers in the epidermis are completely lost. Only a
few fibers are sparsely left in the dermis. Vascular systems also develop
in the upper dermis (red color of tortuous structure). Bar, 100 mm.
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have overcome this discrepancy by showing significant nerve
fiber loss in the skin of diabetic animal models41,42. It is there-
fore now possible to search in more detail for the contribution
of possible factors to the loss of nerve fibers of the skin by
studying animal models. More importantly, it provides us a
great tool for the exploration of effective compounds to inhibit
nerve fiber loss and promote nerve fiber regeneration43,44.

Unlike human diabetic subjects, distinct pathological changes
of endoneurial microvessels are not consistently shown in ani-
mal models, although reduced nerve blood flow is reproducibly
shown45,46. In streptozotocin (STZ)-induced diabetic rats, there
was only a modest dilatation of vascular lumina, but no reduc-
tion of microvessel density or thickening of basement mem-
branes in the peripheral nerve47–49. Although some studies
reported reduced microvessel density in diabetic animals that
reverted to normal by intervention with vascular endothelial
growth factor (VEGF) or other angiotrophic factors, the recov-
ery of nerve blood flow by these agents might be explained by
functional improvement of endoneurial vessels rather than
robust angiogenesis in the endoneurium.

HOW DOES HYPERGLYCEMIA LEAD TO PERIPHERAL
NERVE INJURY?
Polyol pathway
Increased polyol flux regulated by aldose reductase (AR) activa-
tion has been studied most extensively and there is no doubt
that this metabolic cascade contributes to the development of
neuropathy. With this premise, numerous AR inhibitors (ARI)
have been developed, but clinical trials have mostly been unsuc-
cessful, in part due to the adverse effects or insignificant
improvement at the clinical end-point. Currently, epalrestat
(ONO2235) is the only one licensed in Japan. It was approved
after a 3-month double-blinded trial50, which showed improve-
ment of symptoms and nerve function. Further extended 3-year
double-blinded randomized trials confirmed that ARI treatment
significantly suppressed the progressive delay of nerve conduc-
tion51. The ARI effects were more marked in patients with early
neuropathy and modestly elevated levels of glycated hemoglo-
bin52. Another challenge of a new ARI will be expected to suc-
ceed in future trials, because other mechanisms do not amply
replace the polyol pathway hypothesis53,54.

Despite a long history of preclinical studies, the detailed
mechanism of how the polyol pathway is involved in neuropa-
thy remains elusive. Earlier studies proposed the osmotic theory
in which increased polyol flux caused intracellular hyperosmo-
larity by an accumulation of impermeable sorbitol in the cyto-
plasm, resulting in the expansion of cells and cell lysis55,56.
Although this theory might be applied to the genesis of diabetic
cataracts55,56, there is no consistent evidence of nerve edema or
swollen cells in diabetic nerve tissues57. Following the osmotic
hypothesis, Greene raised the poor energy utilization theory as
the surrogate of osmotic theory58,59. With an accumulation of
sorbitol, other osmolytes of myo-inositol, taurine and adenosine
were depleted in the cytoplasm. In turn, myo-inositol deficiency

caused phosphatidyl-inositol depletion and then poor produc-
tion of adenosine triphosphate (ATP), leading to reduced Na,K-
ATPase activity and protein kinase C (PKC) activity58,59. In this
process, however, there is no confirmative data of myo-inositol
depletion in diabetic nerves60. In addition, clinical application of
myo-inositol was not successful61.

Consistent with the data from human IGT subjects, it was
shown that ob/ob mice revealed neuropathic changes repre-
sented by NCV delay and increased oxidative stress-induced
damage62. High-fat diet fed mice that showed typical glucose
intolerance also showed neuropathic changes63. In these mice,
postprandial hyperglycemia itself exerted increased flux of the
polyol pathway in the peripheral nerve tissues.

The advent of transgenic technology has greatly advanced the
polyol pathway story. Transgenic mice that overexpress human
AR developed severe neuropathy when they were fed galactose,
which is also the substrate of AR64. Thus, without hyperglyce-
mia or insulin deficiency, increased flux of the polyol pathway
in fact caused peripheral nerve dysfunction and myelinated fiber
pathology, similar to those found in diabetic animal models64.
The study was extended to the STZ-induced diabetic condition
in this model, which showed more severe NCV delay and
reduced Na,K-ATPase activity with an accumulation of sorbitol
and fructose, compared with those in non-transgenic diabetic
mice, despite comparable levels of hyperglycemia65. The func-
tional changes were accompanied by more severe structural
changes in peripheral nerves and alterations of neuropeptide
expressions in dorsal root ganglia (DRG)66. Concurrently, trans-
genic mice with hyperglycemia-induced activation of the polyol
pathway showed endoneurial reduction of PKC activity with
decreased membranous expression of PKCa and a relative
increase in PKCb isoform (Figure 3). The neuropathic changes
were improved by giving diabetic transgenic mice ARI. In con-
trast, studies using targeted mice lacking the AR gene showed
that AR-deficient mice were protective against neuropathy
through the preservation of glutathione and nicotinamide ade-
nine dinucleotide phosphate (NADPH)67.

Although these studies confirmed the critical role of AR in
diabetic neuropathy, clinical experience of ARI trials50 showed
that the polyol pathway cannot completely account for the
development of neuropathy. Indeed, when blood glucose is
poorly controlled, severe hyperglycemia can cause neuropathic
changes, even in AR-deficient diabetic mice68. A pathway inde-
pendent of AR is yet to be determined and further studies are
required for the complete prevention or intervention of the pro-
gression of diabetic neuropathy.

The implications of AR in ischemia/reperfusion injury have
now revitalized the polyol pathway theory for vascular events,
not only in diabetic patients but non-diabetic patients as well
(Figure 4). Ischemia/reperfusion causes polyol activation, leading
to severe tissue injury against which ARI is preventive69–75.
In experimental studies, ARI alleviated the pathological lesions
in infarction of the brain, the heart, as well as the kidney
or retina71,75,76. Because diabetic nerves are susceptible to
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ischemia/reperfusion injury, there emerges a new perspective
that ischemia/reperfusion might be involved in the progression
or exacerbation of neuropathy to which ARI is effective77,78.

Glycation and Advanced Glycation End-products
Glycation has long been implicated in the pathogenesis of dia-
betic neuropathy30,79,80. Every component of nerve tissues can
be excessively glycated in diabetic nerves. In fact, deposition of
advanced glycation end-products (AGE) was shown in human
and animal diabetic nerves, in every component of peripheral
nerve tissues30,80. The deposition was found in the stromal colla-
gens, axoplasms of nerve fibers and Schwann cells, as well as
endoneurial vessels81. The intensity of AGE deposition detected
by carboxymethyllysine immunoreactions correlated well with
reduced myelinated nerve fiber density81. Hence, AGE was con-
sidered to exert injurious processes in the endoneurium through
direct toxicity to nerve tissues together with endoneurial micro-
angiopathy (Figure 5). In vitro, Schwann cells underwent apop-
totic processes with release of tumor necrosis factor (TNF)-a, as

well as other inflammatory cytokines, when exposed to a high
AGE environment82. Axonal cytoskeletons of tubulin and neuro-
filaments were glycated to stagnate axonal transport, resulting in
distal fiber degeneration30. Glycation of basement membrane
collagen, laminin and fibronectin also caused impairment of
regenerative efforts in diabetic nerves83,84.

Transgenic mice with enhanced expression of the receptor for
AGE (RAGE) in endothelial cells showed augmented neuro-
pathic changes in the diabetic condition, exemplified by delayed
NCV and more severe structural changes85. In this setting, it
can be speculated that AGE exerts biological reactions after
binding with RAGE expressed on endothelial cells and Schwann
cells, leading to the functional and structural phenotype of
neuropathy. During this process, intracellular oxidative stress
mediated by NADPH oxidase activation might be elicited and
then activate transcription of nuclear factor-jB (NF-jB)86,87.
Bierhaus et al. reported that the activation of NF-jB was associ-
ated with the alteration of pain sensation in STZ-induced hyper-
glycemic mice88. Diabetic mice lacking the RAGE gene were

AR SDH 

Epineurial artery 

Endoneurium Endoneurium 

Epineurial artery 

Glucose             Fructose SDH AR 

NAD NADPH NADP NADH GSH 
NO

Phosphatidylinositol 

DAG 

PKC (α-isoform) PKC (β-isoform)

Phosphatidic acid 

DAG 

Na,K-ATPase 

Glycer-3P 

Neuropathy

Vascular
tissues

Endoneurial
tissues

Sorbitol 

Figure 3 | Tissue-specific regulation of polyol pathway and its metabolic cascade to diabetic neuropathy. Major regulating enzymes of the polyol
pathway are differentially expressed in the epineurial artery and endoneurial tissues. Aldose reductase (AR) is strongly expressed in both the endo-
neurium and the wall of the epineurial artery, whereas expression of sorbitol dehydrogenase (SDH) is equivocal in the endoneurium, but clearly
positive for the wall of the epineurial artery (see reference 120, with kind permission from Springer Science + Business Media: Virchows Arch,
Vol. 439, 2001, page 48. Enhanced in situ expression of aldose reductase in peripheral nerve and renal glomeruli in diabetic patients; Kasajima H,
Yamagishi SI, Sugai S, Yagihashi N, Yagihashi S, Figure 2). Hence, hyperglycemia in nerve tissues exerts conversion from glucose to sorbitol by AR,
thereby causing the depletion of reduced glutathione (GSH) and nitric oxide (NO) consequent from the overconsumption of nicotinamide adenine
di-nucleotide phosphate (NADPH). Concurrently, intracellular myo-inositol is depleted to cause phosphatidylinositol (PI) depletion, which further
suppresses diacylglycerol (DAG) production and finally protein kinase C (PKC) activity. As a consequence, Na,K-ATPase activity will be reduced to
result in functional and structural changes of neuropathy. In contrast, the second portion of the polyol pathway regulated by SDH is activated in the
vascular wall in the hyperglycemic condition. As a result of redox changes of NAD/NADH, conversion from glyceraldehyde-3-phosphate (Glycer-3P)
to phosphatidic acid will be promoted. Then enhanced synthesis of DAG results in increased PKC activity. In our studies, major isoforms that
underwent changes in the diabetic condition are PKCa in the nerve and PKCb in the epineurial artery (reference 122).
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protective against the induction of neuropathy89. Thus, these
findings support the crucial role of AGE in the development of
diabetic neuropathy.

Indirect evidence that suggests the role of AGE in neuropathy
might be the effects of aminoguanidine on experimental diabetic
neuropathy47,90–92. This compound was found to inhibit the
formation of AGE, concurrently with the improvement of
endoneurial blood flow90, NCV, Na,K-ATPase activity and
myelinated fiber structure91,92. It should be of note that amino-
guanidine effects might also be mediated by its alternate action
as an inducible nitric oxide synthase (iNOS) inhibitor or an
anti-oxidative function93.

In our most recent study, we showed that animals given AGE
exogenously showed significant NCV delay resembling that
found in experimental diabetic neuropathy (Figure 6)94. With
delayed NCV, nerve Na,K-ATPase activity was reduced and
myelinated nerve fibers underwent reduction of fiber size. In this
setting, vascular reactions in response to exogenous AGE elicited
functional impairment of peripheral nervous systems. In fact,
endothelial cells showed a high expression of NF-jBp65
together with swollen and vacuolar changes at the ultrastructural
levels. From these findings, AGE action mediated by binding
with RAGE causes activation of NF-jB and thereby its
downstream signals88,95,96. Although preliminary clinical trials of

anti-glycation agent, benfotiamime, showed some efficacy for
diabetic neuropathy97, there is still no effective compound that
can suppress the AGE formation in vivo and improve diabetic
neuropathy in humans.

Oxidative Stress
As a cause of diabetic neuropathy, the generation of free radicals
is proposed to be a major factor through increased glycolytic
process98,99. In fact, there are numerous data that showed oxida-
tive stress-induced tissue injury in the peripheral nerve in exper-
imental diabetes45,63,88,92,95,98. Based on this background,
attempts have been made to inhibit neuropathy with anti-
oxidants100,101. In particular, a-lipoic acid has been used for the
suppression of oxidative stress in experimental diabetic rats and
it was found that it improved NCV delay, nerve blood flow and
nerve structure102–104.

Concurrent with the generation of free radicals during the
glycolytic process, mitochondria have a crucial role in cellular
death by activation of specific signals and the endonuclease
system105,106. Hyperglycemia-induced mitochondrial changes
include the release of cytochrome C, activation of caspase 3,
altered biogenesis and fission, resulting in programmed cell
death105,107. Excessive entry of glucose causes surplus transport
of electrons to generate oxidants in mitochondria, leading to
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Figure 4 | Implication of aldose reductase in ischemia/reperfusion injury. Recently, a new role of aldose reductase in ischemia/reperfusion and
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reduced mitochondrial action potentials (MMP) with poor
energy synthesis of ATP108,109. Neurotrophic support is also
impaired by mitochondrial damage to cause reduced neurotro-
phin-3 (NT-3) and nerve growth factor (NGF)108. It is interest-
ing that a small amount of insulin, that does not alter systemic
blood glucose levels, was shown to improve the impaired mito-
chondrial membrane potential and delayed nerve conduction in
STZ-diabetic rats109.

As already alluded to, both the polyol pathway and AGE for-
mation produce a large amount of oxidants, and ARI treatment
suppresses the oxidative nerve injury110–112. In addition to mito-
chondria, other organelles, such as the Golgi apparatus and
endoplasmic reticulum (ER), might also be regarded as an
important source of free radicals, resulting in not only apoptosis,
but cell death from autophagy113. Indeed, nitro-oxidative stress
in conjunction with hyperglycemia exerts poly ADP-ribose poly-
merase (PARP) activation114, resulting in cellular dysfunction
and cell death, which can be prevented by PARP inhibitor115.
Serum from type 2 diabetic patients accelerates neuroblastoma
cell death by increased autophagic processes with activation of
cell death signals116. a-Lipoic acid was found to be beneficial to

some extent to alleviate neuropathic symptoms in diabetic
patients117. However, to confirm whether this compound is in
fact effective to inhibit the progression of the disease, further
confirmation is required.

PKC Activity
PKC is central in nerve function and a key in the pathogenesis
of diabetic neuropathy118,119. However, the alterations are com-
plicated in nerve tissues and their supportive endoneurial vascu-
lar system, as the major enzymes of collateral glycolytic pathway
are different between these two tissues120 (Figure 3). Such inho-
mogeneous tissue composition might explain the inconsistent
findings on PKC activity in diabetic nerves. Nakamura et al. did
not find any significant change of PKC activity in the homo-
genized whole peripheral nerve tissues in STZ diabetic rats,
although PKC-b specific inhibitor improved NCV delay and
nerve blood flow121. In contrast, in our studies on STZ-induced
diabetic mice, we separated the tissues into endoneurium and
epineurium for the measurement of PKC activity, the latter of
which is rich in microvessels122. We found that the former
showed decreased PKC activity with significantly decreased
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Figure 5 | Advanced glycation end-products (AGE) and receptor for AGE (RAGE) reactions in the pathogenesis of diabetic neuropathy. Nerve tissues,
such as Schwann cells, nerve fibers and endothelial cells of vasa nervosum all express RAGE. When AGE bind with RAGE, the reaction generates
oxidative stress mainly through the activation of NADPH oxidase. Complexes of IjBa-nuclear factor-(NF)-jB will be separated into each fraction of
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result, both microangiopathic processes and neural dysfunction ensue, resulting in the manifestation of pain or nerve conduction delay.
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membranous expression of the PKC-a isoform, as we already
stated earlier about polyol pathway, whereas the latter showed
increased PKC activity with enhanced expression of PKC-b

(Figure 3). The results of epineurial tissues were consistent with
the changes in other systemic vascular tissues. In keeping with
this finding, hyperglycemia caused reduced PKC activity in cul-
tured Schwann cells exposed to high glucose123.

Hence, the application of PKC-b-specific inhibitor is expected
to be useful for the treatment of diabetic vascular complications.
Experimental studies showed beneficial effects of PKC-b-specific
inhibitor on neuropathic changes in STZ-induced diabetic
rats121,124,125. Despite extensive efforts, however, clinical trials
were not successful due, in part, to the high improvement rate
in the placebo group126. Other isoforms of PKC were also impli-
cated in the causation of diabetic neuropathy and inhibitors for
these isoforms have been explored127,128.

Proinflammatory Processes
There is emerging evidence that nerve tissues in diabetes
undergo a pro-inflammatory process that presents symptoms
and enhances the development of neuropathy129,130. Indeed, dia-
betic nerves contain macrophages, occasionally lymphocytes and
release increased TNF-a or interleukins (IL) in humans and ani-
mals129,131,132 (Figure 7). Inhibition of cytokine release or mac-
rophage migration was associated with the improvement of
NCV delay and structure in STZ-diabetic rats treated with
N-acetylcysteine133 or pioglitazone134. The arachidonic acid
pathway is activated to increase in cyclooxygenase (COX)-2
concentrations in the peripheral nerves of STZ diabetic rats in
which inhibition of COX-2 corrected nerve blood flow and
NCV delay135. To further confirm this data, COX-2 gene-defi-
cient mice were protective for NCV delay and neuropathic defi-
cits after STZ-induced hyperglycemia136. The pro-inflammatory
condition activated the stress-kinase, mitogen-activated protein
(MAP)-kinase, in diabetic nerves, which was also suppressed by
treatment with pioglitazone134. Thus, MAP-kinase is considered
to be a potential target for a new treatment of diabetic neuropa-
thy137,138. In this process, NF-jB is activated to lead the cell to
cell death or proliferation139,140. Because a pro-inflammatory
reaction is induced by the polyol pathway hyperactivity or
increased AGE formation as well, it should be clear to what
extent the pro-inflammatory process is a single initiating or
influential factor for the development of neuropathy. Ischemia
reperfusion might also accelerate the inflammatory processes to
which diabetic nerves are susceptible77,78.

With increasing information about the role of inflammation,
approaches to suppress the pain symptoms or neuropathy itself
are now carried out with the specific target of cytokines or cell
signals141–143.

Cellular and Trophic Factors
The lack of neurotrophins plays an important role in the patho-
genesis of diabetic neuropathy144–149. In fact, the production of
NGF was suppressed in the skin and substitution of NGF ame-
liorated neuropathic changes of small fibers and autonomic
pathology in diabetic animals150,152. NT-3, brain-derived neuro-
trophic factor (BDNF) and ciliary neurotrophic factor (CNTF)
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Figure 6 | Neuropathy in normal rats given exogenous advanced glyca-
tion end-products (AGE). When AGE were given exogenously, normal
rats showed neuropathic changes, similar to those found in experimen-
tal diabetic animals. Rats given AGE showed (a) a significant delay of
motor nerve conduction velocity and (b) suppression of nerve Na,K-
ATPase activity, whereas no effects were detected in bovine serum albu-
min (BSA)-treated rats. Such suppression was corrected by co-treatment
with aminoguanidine, an inhibitor of glycation and nitric oxide. (c) On
the sections, AGE-treated rats showed strong expression of nuclear fac-
tor-jB on the nuclei of endothelial cells of microvessels and Schwann
cells (quoted from reference 94).
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were also decreased in the muscle tissues in diabetic patients153.
NT-3 was shown to protect the NCV delay and perception
threshold in diabetic animals154, but the results were not always

positive155,156. Unfortunately, application of NGF in a clinical
trial did not succeed in the correction of neuropathy, in part
because of the emergence of pain157. Efforts have now been

MNCV

P < 0.01 P < 0.01 

NS 

β actin

Control DM DM + Pio 

ERK

pERK

SNCV

P < 0.01 P < 0.01 

P < 0.05

Cont Diab Diab
+

Pio

50

0

Cont

m/s m/s

Diab Diab + Pio

Cont Diab Diab
+

Pio

50

0

Figure 7 | Pro-inflammatory reactions and experimental diabetic neuropathy. In the sciatic nerve of STZ-induced diabetic rats, there were many
macrophages stained positive for ED1 (upper center). Migration of macrophages was inhibited when diabetic rats were treated with pioglitazone
(upper right). Pioglitazone treatment also corrected the delay of motor nerve conduction velocity (MNCV) and sensory nerve conduction velocity
(SNCV), and activation of extracellular signal-regulated kinase (ERK), one of mitogen activated protein kinases (MAPK) (adapted from reference 134).
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made to more efficiently deliver or produce trophic factors
at the target tissues by introducing gene therapy or cell trans-
plantations59,159–162.

Recent studies have shown a new insight into the pathogene-
sis of neuropathy. In diabetic nerves, there were chimeric cells
that were a combination of resident Schwann cells or neuronal
cells and migrated proinsulin-producing cells derived from bone
marrow163. Although the significance of such chimeric cells is
yet to be known, they eventually undergo apoptotic cell death,
thus injuring the constitutive cells, leading to neuropathic
changes. Much remains to be further investigated to confirm
such intriguing cells and to clarify their significance.

Direction of Treatment
Based on the proposed mechanisms of neuropathy so far
(Figure 8), efforts have been continuously made to develop
effective means for the treatment of neuropathy. However, to
date, there are only a few agents available in limited countries;
ARI (epalrestat) in Japan and a-lipoic acid (thioctic acid) in
Germany. Other agents, such as benfotiamine as an anti-glyca-
tion agent, PKC-b-inhibitor (ruboxitaurine) or NGF were
unsuccessful at the final stage of randomized clinical trials.
Nevertheless, there are still ongoing trials that we hope will be
successful in future. Very recently, it was shown that autonomic
neuropathy in the bone marrow impaired activation and migra-
tion of endothelial precursor cells (EPC), which might deter-
mine the fate of vascular complications164. It also becomes clear
that the vagus nerve conveys signals for regeneration of islet
b-cells165, which might be disturbed in diabetic patients. These
novel findings reinforce the importance of diabetic neuropathy
for patient care and direction of treatment in diabetes. In partic-
ular, early inhibition of causative factors is extremely important
not only to halt, but to reverse, the lesions. However, once the
lesions are developed, as stated earlier, a variety of factors are
exerted to accelerate the neuropathy. In this setting, the combi-
nation of several inhibitors might be required.

Neuropathy has long been regarded merely as a disorder of
the most distal portion of the body. Effects of hyperglycemia on
the nervous system have now been shown to be a much more
serious condition. Neuropathy itself is an important trigger for
systemic abnormalities in diabetic patients. Much more investi-
gation on the nerve changes in the pancreas, liver and related
organs is required for a better understanding of the whole body
in diabetic patients and to develop effective treatment of this
disease.
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