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Abstract

Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum.

The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian

rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences

from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective

gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionaliza-

tion events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed

onlypartially overlappingexpressionofparalogous mRNA, supportinggene sub- and/orneofunctionalization.Moreover, the daily cry

expression in the adult zebrafish retina indicatedvaryingoscillationpatterns indifferent cell types.Ourextensive phylogenetic analysis

provides for the first time an overviewof cry evolutionaryhistory.Althoughseveral, especially parasitic orblind species, have lost allcry

genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic

expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the

hypothesis of several autonomous circadian clocks present in the vertebrate retina.
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Introduction

Cryptochromes (Crys) were first described as “cryptic” blue-

light photoreceptors in plants that control aspects of growth

and development (reviewed in Lin [2000]). Only in the 1990s,

the first cryptochrome gene was cloned and identified as a

UV- and blue-light absorbing flavoprotein, closely related to

DNA photolyases (Ahmad and Cashmore 1993). Both, cryp-

tochromes and photolyases, share a conserved photolyase-

related region that binds two chromophores: FAD (flavin

adenine dinucleotide) and in the case of cryptochromes pre-

dominantly MTHF (methenyltetrahydrofolate) (reviewed in

Sancar [2003] and Chaves et al. [2011]). Although in photo-

lyases light absorption enables the repair of UV-induced DNA

damage, most Crys have partially or completely lost this func-

tion but gained novel roles in signaling (Malhotra et al. 1995;

reviewed in Sancar [2003] and Chaves et al. [2011]).

Crys are widely distributed in pro- and eukaryotes (with the

exception of archaea), where they are involved in a variety of

light responses, most prominently in circadian activity regula-

tion (reviewed in Chaves et al. [2011]). Animal-type crypto-

chromes are divided into two functional groups. Type I

cryptochromes, also known as Drosophila-type crypto-

chromes, are directly light-sensitive and act as the circadian

photoreceptor, as had been described in detail in Drosophila

(Emery et al. 1998; Stanewsky et al. 1998). On the other hand,

no light-dependent function has been described for type II

cryptochromes (vertebrate-type cryptochromes) which

mostly regulate the transcription of clock genes in the nega-

tive limb of the feedback loop of the circadian clock (Kume

et al. 1999; Shearman et al. 2000). In some species such as

Arabidopsis, cyanobacteria, or zebrafish, another type of cryp-

tochrome, CryDASH, has been described (Hitomi et al. 2000;

Brudler et al. 2003; Daiyasu et al. 2004). As they have retained

the ability of photorepair, they are described as an intermedi-

ate form between photolyases and Cryptochromes (reviewed

in Chaves et al. [2011]). CryDASHs build a monophyletic
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group in the Cryptochrome/Photolyase family and are closer

related to plant-type Cryptochromes and CPD (cyclobutane

pyrimidine dimer) photolyases than to animal-type

Cryptochromes (Oliveri et al. 2014). As our study focuses on

the phylogeny of animal-type Cryptochromes that can be

found in animals as well as plants, the functionally and phy-

logenetically only distantly related CryDASHs were not in-

cluded. For the remainder of the article, we will use the

term Cryptochrome as a synonym for these animal-type

Cryptochromes.

The cryptochrome content in vertebrate genomes was al-

tered during evolution by several rounds of whole-genome

duplication (WGD) events. There is evidence for the oc-

currence of two such large-scale genomic events in verte-

brates and an additional genome duplication event that

happened about 350 Ma at the base of the teleost lineage

(Amores et al. 1998; Vandepoele et al. 2004; Glasauer and

Neuhauss 2014). Such events likely have built the basis of

species radiation (Aury et al. 2006; reviewed in Ohno [1999]

and Volff [2005]). Despite two WGD events mammals only

possess the two type II cryptochromes Cry1 and Cry2 (Hsu

et al. 1996). However, some species such as zebrafish

(Kobayashi et al. 2000) or chicken (Ozturk et al. 2009) main-

tain a higher number of cryptochromes within their genome.

Among all animals, zebrafish and their close relatives, the

cavefish, harbor the largest reported Cry family with seven

members and a still active photolyase in their genome

(Kobayashi et al. 2000; Daiyasu et al. 2004; Tamai et al.

2004; Cavallari et al. 2011).

In contrast to vertebrates, invertebrate evolution lacks

such additional rounds of WGDs at the basis of their lineage

and no more than three cryptochromes have been described

in investigated invertebrate genomes (Yuan et al. 2007;

Bertossa et al. 2014). Although some studies provide a

detailed analysis of the cryptochrome gene family

(Kobayashi et al. 2000; Lin and Todo 2005; Yuan et al.

2007; Kubo et al. 2010; Bertossa et al. 2014; Oliveri et al.

2014), they only include few species and a broad overview

of the Cryptochrome phylogeny of invertebrate and verte-

brate species is missing.

Here, we investigated the evolutionary relationships of Crys

in a large range of eumetazoan species thus providing a com-

plete overview of cryptochrome phylogeny. We found that

during evolution, WGD events followed by non-, sub-, and/

or neofunctionalization led to the huge variability in cry gene

number in different species. As zebrafish possess at least one

representative of each Cryptochrome and as this organism,

due to its genomic and genetic resources, emerges as a useful

model to study the fate of genes throughout evolution, we

analyzed the expression of each cry transcript in larval zebra-

fish. The study was completed with an expression analysis in

adult zebrafish retinae to conclude about possible nonvisual

regulatory functions of each Cryptochrome.

Materials and Methods

Fish Maintenance and Breeding

Adult fish were kept under standard conditions at a 14 h/10 h

light/dark cycle at 28 �C. For this study, only fish of the wild-

type strain “Tü” were used (Haffter et al. 1996). Embryos

were raised at 28 �C in E3 medium (5 mM NaCl, 0.17 mM

KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4) and staged ac-

cording to development in days postfertilization (dpf). All

animal experiments were performed in accordance with the

ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research and were approved by the local authorities

(Veterinäramt Zürich TV4206).

Annotation of cryptochrome Sequences

As gene predictions produced by automated processes have

been shown to contain numerous errors, cry cDNA sequences

used in this study were manually annotated. Sequences were

identified and annotated using combined information from

expressed sequence tags and genome databases

(GeneBank, http://www.ncbi.nlm.nih.gov, last accessed

February 2, 2015; Ensembl, http://www.ensembl.org/index.

html, last accessed February 2, 2015). Human and mouse se-

quences were used as initial query (for more details on se-

quence annotation, see Gesemann et al. 2010). Exon sizes

as well as putative cDNA length of cryptochromes from re-

lated species were further used as reference. The sequences of

all eight zebrafish cryptochromes have been previously deter-

mined (Kobayashi et al. 2000) and were confirmed in our lab

by reannotations, cloning from zebrafish cDNA and subse-

quent sequencing.

Phylogenetic Tree Analysis

Phylogenetic analysis was performed on the Phylogeny.fr plat-

form (http://www.phylogeny.fr/, last accessed February 2,

2015) (Dereeper et al. 2008). Chryptochrome cDNA se-

quences were translated into amino acid sequences and sub-

sequently aligned using MUSCLE v3.7 (Edgar 2004)

configured for highest accuracy (MUSCLE with default set-

tings). Length of input sequences varied between 501 and

961 amino acids. After alignment, ambiguous regions (i.e.,

containing gaps and/or being poorly aligned) were removed

with Gblocks v0.91b (Castresana 2000) using the following

parameters: The minimal length of a block after gap clearing

was set to 10 and no gap positions in the final alignment were

allowed. Alignments with continuous nonconserved positions

larger than 8 were rejected and at least 85% of the sequences

had to be present at gap flanking positions. Following curation

292 amino acids were used for further analysis.

Corresponding nucleotide sequences of the curated amino

acid sequences were used for phylogenetic trees reconstruc-

tion using the maximum-likelihood method implemented in

the PhyML program v3.0 (Guindon and Gascuel 2003). The
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gamma shape parameter was estimated directly from the

data. Branch reliability was assessed by the approximate like-

lihood-ratio test (aLRT, SH-like) (Anisimova and Gascuel 2006).

Graphical representations of the phylogenetic trees were ob-

tained using TreeDyn v198.3 and edited in Coral draw (Coral

Corporation).

Accession numbers and information on the used sequences

are listed in supplementary table S1, Supplementary Material

online.

Synteny Analysis

An initial rough synteny analysis was done using the

synteny database (http://syntenydb.uoregon.edu/synteny_db/,

last accessed February 2, 2015) (Catchen et al. 2009). Synteny

hits in the output files were further subjected to a microsyn-

teny analyses, were paralogous/orthologous genes of human

or zebrafish, were used as initial queries for a tBLASTx search

against the zebrafish or human database (ncbi nr/nt data-

base). The hit with the highest conservation (length and iden-

tity) was used in a reciprocal tBLASTx search against the

corresponding database and only genes identifying the initially

used query are counted as positive matches.

Cloning of Zebrafish cryptochromes

Sequences of the previously described zebrafish crys were

downloaded from zfin (http://zfin.org, last accessed February

2, 2015) and various primers for PCR amplification were or-

dered (Sigma-Aldrich, Buchs SG, Switzerland). Amplified frag-

ments were sequenced and were purified using the

NucleoSpin Extract II kit (Macherey-Nagel, Oensingen,

Switzerland) and subsequently cloned into a pCRII vector

(pCRII TOPO TA-cloning kit; Invitrogen, Life Technologies,

Zug, Switzerland). An amount of 6ml of ligated plasmid

DNA were added to 50ml of bacterial suspension (OneShot

TOP10; Invitrogen), left on ice for 20 min before being incu-

bated for 40 s at 42 �C and again placed on ice for 2 min. An

amount of 500ml prewarmed, sterile 25% lysogeny broth

(LB)-medium (Luria Broth Base; Invitrogen) was added and

the cell suspension was incubated for 1 h at 37 �C in a

gently shaking incubator. Afterwards, the cells were collected

by centrifugation (8,000 rpm for 3 min). The supernatant was

discarded, the cells resuspended and plated onto prewarmed

agar plates containing ampicillin (0.1 mg/ml), Isopropyl �-D-1-

thiogalactopyranoside (IPTG); 0.71mg/ml; Roche, Basel,

Switzerland), and X-Gal (5-bromo-4-chloro-3-indolyl-�-D-

galactopyranoside; 48mg/ml; Roche). The plates were incu-

bated over night (ON) at 37 �C. The next day, colonies were

picked using a sterile pipette tip, transferred to a culture tube

containing 5 ml of 25% LB-medium with ampicillin (0.1 mg/

ml), and incubated ON in a shaking incubator at 37 �C.

Plasmid DNA was isolated and purified with the NucleoSpin

Plasmid kit (Macherey-Nagel), concentration was measured

using a NanoDrop (ND-1000; Witec AG, Litau, Switzerland).

Subsequently, plasmids were sequenced in house.

In Situ Hybridization

The primers used for probe preparation are listed in table 1.

Plasmids were linearized for T7 and Sp6, in vitro transcribed,

and purified on a column (Macherey-Nagel). The probes were

DIG-labeled using a kit (DIG-RNA labeling kit; Roche).

Transcripts were hydrolyzed to obtain fragments of approxi-

mately 300–500 nucleotides of length. As working probes a

mixture of nonhydrolyzed (2 ng/ml) and hydrolyzed (1 ng/ml)

probe was used.

Embryos used for in situ hybridization (ISH) were treated

with 0.2 mM PTU (1-phenyl-2-thiourea; Sigma-Aldrich) to pre-

vent melanization of skin melanocytes and the retinal pigment

epithelium. At the fifth dpf, embryos were fixed in 4% para-

formaldehyde (PFA; Sigma) in phosphate-buffered saline

(PBS), pH 7.4 at the appropriate time point (according to

the highest expression level found in adult retinae by qRT-

PCR analysis: 7 am for cry1b and cry2, 11 am for cry1a and

cry5/6-4phr, 11 pm for both cry3 paralogs and cry4) ON at

4 �C. The next day, the embryos were washed twice in PBS

containing 1% Tween (PBT), dehydrated in a graded series of

PBT:MeOH mixtures (3:1; 1:1; 1:3), and stored in 100%

MeOH at �20 �C until further use. Adult zebrafish were eu-

thanized with tricaine (MS-222; Sigma-Aldrich) in iced water

at the appropriate time point (7 am, 11 am, 7 pm, 11 pm).

Eyecups were removed and fixed ON at 4 �C in 4% PFA in

PBS, pH 7.4. ISH and imaging of whole mount larvae and of

sections were performed as previously described (Haug et al.

2013). Images were processed and arranged with Adobe

Photoshop and Illustrator CS5.

Quantitative Real-Time PCR

After removing the eyecups of the fish at the appropriate time

point (ZTs 3, 7, 11, 15, 19, 23), the tissue was collected in RLT

buffer (Qiagen, Hombrechtikon, Switzerland), pounded with a

pistil and homogenized with a sonificator (Sonopuls HD2070;

Bandelin Electronic, Berlin, Germany). Fish were euthanized in

darkness and eyecups were removed under dim red light

when the tissue was collected during the dark period. RNA

was extracted with the NucleoSpin RNA II Kit (Macherey-

Nagel) and RNA concentration was measured with a

NanoDrop (ND-1000; Witec AG, Litau, Switzerland). Reverse

transcription was performed with 400 ng RNA and the

Superscript II kit (Invitrogen, Life Technologies, Zug,

Switzerland). Quantitative real time polymerase chain reaction

(qRT-PCR) was performed in a transcriptor (Applied

Biosystems Prism SDS 7900HT; Life Technologies) using the

MESA Green Kit (Eurogentec, Seraing, Belgium). Primer pairs

(Sigma-Aldrich) used for qRT-PCR were specifically designed

to incorporate an intron to avoid unspecific amplification of

genomic DNA (see table 1). As a reference, the genes Rpl-13�
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(ribosomal protein L-13a), EF1� (elongation factor 1 alpha),

and prkc� (protein kinase C alpha) were selected (Tang et al.

2007). The highest expression of each gene was given 1 and

lower expression was set relative to this total. The values are

means� standard deviations and were averaged from three

independent samples. Analysis was completed in Microsoft

Excel and data were analyzed by a one-way analysis of vari-

ance (ANOVA) (P< 0.05) and a Tukey’s Multiple Comparsion

Test in GraphPad Prism 5. Finally, graphs were arranged in

Microsoft Excel and Adobe Illustrator CS5.

Results

Eumetazoan Cryptochrome Phylogeny and Nomenclature

To study the evolutionary relationship among Cryptochromes,

we performed a phylogenetic analysis using sequences of

more than 100 eumetazoan species ranging from cnidaria

to mammals (fig. 1). To simplify matters, in this publication

we only consider the Cryptochromes after the CryDASH/

Cryptochrome split, although we are aware of the fact that

CryDASHs may also be considered as part of the

Cryptochrome gene family.

We found a huge variability in cryptochrome number and

identity throughout the different animal phyla. Although

mammalian genomes are limited to two cryptochrome

genes, sauropsida genomes harbor two to four crys. Four

cryptochromes can be found in amphibia and coelacants,

whereas the genomic cry content in ray-finned fishes reaches

as much as seven members, mainly due to the teleost-specific

WGD (TGD) (figs. 1A, B and 2). Prior to the two vertebrate

specific WGDs we found species with no cryptochrome (Ciona

intestinalis, leech, some mites), one (scorpions and some in-

sects), two (some mites and insects), or three crys (cephalo-

chordates, echinodermates, mollusks, spiders, and some

insects). In all these lineages, different cryptochromes were

lost independently. Interestingly, all insects possess at least

one cryptochrome and more than half of the insect lineages

kept the three ancestral cry genes although in other inverte-

brate lineages the loss of cryptochromes occurred much more

frequently. Among the few invertebrate species besides the

insects that still harbor all three cry genes are the echinoder-

mata, mollusks, aranea, merostomata, and gymnoplea.

The latter (e.g., the zooplankton Calanus finmarchicus) even

possess four cryptochromes, most likely due to a tandem

duplication event (fig. 2).

Our extensive phylogenetic analyses led us to propose the

renaming of certain Crys according to their arrangement in

monophyletic groups (see table 2 for an overview of the new

and old names for selected species). We and others found that

the zebrafish and other teleost genomes harbor three to four

Cry1 orthologs. In zebrafish, the paralogs were initially named

Cry1a and –b, and Cry2a and –b, indicating their close rela-

tionship (Kobayashi et al. 2000). However, the zebrafish Cry

originally named Cryptochrome 3 clearly groups with the

mammalian Cry2 forming a monophyletic clade. To stay

Table 1

Primer Pairs Used for Riboprobe Preparation and qRT-PCR Analysis

Gene ISH qRT-PCR

50–30 50–30

cry1a F: GAGAGCAGTTTCTTTTTTGG F: CAGGCGTGGAGGTGATAG

R: AAGCCTCTGGGTTTTTATC R: TGGAAGCGCTTATACGTG

cry1b F: GGATCTCCCACACACTCTATG F: ACACCGGTCAGTGATGATC

R: CACGTGTGAGGAAGCAAG R: TGGACAGTCCCTCTGTTTC

cry3a F: GGACTGACATAACGTTAAAAG F: GCTGTTGCATGTTTCCTC

R: CAGTCTGCATCCAATAGAAG R: CAGTCTGCATCCAAATAGAAG

cry3b F: TCTGCATTATTGACAGCTTG F: CCGGTGGAGAATCAGAAG

R: CCCCACAGGACAGTAACAG R: TTCGGTCGCTCAAAGTTC

cry2 F: ATTTCCTTGGAACTTTTACG F: GACATGCAGTAGCCTGTTTC

R: CGCATCCAACAGCAACTC R: CGCATCCAACAGCAACTC

cry4 F: CTACGCACAGTCGAAGAAC F: CGAACCTTCTACCACAGACTC

R: CTTCTGGGTCGTAAAACATTC R: AGCGACGGTGTAGAAGAAC

cry5/6-4phr F: CTGGGTGTGCAAGTTTGAG F: ACCCATTCCTGCTCCAAC

R: ATGGATGGACTCGCTTTG R: CAGTCCAAGATCCTCAAGAG

Rpl-13a F: GGACTGTAAGAGGTATGCTTC

R: GATGCCATCAAACACCTTC

EF1� F: GAGGCCAGCTCAAACATG

R: TCAAGGGCATCAAGAAGAG

prkc� F: GGACTCATACACCAAGGAATG

R: GCTTGGCACATTCATCAC
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FIG. 1.—Phylogeny of the Cryptochrome family. Maximum-likelihood analyses of cryptochromes from bilaterian species reveal six major subgroups. The

phylogenetic tree was built using the corresponding 876 nucleotides obtained from a block of 292 conserved amino acids. Conserved amino acids were

determined by the program Gblocks on a sequence alignment done by MUSCLE. Wherever available at least two species of neighboring classes/orders with

distinguishable cryptochrome content are included. The different classes/orders/suborders are highlighted at the side and the cryptochomes of the species

used are color coded accordingly. Full names for the species used can be found in the supplementary table S1, Supplementary Material online. Bootstrap

values above 50% (0.5) are shown. The scale bar shows the percentage (0.7 equals 70%) of nucleotide substitutions required to generate the corresponding

tree. (A) Grouping of cryptochromes in subgroups 1–3. Note that members of the Cry3 subfamily are exclusively found in ray finned fish and that

invertebrates in general possess only one representative Cry1/2/3 sequence. Interestingly, the Cry1 ortholog found in jawless vertebrates (represented by
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FIG. 1.—Continued

lampreys) can be found in a clade with teleost Cry1/3 genes. (B) Grouping of cryptochromes in subgroups 4–6. Although invertebrates lack a Cry4 homolog,

chordates have lost a corresponding Cry6 variant. Cryptochromes in the Cry5/6-4 PhR clade with proven photolyase activity are highlighted by black asterisks.

Note that the included cryptochromes from plants and algae form a separate branch that has not been assigned to any of the six cryptochrome subgroups.

The red asterisk depicted after the zebrafish (dr)/cavefish (ame) Cry4 indicates that, due to the incomplete, but clearly present, cavefish Cry4 sequence only

the zebrafish variant was used for phylogenetic reconstruction. We routed the tree with the two distantly related cryptochromes from the sponge

Amphimedon queenslandia as outgroups.
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FIG. 2.—Evolution of the cryptochrome genes. The phylogenetic relation of major subtypes of bilaterian species is represented in the depicted tree.

Order, classes, and phylum names at branch points are indicated. Note that the branch lengths are NOT scaled with time. The major phyla and subphyla are

highlighted by colored boxes. A representative image of one species for each order/class/phylum is given for better orientation. The abbreviation of the
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consistent with the phylogenetic data, we propose to rename

the teleost Cry3 to Cry2. This has the consequence that the

initial Cry2s have to be renamed to Cry3. As the initially

named Cry3 genes are only present in teleosts, the renaming

will be limited to only a few database entries. Although this

renaming has the consequence that teleost Cry1s and Cry2s

are no longer the closest relatives, it has the clear advantage

that no other Crys throughout the animal phylum have to be

renamed. Cry4 and Cry5 named genes in the database could

be maintained. Consistent with some database entries, the

Cryptochrome photolyase or (6-4) PhR is now named Cry5

or Cry5/6-4PhR in case of proven photolyase activity. The

last group of Cryptochromes, exclusively found in inverte-

brates, we now call Cry6. Figure 2 summarizes the phyloge-

netic tree thus providing an overview of the phylogenetic

relation of all major subtypes of bilaterian species. Gain and

loss of Crys in each lineage can clearly be identified which

supports the understanding of each species’ Cry content.

To ascertain that the zebrafish Cry1 and Cry3 paralogs

originate from a WGD event, we investigated their genomic

regions. All four zebrafish cry1 orthologs are located on dif-

ferent chromosomes and within close proximity of either the

cry1 or the cry3 regions we found other duplicated genes

specific for each two paralogs (red lines, fig. 3). This conserved

synteny indicates that they are ohnologs that originated from a

WGD event. Moreover, synteny analysis between the human

cry1 and the zebrafish cry1 and cry3 paralogs clearly displays a

conserved synteny of the human and the zebrafish cry1s (fig.

3). In the case of the cry1 paralogs, the same genes are located

in both genomic surroundings as were found in close proximity

of the human cry1 on chromosome 12 (e.g., btbd11 in both

cases and either stab2 for cry1a or ric8b for cry1b).

The last common ancestor representing all Crys 1, 2, and 3

of vertebrates and invertebrates we called Cry1/2/3 to indicate

its relationship. Subsequent WGD events (depicted as R1, R2,

and R3 in fig. 2) led to the increase in Cry1/2/3 orthologs in the

vertebrate lineage, whereas invertebrates still possess only one

ortholog depicted as Cry1 in the phylogenetic tree.

Expression of cry Transcripts in Larval Zebrafish

The zebrafish genome harbors at least one member of each

original vertebrate cryptochrome.

In order to reveal evolutionary events such as a division of

function among ohnologs, we investigated the expression of

cry transcript in 5-day-old zebrafish larvae. This is a develop-

mental stage where the larvae possess a fully functional visual

system and start to actively capture prey (Gestri et al. 2012). In

the retina, both cry1 paralogs are expressed in the inner part

of the inner nuclear layer (INL) (arrowheads in fig. 4A and C),

as well as in the ganglion cell layer (GCL) (fig. 4A and C). An

additional expression in the diencephalon, the optic tectum,

and the medulla oblongata (fig. 4B) was only detected with

the cry1a riboprobe. The cry3 paralogs, are both highly abun-

dant in all retinal cell layers including the outer nuclear layer

(ONL) where photoreceptors are located, and in the intestine

(fig. 4F, H, I, and K), however, expression of cry3a in the

subpallium and of cry3b in the optic tectum is paralog-specific

(fig. 4E, G, and J).

crys 2, 4, and 5, all belonging to the type I Cryptochromes,

are expressed in various parts of the central nervous system

(fig. 4L–R). The broadest expression is found for cry2 tran-

scripts which are expressed in all three nuclear cell layers

of the retina (fig. 4L) as well as in the optic tectum, the

tegmentum, and the medulla oblongata (fig. 4M). cry4 and

cry5/6-4phr show a very broad expression throughout the

central nervous system (fig. 4N, O, Q, and R). However, for

cry4 we find a specific staining in all nuclear retinal layers and

in the optic tectum (fig. 4N) and an additional staining in the

intestine (fig. 4P). Retinal expression of cry5/6-4phr is confined

to the inner part of the INL (arrowhead fig. 4Q). Although

weak expression is found all over the brain, it appears slightly

stronger in the optic tectum (fig. 4R). The developmental

expression of the cry genes is summarized in table 3.

Daily Expression Analysis of crys in the Retina of Adult
Zebrafish

Because Crys might be involved in both visual and nonvisual

processes that take place in the retina, we focused specifically

on the eye and investigated the expression of cry genes in

zebrafish eyes over a period of 24 h. As measuring mRNA

levels in whole eyecups would not provide information

about cyclic transcript expression in specific retinal cell

layers, we combined this qRT-PCR analysis with ISH in adult

retinal sections to generate more detailed information about

oscillating cryptochrome expression.

cry1 paralogs are most abundantly expressed during morn-

ing hours right after (cry1a, fig. 5E1) or right before (cry1b, fig.

5E2) light onset. The expression of cry1a peaks at Zeitgeber

time (ZT) 3 and declines steadily during the following hours.

We obtained a similar result with the ISH analysis: The high

expression of cry1a in all retinal layers that peaks at ZT3, de-

clines until ZT15 before it increases again (fig. 5A1–D1).

FIG. 2.—Continued

species used for phylogenetic reconstruction is shown at the right-hand side and corresponding species names are summarized in supplementary table S1,

Supplementary Material online. Verified WGD events are indicated by red dots and labeled as R1, R2, and R3. Putative cryptochrome contents at extrapolated

ancesteral stages are given at selected branch points and cryptochrome gains (green boxes) and losses (red crosses) are indicated. Note that parasitic or light

independent species (red filled cycles) often lack cryptochrome genes or only have one variant left. Overall, multiple independent gene losses can be seen in

isolated orders or classes.
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Similar to its paralog cry1a, cry1b is expressed in all nuclear

retinal layers (fig. 5A2–D2) and the strongest expression is

seen at ZT23 which is in accordance with the qRT-PCR result

(fig. 5E2). Expression in the ONL at ZT3, 11, and 23 is only seen

in the proximal ONL where rod somata are located (white

arrowheads, fig. 5A2–D2). At ZT15, however, the cry1b tran-

scripts are localized in the layer where cone nuclei are found

(black arrowheads, fig. 5A2–D2).

cry3a transcripts are expressed in all retinal nuclear layers of

adult fish. The ONL shows the most obvious oscillation pattern

with a peak at ZT15 and a trough some hours later at ZT23

(fig. 5A3–D3). In contrast to that, strongest expression in the

INL and the GCL is found at ZT11 (fig. 5B3). Both cry3 paralogs

show a similar total retinal transcript expression with a steady

increase during the day, a peak at ZT15 and a decrease during

the dark phase (fig. 5E3 and E4). The riboprobe of cry3b stains

all retinal layers in an oscillating manner (fig. 5A4–D4).

Although the rhythmic expression in the GCL overlaps with

the qRT-PCR result and peaks at ZT15 (fig. 4C4), the staining in

the ONL and the INL remains high between ZT11 and ZT15

before it decreases until it is barely visible anymore at ZT23

(fig. 5A4–D4). Interestingly, both cry3 paralogs show an

intense staining at ZT15 in the outermost part of the

INL where horizontal cells are located (white arrowheads,

fig. 5C3 and C4).

We find cry2 transcript oscillation in various retinal cell

layers. Interestingly, cry2 expression in the ONL seems to os-

cillate cell type dependent: Although we find a weak expres-

sion in the proximal ONL where rod somata are located at ZT3

and ZT23 (white arrowheads, fig. 5A5–D5), expression is very

prominent in cones, most likely short wavelength cones, at

ZT23 but invisible at all other time points (black arrowheads,

fig. 5A5–D5). Expression in the INL is also rhythmic but stays

more or less constant around light onset between ZT23 and

ZT3 and the GCL shows the highest cry2 transcript expression

at ZT3. Overall, these results overlap with the total retinal

transcript abundance of cry2 which peaks at ZT23 before

light onset, declines steadily, and reaches its base level in

the evening between ZT11 and 15 around light offset

(fig. 5E5).

The zebrafish cry4 qRT-PCR analysis reveals a trough at

ZT23 followed by an increase in transcript abundance in the

light phase and a peak at ZT15 (fig. 5E6). The ISH analysis

confirms this result as we detect an increasing retinal cry4 ex-

pression in the ONL, the INL, and the GCL between ZT3 and

ZT15 but found no expression at ZT23 (fig. 5A6–D6). In addi-

tion, we located cry4 transcripts in a distinct part of the ONL

where cone somata are located but only at ZT3 (black arrow-

heads, fig. 5A6). At later time points, the expression in the ONL

is rather broad and is not confined to a specific cell type.

cry5/6-4phr transcripts are weakly expressed in all nuclear

retinal layers peaking at ZT3 (fig. 5A7–D7), which is confirmed

by the 24-h-expression profile (fig. 5E7).

Discussion

An extensive phylogenetic analysis is indispensable for the un-

derstanding of gene family evolution. Several studies describe

the phylogeny of Cryptochromes; however, they only include

few species and give a rather broad overview (Kobayashi et al.

2000; Lin and Todo 2005; Oliveri et al. 2014). Hence, we

embarked on an extensive analysis including more than 100

eumetazoan species to elucidate evolutionary events that

shape their extant appearance.

Cryptochrome Phylogeny Reveals Diverse Specification
Events of Three Ancestral Genes

Overall, the number of cryptochrome genes among species

varies considerably. Eumetazoan Cryptochrome genes origi-

nated from three ancestral genes in the last common Bilateria

ancestor, namely Cry1/2/3, Cry4/5, and Cry6. Cryptochrome 6

was likely lost at the basis of the Chordate evolution, which

explains the appearance of Cry6 in Echinodermata and various

Protostomia but its absence in Tunicates and

Table 2

Overview of cry Names

New Name Mus musculus Gallus gallus Xenopus tropicalis/laevis Danio rerio

cry1 (a/b) cry1 cry1 cry1 cry1a, cry1b

cry3 (a/b) / / / cry2a, cry2b

cry2 cry2 cry2 cry2/cry2a, cry2ba cry3

cry4 (double function cry) / cry4 cry1, cry4 cry4

cry5 / (6-4) phr / / 6-4 photolyase 6-4 photolyase

cry6 / / / /

Danaus plexippus Drosophila melanogaster Apis mellifera

cry1 (cry1/2/3) cry2 / cry2

cry5 (cry4/5) phr6-4 dm64, phr6-4 /

cry6 cry, cry1 dmcry, dcry, cry1 /

NOTE.—Type I or Drosophila-type cryptochromes are given in bold.
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FIG. 3.—Synteny of the zebrafish cry1/cry3 genes. Genomic regions around the zebrafish cry1a/cry1b (A) and cry3a/cry3b (B) paralogs are shown.

The general location of cry genes on human and zebrafish chromosomes is depicted at the top (A) or bottom (B) of the figure. Scale ups of the light colored

regions of the corresponding chromosome are used to depict the synteny. cry genes are highlighted in big, bold, red letters. Adjacent to the cry1a and
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FIG. 3.—Continued

the cry1b gene, three other paralogous gene pairs, namely PPFIBP1, btbd11 and si:dkey103i16.2/222f8.3 (bold, red), can be found on both zebrafish

chromosomes 4 and 18. btbd11 is also the direct neighbor of cry1 on human chromosome 12, indicating conserved synteny. Note that additional zebrafish

genes in the vicinity of cry1a/cry1b (e.g., nuak1, stab2, ric8b, mterfd; italic red) also have their orthologs on human chromosome 12 close to the cry1 gene.

Paralogous genes between zebrafish chromosomes are indicated by colored lines. Ortholog location of corresponding human genes is color coded as

indicated at the right site of the figure. Zebrafish genes around the cry1a/cry1b genes have their orthologs mainly on human chromosomes 12, 7, and 22. In

the case of cry1b an additional island of genes with orthologs on human chromosome 16 can be found. In contrast to cry1a and cry1b, genes flanking cry3a

and cry3b have their orthologs mainly on human chromosomes 1 and 6, indicating that the origin of cry1 and cry3 genes is different and that a putative, now

lost cry3 might have been located on human chromosome 1. This is especially apparent in the situation of cry3b, where all zebrafish genes flanking cry3b

have their orthologs on human chromosome 1 (brown coloring).

FIG. 4.—mRNA expression of cryptochromes in 5-day-old zebrafish. Expression of cry1a and cry1b in dorsal (A, C) and lateral (B, D) view. Although both

riboprobes label the inner part of the retinal INL (arrowhead in A and C) and the GCL, cry1a shows a broad expression in the mid- (Die, TeO) and the hindbrain

(MO). Dorsal (E, F, I) and lateral (G, H, J, K) view of cry3a and cry3b mRNA expression reveals paralog-specific labeling of cry3a in the subpallium (S in E and G)

and of cry3b in the optic tectum (TeO in J). Both cry3 paralogs label retinal layers (ONL, INL, GCL) including the inner part of the INL (arrowhead in F and I) and

the intestine (Int in H and K). cry2 expression in a dorsal (L) and lateral (M) view shows broad labeling in the retina (ONL, INL and inner part of INL [arrowhead],

GCL), the midbrain (TeO, T), and the hindbrain (MO). cry4 mRNA expression in dorsal (N) and lateral (O, P) view. Broad labeling is found all over the central

nervous system but specifically in the inner part of the retinal INL (arrowhead in N) and in the optic tectum (TeO). In addition, cry4 is expressed in the intestine

(Int). Expression of cry5/6-4phr in dorsal (Q) and lateral (R) view indicates labeling in the inner part of the INL (arrowhead in N) and weakly in broad regions of

the brain with a more intense staining in the optic tectum (TeO). Die, diencephalon; GCL, ganglion cell layer; INL, inner nuclear layer; Int, intestine; MO,

medulla oblongata; ONL, outer nuclear layer; TeO, optic tectum; S, subpallium. Scale bar in (A) (corresponds to all images A–R) = 50mm.
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Cephalochordates. Cry6 is therefore an invertebrate-specific

Cryptochrome although it has been lost independently in sev-

eral invertebrate lineages. A series of WGDs in vertebrates

(indicated as R1, R2, and R3 in fig. 2) led to an increase in

the number of vertebrate Crys. Relieve from selective pressure

in duplicates resulted in the inactivation of several orthologs

and ultimate gene loss. This most likely happened for Cry3 at

the base of the tetrapod clade, as no tetrapod harbors a Cry3

ortholog, whereas their close relatives, the coelacanthimor-

pha, still possess a Cry3 ortholog. As no WGD event occurred

at the base of any invertebrate lineage, the full set of

Cryptochromes in invertebrates consists of the three

Cryptochromes already present in the earliest ancestor of all

Bilateria. The division between the vertebrate Cry1s, 2s, and 3s

and all invertebrate Cry1/2/3s is obvious. Interestingly, inver-

tebrate Cry4/5 orthologs are closer related to the vertebrate

Cry5s. This suggests that the DNA-repair function, which is a

key feature of Cry5, was the ancient function of this Cry

and that the function of Cry4 changed subsequently

after the genome duplication and has no functional represen-

tative in present invertebrates. Surprisingly, the lancelet

(Branchiostoma floridae) Cry4/5 orthologs group within the

vertebrate Cry4 branch. However, as the lancelet possesses

two Cry4 paralogs which likely are the result of a tandem

or partial chromosomal duplication event, it might be

possible that one of these genes has kept the function

Table 3

Overview of cry Expression in Zebrafish

Gene Region

5dpf Adult Retina

CNS Retina Body ONL INL GCL

ZT3 ZT11 ZT15 ZT23 ZT3 ZT11 ZT15 ZT23 ZT3 ZT11 ZT15 ZT23

cry1a

Die ++
TeO ++
MO ++

INL (+)
INLp (++)
GCL (++)

� + � � + ++ + � ++ + + + +

cry1b �

INLp (+)
GCL (+)

�

m �
p +

m �
p +

m +
p �

m �
p +

++ + � ++ � � � ++

cry3a S (++)

ONL (++)
INL (+)
INLp (+)
GCL (+)

Int (++) � + ++ �

+
d �

++
d +

++
d ++

�

d �

� ++ + �

cry3b TeO (++)

ONL (++)
INL (+)
INLp (+)
GCL (+)

Int (++) � + + �

+
d �

++
d +

++
d ++

�

d �

+ ++ ++ �

cry2

TeO ++
T ++
MO ++

ONL (++)
INL (+)
INLp (+)
GCL (+)

�

m �
p +

m �
p �

m �
p �

m ++
p �

++ � � ++ ++ � � +

cry4

TeO (++)
overall broad

ONL (++)
INL (+)
INLp (+)
GCL (+)

Int (++) � + + � ++ ++ ++ � � � ++ �

Cry5/6-4phr

TeO (++)
overall broad

INLp (+)
GCL (�)

� + � � � + � � � � � � �

NOTE.—“�,” no expression; +/–, very weak expression; +, medium expression; ++, strong expression. Expression intensity in specific areas was semiquantitatively evaluated
by appearance of the intensity of blue staining. Die, diencephalon; INLd, distal INL; INLp, proximal INL; Int, intestine; MO, medulla oblongata; ONLm, medial ONL; ONLp,
proximal INL; S, subpallium; T, tegmentum; TeO, optic tectum.
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FIG. 5.—Daily mRNA expression pattern of cryptochromes in adult zebrafish retinas. (A–D) (1–7) ISH using different cry riboprobes on radial sections of

the adult zebrafish retina at different ZTs indicated on top. Black arrowheads in (A2–D2) and (A5–D5) indicate the location of cone somata and white

arrowheads the location of rod somata. White arrowheads in (C3) and (C4) point on the outermost part of the INL where horizontal cells are located. Black

arrowheads in (A6) reveal specific staining in cone subtypes. (E1–E7) Double plot of qRT-PCR analysis showing daily expression of zebrafish cry transcripts in

adult retinal tissue. Overall, qRT-PCR results confirm oscillating retinal transcript expression and show statistically significant daily variations in expression as

Cryptochrome Phylogeny and Evolution GBE
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of Cry5, whereas the other paralog adapted a Cry4-like

function.

Interestingly, some invertebrates have lost all

Cryptochromes. This group is composed of a variety of line-

ages ranging from ascidia (C. intestinalis) and hemichordata

(Saccoglossus kovalevskii) over nematodes (Caenorhabditis

elegans) to myriapoda (Strigamia maritima). Conspicuously,

most of these either lead a parasitic lifestyle, thus their survival

relies on a host, or they live in darkness where neither light-

induced DNA damage has to be repaired nor light can be used

to entrain the circadian clock. Although these organisms pos-

sess specialized light-sensing cells for phototactic behavior

(e.g., C. intestinalis: Tsuda et al. 2003; C. elegans: Ward

et al. 2008), the described photoreceptive pigments have

never been associated with circadian function or navigation.

Thus, parasitic species which fully depend on the physiological

features of their hosts may have lost reliance on this biological

function. Likewise, species that only need to orient themselves

marginally may have no use for these machineries and subse-

quently lost the involved genes. This hypothesis may even ex-

plain the scarcity of Cry genes in some vertebrate genomes,

such as the Cyclostomata (Petromyzon marinus) with only a

Cry1 have a parasitic lifestyle (Bergstedt and Swink 1995) and

serpents that only possess Cry1 and Cry2 rather relay on ol-

faction and infrared sensing than on a highly developed visual

system (reviewed in Campbell et al. [2002]). In this context,

however, it is interesting that highly developed species as hu-

mans manage with only two Cry genes and bees that are

famously known to possess complex navigational skills and a

circadian clock only possess one single Cryptochrome of type

II. Apparently, all necessary features of circadian and naviga-

tional signaling can also be accomplished with only few or

even only one Cryptochrome.

Among the closest living relatives of vertebrates we find

different patterns: Although tunicates either lost all

Cryptochromes or kept two family members that group out-

side the Cry1/2/3 and the Cry4/5 group, Cephalochordata

have retained a Cry1/2/3 ortholog that groups closer to their

vertebrate relatives and possess two Cry4/5s. These paralogs

most likely originate from a local chromosomal duplication

and are named Cry4.1 and Cry4.2 as they group with the

vertebrate Cry4s. Although phylogenetic analysis reveals that

the relationship between Cry4.1 and 4.2 of the lancelets and

their vertebrate orthologs is rather distant, lancelets are the

only invertebrates with a Cry4 variant. Interestingly, the diver-

gences within the Cry4 clade are quite massive as the homol-

ogy between Cry4.1 of Branchiostoma and Cry4 of chicken is

only of 55% identity, whereas homologies in the Cry1/3 clade

are usually bigger than 90%. This may suggest that the func-

tional divergence of Cry4 is larger than the less sequence di-

verse type II Cry1.

The two WGD events at the basis of the vertebrate lineage

increased the number of ancestral Cryptochromes to 8 of

which 5 have been retained in Holostei and Teleostei such

as the spotted gar (Lepisosteus oculatus) and in zebrafish

(Danio rerio). Cry3 seems to have been lost in the tetrapod

lineage as soon as they have diverged from the teleost lineage

as no tetrapod species has maintained a Cry3 variant. All four

remaining Crys were only kept by few tetrapods, namely am-

phibians, testudines, and iguania. An open question is why

these lineages kept that many Cryptochromes compared with

serpents or mammals that only harbor Cry1 and Cry2? One

explanation may be found in the navigational use of Crys.

Some amphibians have been shown to possess a light-depen-

dent sensitivity toward a magnetic field that helps them to

orient (Phillips and Borland 1994; Phillips et al. 2001; Diego-

Rasilla et al. 2010) and also migrating turtles make use of the

earth’s magnetic field, although most likely in a light-indepen-

dent manner (reviewed in Wiltschko R and Wiltschko W

[2012]). The proposed molecule involved in the radical pair

mechanism—one of the hypothesized mechanisms how the

earth’s magnetic field could be detected (Ritz et al. 2000;

Rodgers and Hore 2009)—is Cryptochrome (reviewed in

Liedvogel and Mouritsen [2010]). It is currently not known

whether any Cryptochrome of amphibians or testudines is

able to sense the magnetic field. Studies involving the type II

Crys of humans (Foley et al. 2011) and the monarch butterfly

(Gegear et al. 2010) have revealed magnetoreceptive abilities

of these molecules. In addition, one of the key biophysical

features of the radical-pair mechanism, the ability to form

long-living radical pairs, has been shown in vitro for the

bird’s Cry1 (Liedvogel et al. 2007; reviewed in Mouritsen

and Hore [2012]). As these studies involve a broad range of

organisms, the capability of Cryptochromes to detect mag-

netic fields is likely an ancient function and should therefore

be preserved in different Cry subgroups. In addition, various

convincing experiments that proof compass orientation using

a magnetic field have already been conducted in migratory

birds such as the European robin (Nießner et al. 2013) or the

warbler (Mouritsen et al. 2004; Fusani et al. 2014). As birds do

only possess the type II Crys 1 and 2 and the type I Cry4, Cry4

is the most prominent candidate for being involved in magne-

toreception in higher vertebrates. The physiological function

of Cry4 is currently not known, though it is established that

FIG. 5.—Continued

shown by one-way ANOVA (P< 0.05) and Tukey’s post-hoc test. Asterisks mark significantly higher values relative to the lowest value (*P< 0.01,

**P< 0.01, ***P<0.001). The qRT-PCR values were averaged from three independent samples. Gray shading in qRT-PCR graphs represents

night (lights off). On the x axis, the time in ZT is given. GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; ONL, outer nuclear

layer; OPL, outer plexiform layer. Scale bar in (A1) (applies to all images [A–D] [1–7]) = 20mm.
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the protein undergoes a blue/UV-light-dependent structural

change in a retinal soluble fraction, the basis for serving as a

photo- or magnetoreceptor (Watari et al. 2012). However,

this function most likely operates through an unknown mech-

anism, as Cry4 does not interfere with CLOCK-BMAL1-medi-

ated transcription known for all type II cryptochromes

(Kobayashi et al. 2000; Kubo et al. 2006; Takeuchi et al.

2014).

Although it seems beneficial for every organism to keep a

molecule with photolyase activity as Cry5/6-4PhR (Todo, Kim,

et al. 1997; Todo, Ryo, et al. 1997; Uchida et al. 1997;

Kobayashi et al. 2000), this gene was lost independently in

several vertebrate lineages. The advantage of having a UV-

induced DNA-repair mechanism in species that develop in a

protective egg-shell or inside the mother’s uterus is probably

low, which could give a rationale why mammals, snakes or

birds have lost Cry5. However, turtle and alligator, both ovip-

arous species, still contain cry5. In zebrafish, Cry5/6-4PhR

function has been shown to have a strong impact on embry-

onic survival (Tamai et al. 2004) and a photorepair system

seems to be present in fish (Dong et al. 2007), whereas a

direct link between repair activity and viability is still lacking.

The spike-like peak around midday that we report here for the

zebrafish retinal cry5/6-4phr transcript expression may be

adaptive for higher UV levels at noon.

Invertebrates never possess more than one ortholog of a

Cry4/5 descendant. Interestingly, Cry5 is still present in all in-

vestigated mollusks and many insects. We do not know

whether Cry5 still works as (6-4) photoproduct repair

enzyme in these organisms, as shown in Drosophila

(Todo et al. 1993; Todo, Ryo, et al. 1997; Selby and Sancar

2012).

Teleost fish harbor the largest number of Crys among all

vertebrates due to the TGD event (indicated as R3 in fig. 2).

This makes them an interesting lineage to study

Cryptochrome evolution and phylogeny. Although Cry1 and

Cry2 are both grouped as type II Cryptochromes and thus per

definition inhibit CLOCK:BMAL1 mediated transcription, the

zebrafish Cry2 is not able to do so (Kobayashi et al. 2000).

Instead, the two zebrafish Cry3 paralogs that are closer related

to Cry1 and were lost in the early lineage of tetrapods still

show this type II Cry feature (Kobayashi et al. 2000). Among

all species that underwent a third round of WGD, only two of

all considered teleost fish, zebrafish and cavefish, sill retained

both copies of Cry3, suggesting a specific function for the

originally redundant copies in these species. Overall, both zeb-

rafish and cavefish still bear exactly the same Cryptochrome

members, which is not surprising as they are closely related. As

all teleost fish only retained one copy of Cry2 and Cry5, the

second paralogs were most likely lost already at the basis of

the teleost lineage shortly after the duplication event, an out-

come that is common for duplicated genes (Glasauer and

Neuhauss 2014).

Duplicated Paralogous Zebrafish cryptochromes Show
Evolutionary Events

In order to gain insight into possible evolutionary processes of

paralogous cryptochrome genes, we focused on the zebrafish.

Using this model organism has two advantages: First, the ease

of expression analysis of the full complement of the

Cryptochrome family in a transparent vertebrate, and

second the discovery of possible evolutionary events such as

sub- and/or neofunctionalization as well as dosage balance

(Force et al. 1999; Glasauer and Neuhauss 2014) by compar-

ing expression of the two paralogous gene sets.

At first glance, a large difference in expression of the cry1

paralogs is obvious: Although cry1a is expressed in broad areas

of the CNS, cry1b is only marginally expressed in some retinal

layers. The specific expression of cry1a in brain areas suggests

subfunctionalization events, meaning that the function of the

ancestral Cry1 in the brain was fully transferred to Cry1a.

cry1b is still expressed, although at low levels, in the same

retinal layers as its paralog. Expression of paralogous genes

in the same areas may indicate dosage effects, implying that

both paralogs need to be expressed to provide sufficient

amounts of required protein. This is often found for genes

expressing proteins involved in signaling pathways or proteins

that form stoichiometric complexes (Conant and Wolfe 2007).

cry3 paralogs are highly abundant in the eye and the intes-

tine. Their identical transcript expression in the adult retina

may suggest a similar function in the eye; however, mRNA

expression analysis on adult retinal sections clearly shows dif-

ferences in the oscillation pattern in the photoreceptor layer.

In order to distinguish between sub- and neofunctionalization,

a comparative expression analysis in different vertebrates

would be necessary. Such data are currently missing, as

most expression data obtained from other species are based

on qRT-PCR analysis (e.g., Thompson et al. 2003) or ISH anal-

yses of nonretinal tissue, such as the suprachiasmatic nucleus

(e.g., Sumová et al. 2003). Hence, an assessment of functio-

nalization events must await more comparative data.

Circadian Aspects of Cryptochromes

We found that some invertebrates only harbor the above-

mentioned type I Cry6, others have a type II Cry1 and that a

third group even features one representative of both groups.

The different biochemical features of these two subgroups are

reflected in the way the endogenous clocks are built:

Hymenopterans but also Tribolium that only possess a type II

Cry1 most likely only harbor an internal core clock similar to

mammals (Kume et al. 1999; Bertossa et al. 2014), whereas

flies that only feature a type I form have cell-autonomous

external clocks mediated through the photosensitive

Cryptochrome 6 (Emery et al. 2000). However, the type I

and invertebrate specific Cry6 has been shown to not only

fulfill its role as circadian photoreceptor but in addition is part

of the core clock (Ivanchenko et al. 2001; Krishnan et al. 2001;
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Levine et al. 2002), suggesting a tissue-specific involvement of

this Cryptochrome in circadian signaling. Whether this holds

also true for other Cry subtypes is currently unknown. A third

group of invertebrates such as Lepidopterans (e.g., Danaus

plexipus) feature both types of Crys and it is hypothesized

that both engage their proposed function either as circadian

photoreceptor or as repressor of the core-clock feedback loop

(Zhu et al. 2008). It seems that this constitutes the ancestral

state, as organisms from different arthropod classes still com-

prise both versions. Zebrafish possess not only type II but also

type I Cryptochromes (Kobayashi et al. 2000). Although only

the involvement of Cry1a in circadian processes has been

shown (Tamai et al. 2007), possibly other Crys are involved

in such processes as well. Most likely they compose the role of

the external photoreceptor of each cells’ own circadian clock

but also participate in internal clock mechanism similar to the

mammalian Crys.

Many physiological functions of the retina such as visual

sensitivity or the shedding of photoreceptor outer segments

show a circadian pattern (reviewed in Guido et al. [2010]),

strongly arguing for the existence of an autonomous oscillator

in the retina (reviewed in Green and Besharse [2004] and

Tosini et al. [2008]). Although there is evidence for the oscil-

lator to be located in photoreceptors (Cahill and Besharse

1993; Pierce et al. 1993; Thomas et al. 1993; Tosini et al.

2007) or in the inner retina (Garbarino-Pico et al. 2004;

Ruan et al. 2008), recent publications rather point toward a

more complex picture and argue for an organization with sev-

eral tissue-specific oscillators located in different retinal layers

(e.g., Witkovsky et al. 2003; Dinet et al. 2007; Liu et al. 2012;

Buhr and Van Gelder 2014; reviewed in Guido et al. [2010]).

The observation of basically all cry gene transcripts in various

retinal layers of different vertebrates (e.g., teleosts: Kobayashi

et al. 2000; Velarde et al. 2009; frog: Zhu and Green 2001;

birds: Kubo et al. 2006; mammals: Kamphuis et al. 2005;

Miyamoto and Sancar 1998) makes them a valuable candidate

for a contribution in one of these retinal oscillators. The varying

oscillation patterns in different retinal cell layers we found for

each cry strongly support the hypothesis of several indepen-

dent clock mechanisms in the retina and reveal the importance

of cell type specific analyses. More surprising is the very specific

change in expression of cry1b and cry2 throughout the day in

the ONL, suggesting different functions in different subsets of

photoreceptor cell types and again supporting the hypothesis

of distinct retinal clocks.

Gene expression of both cry1 paralogs in the retina seems

to be at least partially regulated by a circadian mechanism as

the changes in expression levels occur during the light or the

dark phase but not upon changes in illumination. cry1 tran-

scripts of total retinae of rats and chicken stay cyclic in DD

conditions (Haque et al. 2002; Sandu et al. 2011), which

points toward circadian regulated gene expression. As chicken

cry1 and zebrafish cry1a expression can be induced by light

(Haque et al. 2002; Tamai et al. 2007), at least nonmammalian

vertebrate Cry1(a)s seems to be regulated by both a circadian

oscillator and light. The zebrafish Cry1a has been found to be

the light sensor of the cell-autonomous circadian clock in zeb-

rafish (Tamai et al. 2007) and it possibly also bears this func-

tion in the eye. Nevertheless, another function within a

circadian clock is also expected, as both cry1 paralogs can

inhibit CLOCK:BMAL1 induced transcription similar to the

mammalian Crys (Kobayashi et al. 2000). The zebrafish

Cry1a might has a dual function within the retina as circadian

photoreceptor in one retinal layer and within a feedback loop

in another. cry1b is only marginally expressed in the larval

retina but shows high and oscillating expression in the adult

retina in all nuclear layers, suggesting a developmentally reg-

ulated function.

In contrast to the cry1 paralogs, both cry3 paralogs as well

as cry2 and cry4 show a light-dependent oscillation pattern

with either a decrease or an increase in transcript expression

around the light-dark transition. Although this suggests light-

dependent regulation, in darkness living cavefish have degen-

erated eyes and a light-independent clock (Cavallari et al.

2011) whereas their genome still contains all these genes.

Hence there may be another, light-independent function for

these Cryptochromes outside of the retina. Cry4 for example

has been shown to still possess the ability of blue-light absorp-

tion (Kubo et al. 2006; Ozturk et al. 2009) but whether it still

executes this function in vivo is not known.

Conclusion

This work provides the first broad overview of Cryptochrome

phylogeny, a family of light sensitive proteins that are involved

in the regulation of the circadian clock, light perception, and

DNA-repair. The investigationof cry sequences fromavarietyof

over 100 Bilateria led us to draw a comprehensive picture of

Cryptochromeevolutionaryhistory and togainnew insight into

possible evolutionary events in the different invertebrate and

vertebrate lineages. Based on our phylogeny, we hypothesize

that in ancestral Bilateria three Cryptochromes Cry1/2/3, Cry4/

5, and Cry6 built the basis for all currently known family mem-

bers. WGD events and subsequent loss of some paralogous

genes in the vertebrate lineage have shaped the

Cryptochrome family in each vertebrate lineage. The base of

the invertebrate lineages lacks such duplication events and the

pattern of retained and lost cry genes can in some cases be

correlated with ecology of these species. The presented com-

parative phylogeny may help to generate hypothesis about

functional properties. The presented expression analysis of cry

genes in zebrafish eyes forms the basis for a detailed analysis of

Cryptochrome function in light-dependent DNA-repair, light

sensing, and the circadian clock. The cyclic expression pattern

of all cry transcripts in zebrafish retinal layers argues for an

involvement in retinal circadian processes and the presence

of several autonomous circadian clocks in the vertebrate retina.
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