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Conjugation with the small ubiquitin-like modifier (SUMO) constitutes a key

post-translational modification regulating the stability, activity, and subcellular localization

of its target proteins. However, the vast numbers of identified SUMO substrates obscure

a clear view on the function of SUMOylation in health and disease. This article presents

a comprehensive review on the physiological relevance of SUMOylation by discussing

how global SUMOylation levels—rather than specific protein SUMOylation—shapes the

immune response. In particular, we highlight the growing body of work on SUMOylation

in intestinal pathologies, because of the unique metabolic, infectious, and inflammatory

challenges of this organ. Recent studies show that global SUMOylation can help restrain

detrimental inflammation while maintaining immune defenses and tissue integrity. These

results warrant further efforts to develop new therapeutic tools and strategies to control

SUMOylation in infectious and inflammatory disorders.

Keywords: small ubiquitin like modifier, post-translational modification, cell stress response, adaptive response

mechanism, intestinal pathologies

INTRODUCTION

Post-translational modifications (PTMs) form a crucial layer of regulation that substantially
increases the functional repertoire of the existing proteome. One critical example is small
ubiquitin-like modifier (SUMO) modification (SUMOylation), in which SUMO is covalently,
but reversibly, linked to the lysine residues of target proteins. Because SUMOylation is highly
responsive to endogenous and environmental stressors and because a large number of SUMO
targets are transcription factors or nuclear proteins, this PTM is increasingly recognized as a key
regulator in health and disease (1–3). Current literature on SUMOylation remains confusing, as
pathways can be SUMOylated at multiple sites with seemingly conflicting consequences for its
activity. What is striking, however, is that, following cell stress, SUMOylation rapidly increases
across a broad set of target proteins and effectively re-programs cellular responses. This review
summarizes the emerging knowledge of how this global SUMOylation response helps maintain
cellular and tissue integrity by preventing exaggerated inflammation.

THE SUMO PATHWAY

Mammalian cells express 4 SUMO isoforms: SUMO1, SUMO2, SUMO3, and a less-studied SUMO4
[for detailed review of the SUMO pathway refer to (1, 4)]. Whereas, SUMO1 shares about 50%
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homology with SUMO2 and SUMO3, these last two isoforms
are typically referenced together as SUMO2/3 because their close
sequence homology does not allow distinction with currently
available antibodies. Extensive redundancies between the SUMO
isoforms have hindered defining their specific functions, but an
essential role for SUMO2 has emerged from global deletion of
Sumo2, which is embryonically lethal (5). By contrast, Sumo1 and
Sumo3 null mice have no obvious phenotype (5, 6), and SUMO3
expression is significantly lower than SUMO2 in most tissues.

SUMO conjugation modulates protein activity, function,
stability, subcellular localization, and interaction with other
proteins. Similar to ubiquitination, SUMOylation comprises 4
enzymatic steps: The (1) maturation (through endopeptidase
activity of the SUMO/sentrin specific peptidases [SENPs]), (2)
activation (by forming an intermediate with the SUMO E1
activating enzyme SAE1/2), (3) conjugation (the ubiquitin-
conjugating enzyme 9 [Ubc9] links SUMO to a lysine residue
on the protein substrate), and (4) ligation (an optional step by
which E3 ligases increase conjugation efficiency or specificity).
Importantly, SUMOylation is extremely dynamic due to rapid
de-SUMOylation mediated largely by the SENP family of
isopeptidases (SENP1-3 and SENP5-8 in humans) (7).

Notably, technical advances have allowed large-scale, system-
wide SUMO proteomics analyses (8, 9). A comprehensive
analysis of 22 SUMO proteomic studies using human cells
identified more than 3,000 SUMO targets with a large portion
of these being transcriptional factors and chromatin-associated
proteins, linked to accessing genetic information (9).

SUMOYLATION CONNECTS CELL STRESS
TO MAJOR INFLAMMATORY PATHWAYS

Various works have outlined SUMOylation as an important stress
response conserved through evolution (10–13). These studies
established that SUMOylation orchestrates cellular responses
to heat shock, DNA damage, and mitochondrial-, osmotic-,
oxidative-, hypoxic-, and ethanol stress (12–16).

Inflammation is a primary response to stress. While allowing
for resolving infection and removing cellular debris, exaggerated
inflammation directly threatens tissue integrity. Recent studies
reveal a critical role of SUMOylation in both innate and adaptive
immunity and provide a link between cellular stress sensing and
inflammatory responses (17). However, a fundamental problem
is that SUMOylation modulates often multiple and contradictory
decision points within key inflammatory pathways, which leads
to an inconsistent understanding of its true physiologic role. For
example, NF-κB pathway activity is inhibited by SUMOylation
at multiple levels, i.e., by stabilizing IκB and maintaining NF-kB
repression (18); by interfering with the binding of co-activator
CBP (19, 20); by transrepression of inflammatory target genes
(21–24); and by regulating the stability of early response gene
products such as the Nuclear receptor NR4A1 (25). However,
SUMOylation can also stimulate NF-κB through de-repression
of the negative regulators TANK (26) and NEMO (27). As a
consequence, modulating SUMOylation has yielded conflicting
results regarding NF-kB activity and inflammatory outcomes.

As such, the SUMO E3 ligase protein inhibitor of activated
STATs (PIAS) can inhibit NF-κB activation in some models
(19, 28–32), but can also activate NF-κB after genotoxic stress
(33). SENP2, which is particularly responsive to genotoxic
stimuli, efficiently de-SUMOylates NEMO and limits NF-κB-
dependent cell survival responses (34, 35). Correspondingly,
depletion of SENP6 potentiates NF-κB-mediated induction of
proinflammatory genes after endotoxin exposure in vitro and in
vivo (36); however, endothelial knock-out of SENP1 in aortic
grafts achieves the opposite and blunts endothelial responses to
TNFα or IL-1β (37).

Another example of seemingly conflicting SUMOylation
effects was observed in the regulation of NLRP3 activity. Here,
Barry et al. (38) demonstrated that SUMO2/3 modification of
NLRP3 at multiple lysine residues inhibits NLRP3 activation,
whereas, stimulation-dependent NLRP3 de-SUMOylation
through SENP6 and SENP7 promotes NLRP3 activation.
However, NLRP3 modification with SUMO1 at one of these sites
induces opposite results and promotes inflammasome activation
and IL-1β secretion, which is reversed by de-SUMOylation
with SENP3 (39).

CHANGES IN GLOBAL SUMOYLATION
LEVELS REPROGRAM INFLAMMATORY
RESPONSES

As outlined above, effects of SUMOylation on individual target
proteins and pathways are complex and likely highly context-
dependent. However, a striking observation under cell-stress
conditions is the rapid net increase of SUMOylated proteins
(16, 40–42). For the SUMO2/3 isoforms, this increase is readily
appreciated by the detection of a high-molecular “smear”—
a broad signal representing the large variety of SUMOylated
proteins of different sizes—in Western blots (and the parallel
decrease of un-bound SUMO2/3). A consistent body of evidence
is emerging that identifies this increase of global SUMOylation
as a broad-acting, adaptive response controlling inflammation.
The consequences of rapid changes in cellular SUMOylation
levels on inflammatory responses have not been comprehensively
reviewed, and we will therefore summarize the available data
produced by modifying global SUMOylation (predominantly by
targeting the key E2-conjugase, Ubc9) and de-SUMOylation (by
targeting different SENPs).

GLOBAL SUMOYLATION AND THE
CONTROL OF IMMUNE CELL FUNCTIONS

Deque et al. demonstrated that Ubc9 null dendritic cells
(DCs) responded to LPS with enhanced recruitment of RNA
polymerase II to LPS-induced genes and consequently, with
an exacerbated production of pro-inflammatory cytokines
(43). Interestingly, this work also revealed that SUMOylation
repressed LPS-induction of interferon-β (IFNβ1) and thus
inhibited the crosstalk between type 1 IFN and pattern
recognition receptor-ligand responses. In chimeric animals that
received Ubc9-null bone marrow, these findings translated into
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an increased susceptibility to endotoxin shock, but resistance to
viral infection, indicating that global SUMOylation effectively
limits inflammation-induced pathology.

This anti-inflammatory role of SUMOylation is further
supported by evolving evidence from studies using
pharmacologic approaches. For example, the highly selective
SUMOylation inhibitor TAK981—a new drug currently
investigated as an adjuvant treatment of malignancies—prevents
SUMOylation by inhibiting the transfer of SUMO to the E2
conjugating enzyme Ubc9 (44). In mouse bone-marrow and
human peripheral bloodmononuclear cell-derived DCs, TAK981
induces cell activation and maturation, triggers the production
of inflammatory cytokines, and enhances priming and activation
of antigen-reactive cytotoxic T cells. Notably, some of these
effects were reversed by blocking interferon signaling (45).
Conversely, we recently found that the synthetic organoselenium
compound, ebselen, increases global SUMOylation levels by
inhibiting SENP2 (46)—a protease with high catalytic activity
for SUMO2/3 (47). Interestingly, ebselen has been shown to
inhibit both DC-induced cytokine production by T cells and T
cell-induced cytokine production by DCs (48).

Moreover, studies based on genetic modification of the SUMO
pathway not only reveal the critical involvement of SUMOylation
in the development and activity of lymphoid cells, mainly T cells,
but also demonstrate its anti-inflammatory function. SENP1 is
highly expressed at the early stages of T and B cell development
and Senp1-null mice exhibit impairment specifically of T and B
cell development (49). However, SUMOylation also modulates T
cell activation by regulating T cell receptor (TCR)-signaling. TCR
induces SUMO1 conjugation to control proximal (e.g., assembly
of TCR with coreceptors) (50, 51) and distal [e.g., activation of
Nuclear factor of activated T-cells (NFAT)] (52) signaling events,
and mutation of the SUMOylation sites impairs cell activation
and Th2 differentiation in primary CD4+ T cells and T cell
lines. Along these lines, emerging data suggests that SUMO
inhibition of T cells isolated from chronic lymphatic leukemia
(CLL) patients, shifts the T cell balance toward Th1 polarization
(53). Together, this could indicate that global SUMOylation is
a critical determinant of the Th1/Th2 balance, which is further
supported by a clear role of SUMOylation in supporting the
number and functions of regulatory T cells (Treg), a specialized,
inhibitory CD4+ T cell subtype. Here, pharmacologic inhibition
of SUMOylation impairs Treg polarization in isolated CD4+ T
cells (53), and Treg-specific Ubc9 deletion impairs TCR-driven
Treg proliferation and activation, and reproduces in animals the
severe autoimmune phenotype seen with Foxp3 deletion (54).
Consistent with this, Ubc9 deletion in macrophages attenuates
the M2 (anti-inflammatory) program and reduces their capacity
to induce Treg differentiation (55).

Studies of SUMOylation in other immune cells revealed that
increased CD45 SUMOylation in Senp1-deficient mice promotes
myeloid-derived suppressor cells (MDSC) immunosuppression
function (56). Furthermore, siRNA knock-down of either
SUMO1 or Ubc9 increases reactive oxygen species production
from NADPH oxidases in neutrophils, whereas SUMO1
overexpression induces the opposite effect. This suggests
that SUMOylation may control the ability of neutrophils to

cause tissue injury or kill pathogens (57). Together, we have
highlighted the diverse inflammation-regulatory effects of global
SUMOylation in specific immune cell populations. To better
understand how changes of global SUMOylation levels affect
tissue outcomes in inflammation, we will next focus on studies
that examined modulated SUMOylation levels in pre-clinical
disease models.

GLOBAL SUMOYLATION CONTROLS
TISSUE INFLAMMATION: LESSONS FROM
THE GUT AS A MODEL ORGAN

Parenchymal cells react to injurious stimuli with a complex
and often interrelated set of inflammatory and adaptive
responses. In balancing the needs of pathogen and cell
debris removal (inflammation) and preservation of cellular
function under adverse conditions (adaption), control of the
immune environment is essential. This holds especially true
for the gut, where the intestinal epithelium forms a single
barrier between trillions of bacteria and an enormous mass
of immune cells harbored within the intestinal walls. Because
adverse environmental conditions constantly threaten epithelial
integrity (58), adaptive responses are particularly well-developed
in the gut (59–61). Indeed, the work of Demarque et al.
impressively showed in inducible Ubc9-knockout mice that
SUMOylation is crucial to intestinal maintenance through
ensuring organized cell-renewal and differentiation, and by
controlling mechanical stability of the epithelial monolayer
(62). Together, this highlights the intestine as a model organ
to study how SUMOylation regulates inflammation in an
environment particularly challenged bymetabolic, inflammatory,
and infectious stressors.

SUMO and Metabolic Stress
Epithelial functions generate substantial metabolic demands (63).
Together with a vascular supply prone to shunting oxygen-
rich blood away from the villus tip, this renders the intestinal
epithelium particularly sensitive to reductions in blood flow
and resultant ischemia/hypoxia (59). Interestingly, we found
that SUMO2/3-conjugation, while highly responsive to perfusion
abnormalities (64–66), did not follow the crypt-to-villus oxygen
gradient (59), nor the matching expression of hypoxia-adaptive
responses such as HIF-1α (67), but was restricted to villus crypt
epithelia. However, intestinal ischemia/reperfusion (I/R) caused
the rapid expansion of SUMO2/3 signal into villus tip epithelia
establishing the stress-responsiveness of SUMO2/3 conjugation.
This is an adaptive response, as demonstrated in Ubc9 transgenic
animals. In these animals, increased SUMOylation had a major
effect on transcriptional responses regulating inflammatory cell
recruitment pathways. Consistent with the dramatic reduction
of neutrophil influx and the improved preservation of intestinal
architecture in Ubc9 transgenic animals after I/R, we found
that pathways regulating inflammatory cell adhesion, tissue
integrity and production of chemotactic factors were broadly
modified in both whole tissue samples and in epithelia (42).
Of note, compensatory overexpression of SUMO2/3 isoform in

Frontiers in Immunology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 646633

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Karhausen et al. Global SUMOylation in Inflammatory Control

Sumo1 null mice led to a comparable protective phenotype as
observed in Ubc9 transgenic animals. Together, our data identify
SUMOylation as a powerful mechanism by which the intestine
controls the inflammatory environment during metabolic stress
and highlights the particular importance of the SUMO2/3
isoforms in stress-adaptive, anti-inflammatory protection.

SUMO in Inflammatory Bowel Diseases
(IBD)
The noted prominent regulation of inflammatory responses
raises the question of the role of SUMOylation in primary
inflammatory diseases. Indeed, metabolic stress and dysregulated
inflammation are key features of IBD (59, 68) and create
conditions known to strongly induce SUMO2/3 conjugation (40,
41). Transcriptional analysis from Ubc9 transgenic mice after I/R
revealed a broad suppression of chemotactic factor expression,
with many of them implicated in IBD pathogenesis [CXCL9 (69),
CXCL16 (70), CCL20 (71), II17A (72), IL27 (73)]. For example,
IL17A is a cytokine that can amplify inflammation by stimulating
production of inflammatory mediators and thus promotes the
recruitment of neutrophils and monocytes (74). IL17A has
been implicated in many inflammatory diseases, including IBD
(75). Singh et al. recently demonstrated that SUMOylation of
ROR-γt—a key transcriptional regulator of IL17A—represses
IL17A transcription (76). As a consequence, mice receiving
Th17 cells expressing a SUMOylation-deficient mutant of ROR-
γt in an adoptive transfer colitis model had significantly worse
disease outcome measures compared to mice receiving Th17 cell
expressing wild-type ROR-γt.

Surprisingly, while inflammatory processes such as
rheumatoid arthritis (77–79) or I/R increase SUMOylation
levels (42, 65, 80), Mustfa et al. reported the downregulation
of Ubc9 and, with it, decreased SUMO-conjugation levels
in the gut of murine and human IBD (81). This unexpected
finding needs to be further confirmed in the context of disease
stages and cell populations. Nonetheless, consistent with an
anti-inflammatory function of SUMOylation, RNAi- knockdown
of Ubc9 in cultured human epithelial cells significantly altered
inflammatory gene expression, including that of key pro-
inflammatory regulators RelA, cFos, and cJun. Furthermore,
the level of Ubc9 downregulation correlated in both mouse and
clinical samples with disease severity and the tissue expression
of inflammatory cytokines (81). Following this logic, the same
group developed a nanogel DNA delivery system to induce
intestinal SUMOylation by enhancing expression of the E3 ligase,
PIAS1 (protein inhibitor of activated STAT1) (82). These studies
together support that increasing tissue SUMOylation blunts
inflammation and tissue disruption in the gut.

SUMO and Pathogen Responses
Growing evidence indicates that SUMOylation levels define
the balance between destructive inflammation and effective
defenses against pathogens within the gut. For example, Shigella
flexneri, the etiological agent of bacterial dysentery, attacks
colonic epithelia and causes massive inflammation-induced
damage. Notably, mice haploinsufficient for Ubc9, display a
hyper-invasive and hyper-inflammatory phenotype upon in

vivo infection, emphasizing the importance of SUMOylation
in the maintenance of intestinal permeability and mucosal
inflammation (83). SILAC-based proteomics analysis revealed
that invasive (vs. non-invasive) Shigella infection generally
caused a reduction of SUMO2 modification. This affected a
defined functional network of transcriptional regulators, where
Shigella-induced changes in SUMOylation of regulators such
as c-FOS, PPARc, and RXRa (24, 84, 85) were predicted to
favor inflammation.

In line with this, SUMOylation is emerging as a key
modulator of multiple host-pathogen interactions, with
various pathogens actively targeting SUMOylation to their
advantage. As such, Listeria monocytogenes, Clostridium
perfringens, and Streptococcus pneumoniae induce proteasome-
independent degradation of Ubc9 through closely related
virulence factors (86), while Shigella flexneri targets the E1
ligase UBE2/SAE2 via proteasomal degradation (87), and
Salmonella Typhimurium targets Ubc9 via miRNA-mediated
down-regulation (88). This attention given by bacterial (89),
viral (90), and fungal (91) pathogens to the SUMO pathway
highlights the critical role of this pathway in ensuring a balanced
inflammatory response.

PERSPECTIVES

In summary, mounting evidence supports global SUMOylation
as a crucial cell stress response regulating inflammation.
However, the appraisal of specific connections within this SUMO
interactome remains complex, as SUMOylation of multiple
components within a single pathway can produce contradictory
effects. While this may serve to fine-tune specific responses
in certain settings, it leaves unclear what is the actual impact
of SUMOylation in diseases. Using the growing body of
evidence from the gut as a model organ of particular metabolic,
inflammatory, and infectious challenges (Figure 1), we further
establish the notion that the global increase of SUMOylation
during cellular stress constitutes a coordinated response to limit
inflammation and preserve cellular and tissue integrity.

Many aspects of this response are still unclear. First and
foremost, whether global increase of SUMOylation after cell
stress is the equivalent of a flooding of the system with
SUMO modifications, or rather the wide-sweeping but targeted
introduction of a specific set of protein modifications. In line
with this question, it remains unknown how SUMOylation itself
is regulated following cell stress. The speed of the response
(minutes in vitro) suggests a predominantly post-translational
regulation of SUMO pathway components. Indeed, hypoxia-
stimulated SUMOylation was not linked to increased expression
of SUMO1, SUMO2, or SUMO3 by proteome or mRNA analysis
but rather to the reversible inhibition of the catalytic activity,
particularly of SENP1 and SENP3 (16). Yet overall, the decision
points that trigger the increase of SUMOylation levels on such a
grand scale remain to be determined.

Another fundamental consideration is the specific role of
SUMO1 vs. SUMO2/3 in regulating inflammation during cell
stress. Initial SUMO research focused on SUMO1 conjugation,
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FIGURE 1 | Potential anti-inflammatory effects of increased global SUMOylation in the intestine. Reported effects of SUMOylation on major inflammatory pathways

and effectors are summarized on the left. For detailed reviews on SUMO-dependent regulation of the interferon or the NFκB pathway, we refer to excellent recent

works (17, 92). Modulated expression of inflammatory mediators was reported in the intestines (42, 83). The right panel highlights cellular targets of SUMOylation and

the potential effects of increased global SUMOylation in controlling exaggerated inflammation. IFN, interferon; PMN, polymorphonuclear leukocytes; M8, Macrophage;

Treg, regulatory T cell; DC, dendritic cell.

yet growing evidence highlights the quick response of SUMO2/3
conjugation to cellular stressors, and the distinct roles of
the SUMO isoforms. For example, NLRP3 is differentially
regulated by SUMO1 vs. SUMO2/3 as discussed above (38, 39),
while non-canonical type I interferon responses appear to be
regulated by SUMO2/3, but not by SUMO1 (93). Similarly,
our studies of SUMOylation in the gut also reveals that this
process may play a distinct role in different cell populations
(42). Consequently, studies of whole tissues, particularly within
complex organs such as the gut, may yield conflicting results
on how SUMOylation changes and affects inflammation. These
results suggest a highly nuanced SUMO regulation, and
future research will need to better determine isoform-specific
and cell type-specific effects. A recently developed Sumo2
conditional knockout mouse strain could be an invaluable
tool (94).

Ultimately, to harness the beneficial potential of global
SUMOylation, e.g., in autoimmune diseases, new pharmacologic
interventions are needed. Here, oncology research has provided
us with a number of specific SUMO inhibitors (95), but similar
efforts are now needed to identify effective SUMO activators
(46). Such studies can build on the presented evidence in

multiple inflammatory disorders including I/R (42), IBD (82),
and infectious disorders (83), which identify SUMOylation as
a therapeutic target to restrain detrimental inflammation while
maintaining immune defenses.
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