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Abstract: An improved empirical large signal model for 0.1 µm AlGaN/GaN high electron mobility
transistor (HEMT) process is proposed in this paper. The short channel effect including the drain
induced barrier lowering (DIBL) effect and channel length modulation has been considered for the
accurate description of DC characteristics. In-house AlGaN/GaN HEMTs with a gate-length of
0.1 µm and different dimensions have been employed to validate the accuracy of the large signal
model. Good agreement has been achieved between the simulated and measured S parameters,
I-V characteristics and large signal performance at 28 GHz. Furthermore, a monolithic microwave
integrated circuit (MMIC) power amplifier from 92 GHz to 96 GHz has been designed for validation
of the proposed model. Results show that the improved large signal model can be used up to W band.

Keywords: AlGaN/GaN HEMT; DIBL effect; channel length modulation; power amplifier; W band

1. Introduction

Wide band gap semiconductor Gallium Nitride (GaN) high electron mobility transistors (HEMTs)
are excellent candidates in high frequency power electronics due to their unique advantages of higher
breakdown voltage and higher output power density [1]. With the rapid development of process,
the feature size of GaN HEMTs have been shrinking to less than 0.1 µm. GaN HEMTs with good
performance for application in W band have been reported [2–5]. Also, over the past few years,
several GaN HEMT based monolithic microwave integrated circuits (MMICs) up to W-band have
been developed, due to their applications in high speed wireless communications or radar systems [6].
A GaN MMIC power amplifier at 91 GHz was reported to have 1.7 W output power that is associated
with 11% power added efficiency [7]. A W-Band MMIC power amplifier with 3.46 W/mm output
power density and 21% associated power added efficiency was then reported. The associated power
gain is 13.7 dB. It offers a peak small signal gain of 16.7 dB over 90–97 GHz [2].

For applications of these devices in circuit design, compact nonlinear device modeling plays an
important role in practical design. Recently, a few physical based compact models have sprung up due
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to their advantages in less fitting parameters and good accuracy up to the Ka band [8–11]. However,
things will be different when the frequency is up to W band. Firstly, the parasitic effect will become
obvious with the increasing of frequency and make the parameter extraction more difficult [12,13].
This problem can be solved by FW-EM (Full-wave electromagnetic) simulation [14]. Secondly,
along with the reduction of feature size, the short channel effect becomes obvious. This phenomenon
will in the end give rise to shift of threshold voltage. Thirdly, the gradual channel approximation
(GCA) that is used in many kinds of physical based compact model [15,16] is no more effective as the
channel length modulation is obvious in short channel devices. These effects will largely decrease
the accuracy of physical based compact model. The empirical modeling method has been widely
used due to their excellent performance in convergence and accuracy [17–22]. An effective validation
of large signal model is validated by on-wafer load-pull measurement [23,24]. However, due to the
complication of load-pull measurement, only one input/output impedance is validated. Nevertheless,
more input/output impedances need to be validated for a large signal model in practical MMIC power
amplifier design [25].

In this paper, the short channel effect, including the DIBL effect and channel length modulation,
is studied. An improvement for the accuracy of the area near the pinch-off region in IV curve is
performed based on an empirical modeling method as the GCA is no more effective in most physical
based model. In-house AlGaN/GaN HEMTs with gate length of 0.1 µm is used for validation of the
model. Performance, including S parameters, DC characteristics, and large signal characteristics at
28 GHz is validated by on-wafer measurement. Finally, a MMIC power amplifier is designed based on
the proposed model for further validation.

This paper is organized as follows. In Section 2, the investigation on short channel effect is
presented. The modeling method of it, which is based on an empirical method, is given in detail.
In Section 3, the proposed large signal model is validated with two GaN HEMTs with different gate
width. In Section 4, a MMIC power amplifier based on the large signal model in this work is designed
for further validation of the model in W band. Finally, in Section 5, the conclusion of this work
is presented.

2. Model Description

2.1. Short Channel Effects

Along with the decrease of gate length, the short channel effect, such as the drain induced barrier
lowering (DIBL) effect will become obvious. The thickness of the barrier will not only be modulated
by gate voltage, but also drain voltage. This will, in the end, lead to the drift of threshold voltage
along with the drain voltage. This phenomenon can be easily captured in the static IV curve of 0.1 µm
AlGaN/GaN HEMTs with different gate width in this work, which have been shown in Figure 1.
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It can be seen from Figure 1 that the DIBL effect will weaken the effect that is brought by
gate voltage. The device will be turned from off-state to on-state with the rise of drain voltage.
This phenomenon must be taken into consideration, especially for high efficiency power amplifier or
switching applications.

In order to accurately describe the output performance of AlGaN/GaN HEMTs with short gate
length in large signal modeling, the short channel effect, including the DIBL effect and channel length
modulation, should be taken into consideration. An empirical method that is based on the Angelov
model is employed for the devices in this work. As we know that the coefficients of the ψ polynomial
in Angelov model, which is shown in Equation (1), mainly affect the accuracy of the region close to
pinch-off state.

ψ = P1 × (Vgs − Vpk1) + P2 ×
(

Vgs − Vpk2

)2
+ P3 ×

(
Vgs − Vpk3

)3
(1)

where Vgs refers to the gate-source voltage. Vpkn (n = 1, 2, 3) are fitting parameters. Pn (n = 1, 2, 3) are
fitting coefficients of the ψ polynomial.

To accurately model the DIBL effect, the drain-source voltage Vds has been included in
Pn (n = 1, 2, 3) to take the modulation effect of Vds into consideration, as shown in Equation (2).

Pn = Pn0 + (Pn1 × Vds − Pn0)× tanh(αPn2 × Vds) (n = 1, 2, 3) (2)

where Pn0, Pn1, Pn2 and α are all fitting parameters.
The modification was validated by a comparison between simulation results and measured

data. The comparison between the original Angelov model and modified one are shown in Figure 2.
The gate-source voltage Vgs is from −6 V to −3 V and the drain source voltage Vds is from 0 V to 20 V.
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Figure 2. Comparison between simulated and measured results when Vgs is close to pinch-off voltage.

It is clear in Figure 2 that the original Angelov model cannot accurately describe the DC
characteristics when Vgs is close to the pinch-off voltage. The DIBL effect can be successfully modeled
by using proposed model.

Apart from the DIBL effect, the channel length modulation can also be captured in the static IV
curves, as shown in Figure 3.

It clearly shows that the partial derivative of Ids to Vds is not equal to zero due to channel length
modulation. The channel length effect is mainly induced by expanding of the depletion region towards
the source. The effective channel is then shortened. This phenomenon is shown in Figure 4.
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Figure 4. The schematic diagram of the short channel modulation effect.

2.2. Large Signal Model up to W Band

With the frequency up to W band, the RF dispersion will become more and more obvious due to
the parasitic effects inside devices. A wide band small signal model [14], which has been proved to be
able to cover the frequency band from 0.2–110 GHz, is employed in this work. The topology of the
large signal model is shown in Figure 5.
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The main part of the nonlinear current model as well as the capacitance model, including Cgs

and Cgd mentioned in [21], is employed in this work. The improvement for accurate characterization
of short channel effect, which is mentioned in the previous section, has also been included in the
nonlinear current model. In order to accurately characterize the self-heating effect in AlGaN/GaN
HEMT. The three-pole thermal network in [25] is used. Thermal resistances as well as the thermal
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capacitances are extracted by a method based on FEM simulation in ANSYS. The trapping effect is
modeled by the equivalent voltage method in [26]. The scalability of the model parameters, including
the Ipk0, Rth, and Cth has been realized with the method that is mentioned in [22] for practical monolithic
microwave integrated circuit design. With the help of MATLAB coding, model parameters, except the
coefficients in Equation (2), are all extracted with the method in [27]. In terms of parameters in Equation
(2), they are all extracted by fitting the transfer characteristics curve with the least square method.

3. Model Validation

3.1. Small Signal Characterization

The large signal model was embedded into Keysight ADS (Advanced Design System) by a
symbolically defined device (SDD) tool. Small signal characteristics of the devices are measured by
cascade probe station (Summit 11000B, FormFactor, Livermore, CA, USA), which is shown in Figure 6.
The vector network analyzer is Keysight N5247A (Keysight Technologies, Santa Rosa, CA, USA).
The frequency extenders close to probes are used to achieve the S parameters ranging from 75 GHz to
110 GHz as the vector network analyzer can only reach up to 67 GHz.
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Figure 6. On-wafer measurement system for small signal characteristics.

The proposed model was validated by 0.1 µm AlGaN/GaN HEMTs with different gate width.
AlGaN/GaN HEMTs were all fabricated on a 4-inch SiC substrate. T-shape-gate technology was
introduced to reduce the contact resistance. The fT of the 0.1 µm GaN process is 90 GHz, while fmax is
220 GHz. The peak power density for a specific device can reach up to 3.46 W/mm. The photography
of devices is shown in Figure 7.
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The comparison of simulated and measured S parameters is shown in Figure 8. Results show that
the proposed model can predict the small signal characteristics ranging from 0.2 GHz to 110 GHz for
devices with different gate width and under different bias.
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Figure 9 shows that the DIBL effect is accurately characterized based on the improvement in
Equation (2). The channel length modulation effect is also the same.

Due to the absent of W band load-pull system, the load pull performance at 28 GHz was used
to validate the large signal model first, as shown in Figure 10. The system is on cascade probe
station (Summit 12000, FormFactor, Livermore, CA, USA), the input signal generator is Agilent
E8257D (Keysight Technologies, Santa Rosa, CA, USA), and the output power is detected by power
meter Agilent N1912A (Keysight Technologies, Santa Rosa, CA, USA) and Vector Network Analyzer
(Keysight Technologies, Santa Rosa, CA, USA).

The maximum output power load-pull measurement is performed. The bias is chosen at
Vgs = −2.6 V, Vds = 15 V, which is at deep class AB working state. The quiescent drain current is
82 mA at this bias. The optimum source and load resistance for the maximum output power are
ZS = (13.44 + 12.41 × j) Ω and ZL = (27.19 + 27.44 × j) Ω. The power sweep was then performed based
on the optimum resistance with the input power ranging from −4 dBm to 22 dBm. The comparison
between the simulated and measured results, including output power (Pout), gain, and power added
efficiency (PAE) are shown in Figure 11. Also, the influence that is brought by the DIBL effect has also
been investigated in Figure 11. Results show that the DIBL effect will lead to the reduction of Pout,
gain, and PAE. This can be explained by the variation of static bias point due to the DIBL effect.
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The simulated and measured impedance charts achieved by maximum Pout and PAE load-pull
measurement are presented in Figure 12.
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4. W Band MMIC Power Amplifier Design

For further validation of the proposed large signal model for applications in the W band, a MMIC
power amplifier whose operation frequency is 92 GHz–96 GHz was designed. Based on the above
large signal model, a W-band power amplifier is designed. Figure 13 presents the schematic of the W
band amplifier.

The output stage used the planar spatial power combiner to realize the impedance transformation
and combine the four-way power element. The millimeter wave GaN device is very easy to
oscillation at low frequency due to the high gain. Multi-order RC network was used to improve
the stability of the circuit. In order to enable the former stage to have enough power to drive the
latter stage, the driving ratio of amplifier circuit is 1:2:4. Passive components include micro-strip line,
MIM (Metal-insulator-Metal) capacitance, and resistor. All of the passive components were simulated
by EM simulator in ADS. Figure 14 shows photograph of a W-band GaN MMIC amplifier.
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The output stage used the planar spatial power combiner to realize the impedance 
transformation and combine the four-way power element. The millimeter wave GaN device is very 
easy to oscillation at low frequency due to the high gain. Multi-order RC network was used to 
improve the stability of the circuit. In order to enable the former stage to have enough power to 
drive the latter stage, the driving ratio of amplifier circuit is 1:2:4. Passive components include 
micro-strip line, MIM (Metal-insulator-Metal) capacitance, and resistor. All of the passive 
components were simulated by EM simulator in ADS. Figure 14 shows photograph of a W-band 
GaN MMIC amplifier. 
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Figure 13. Schematic of W band amplifier: (a) Preceding stage and (b) Post stage. 

The output stage used the planar spatial power combiner to realize the impedance 
transformation and combine the four-way power element. The millimeter wave GaN device is very 
easy to oscillation at low frequency due to the high gain. Multi-order RC network was used to 
improve the stability of the circuit. In order to enable the former stage to have enough power to 
drive the latter stage, the driving ratio of amplifier circuit is 1:2:4. Passive components include 
micro-strip line, MIM (Metal-insulator-Metal) capacitance, and resistor. All of the passive 
components were simulated by EM simulator in ADS. Figure 14 shows photograph of a W-band 
GaN MMIC amplifier. 

 

Figure 14. Photograph of a W-band Gallium Nitride (GaN) monolithic microwave integrated circuits
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The chip was loaded into a jig for measurement. The schematic of the measurement setup for
large-signal measurements is shown in Figure 15. The large signal measurement was performed at
room temperature. The commercial amplifier, frequency multiplier, and signal analyzer in Figure 15
are used to assistant the measurement. Other instruments including power meter (VDI Erickson,
Virginia Diodes, Inc., Charlottesville, VA, USA), DC sources (Agilent E3633A and E3634A, Keysight
Technologies, Santa Rosa, CA, USA), and attenuator (Rebes, Suzhou, China) were also employed.
The amplifier is measured in CW (Continuous Wave) mode over 90 GHz–97 GHz frequency. The device
was bias at Vds = 15 V and Vgs = −2 V.
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Figure 15. Photograph of the measurement setup for the W band MMIC power amplifier.

Figure 16 displays measured and simulated S-parameters of the MMIC amplifier. The difference in
Figure 16 may come from the cavity and gold wire used for assisting the measurement. Their influence
on frequency shift has not been taken into consideration during the MMIC design. However,
this accuracy is sufficient for the application of practical circuit design. Figure 17 shows Gain, PAE,
and output power. Over 90 GHz–97 GHz frequency range, the output power is greater than 1 W.
The peak output power is 1.2 W. Except for 94 GHz and 98 GHz, the measured PAE was greater
than 15%.
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5. Conclusions

In this paper, an improved large signal model for AlGaN/GaN HEMT up to the W band is
presented. The short channel effects including the DIBL effect and channel length modulation are
added in the Angelov model. In-house AlGaN/GaN HEMTs with gate length of 0.1 µm are used
for the validation of the model. A MMIC power amplifier is designed based on the proposed model
for further validation. Results show that the large signal model can give good accuracy up to W
band. The results of this paper can provide guidance to many other kinds FET (Field Effect Transistor)
devices modeling in the W band. Also, they are useful for the improvement of the GaN process and
also are helpful for the practical MMIC design in the W band.
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