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The study of host-associated microbial community composition has suggested the presence of
alternative community types. We discuss three mechanisms that could explain these observations.
The most commonly invoked mechanism links community types to a response to environmental
change; alternatively, community types were shown to emerge from interactions between members of
local communities sampled from a metacommunity. Here, we emphasize multi-stability as a third
mechanism, giving rise to different community types in the same environmental conditions. We
illustrate with a toy model how multi-stability can generate community types and discuss the
consequences of multi-stability for data interpretation.
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Introduction

In the past decade, the microbial composition of a
large number of samples from different environ-
ments was determined. For host-associated micro-
biota in particular, samples can be grouped into
clusters based on their microbial composition. For
instance, samples of the vaginal microbiome were
found to form five distinct clusters, four of them
dominated by different Lactobacillus species and the
fifth of mixed character (Ravel et al., 2011). Clusters
were also reported for the gut microbiome, where
they are known as enterotypes (Arumugam et al.,
2011). A recent clustering analysis suggests that oral
microbiota can be likewise divided into clusters
(Ding and Schloss, 2014).

Figure 1a illustrates clusters present in the
Flemish Gut Flora Project data (Falony et al., 2016),
one of the biggest gut data sets available to date (1106
samples). The clusters are visualized as mountains in
a landscape plot, where peaks are the higher the
more samples share the same community composi-
tion. We refer to both distinct and overlapping
clusters as community types. In the following, we

will discuss different mechanisms that could explain
alternative community types.

Mechanisms behind alternative
community types

The most frequently mentioned mechanism is a
continuous response of the community to a changing
environmental parameter (Figure 1b). If the response
is gradual, many transitional community configura-
tions can be observed, resulting in a gradient. In
contrast, if the response is abrupt, the probability of
detecting transitional community configurations
decreases, such that two distinct community types
emerge: one before and the other after the environ-
mental change. This mechanism can be implemen-
ted with the generalized Lotka-Volterra model. In its
standard form, the generalized Lotka-Volterr model
describes community dynamics as a function of
growth rates and interaction strengths between
community members. The generalized Lotka-
Volterr model has been extended with a suscept-
ibility term, which models how each species
responds to a perturbation (Stein et al., 2013). This
susceptibility term can also capture the effect of
environmental change on the community.

Recently, a novel community-type generating
mechanism was proposed (Gibson et al., 2016)
(Figure 1c). Gibson and colleagues link the emergence
of alternative community types to a strong hetero-
geneity of interaction strengths or alternatively to the
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presence of strongly interacting species (SIS). The
members of local communities are sampled randomly
from the metacommunity. The local community type
is then defined by the particular combination of SIS
present. In the absence of SIS, the dynamics between
local communities is very similar; community types
vanish. Two aspects of this community model are
especially noteworthy: first, the particular SIS combi-
nation assigned to each local community is random.
Thus, environmental differences between local com-
munities do not explain differences in community
composition, although one could introduce them
easily through non-random selection of species from
the metacommunity. Second, the authors found that
the interaction strength heterogeneity determines the
distinctness of community types. Thus, depending on
parameter settings, the same mechanism generates
gradients or clusters.

In the model by Gibson and colleagues, alternative
communities are composed of different species
subsets. However, it is possible to generate alter-
native community types with the same set of species.
Multi-stable ecosystems have more than one stable
state in the same conditions. The association
between precipitation levels and tree cover is a
well-established example from macroecology, where
two alternative states of tree cover, corresponding to
rainforest and savanna, can exist at similar precipita-
tion levels (Hirota et al., 2011). When an environ-
mental parameter is changed beyond the so-called
tipping point, such systems respond with an abrupt
switch from one stable state to another. However,
since more than one stable state is present, the
former community state cannot be regained by
simply reversing the environmental parameter.
Instead, the environmental parameter has to be

Figure 1 Overview of different mechanisms generating community types. (a) In general, peaks in the landscape of possible community
configurations are interpreted as community types. The landscape plot shown here was generated with data from the Flemish Gut Flora
Project. It combines a principal coordinates analysis plot, which summarizes community composition in two dimensions, with a density
landscape. The latter encodes the frequency of observed community configurations as height. The mountain peaks thus represent
alternative community types. The exact mechanism behind these peaks is unknown. (b) The most frequently evoked mechanism for
different community types is a continuous response to environmental change. The community type is here represented by a bar plot that
depicts the abundance of different species (indicated with colored bars). The probability of detecting different community types depends
on the slope of the community response curve. If the slope is steep, transitional community configurations will be harder to find, resulting
in separate clusters. (c) Gibson and colleagues recently proposed a model that generates different local communities from a
metacommunity through random selection. The local communities differ when interaction strengths between community members are
strongly heterogeneous. The model can be adapted to describe the impact of the environment by replacing random selection with habitat
filtering. (d) Finally, a multi-stable community can adopt different stable states in the same environmental conditions. A community type
switch can be triggered either by adding or removing individuals belonging to species present in the community (vertical arrows) or by
changing the environment (bent arrows). However, once the system is pushed across a tipping point (black point), it does not return when
original conditions are restored. Instead, it has to be altered beyond another tipping point to go back to its original state. This effect is
known as hysteresis.
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changed beyond another tipping point (Figure 1d).
This effect, known as hysteresis, introduces a path
dependency: previous parameter values and com-
munity states matter. Depending on its history, the
community may adopt one or another distinct state
in the same environmental conditions. The impor-
tance of multi-stability was recognized early on in
ecology (for example, (Lewontin, 1969; May, 1977))
and experimental evidence for it has since been
found in natural systems, mesocosms and in vitro
(reviewed in (Schröder et al., 2005)). Bucci and
colleagues also proposed a model describing a
bi-stable system of antibiotic-tolerant and sensitive
gut bacteria (Bucci et al., 2012). Despite its recog-
nized importance in other fields, the role of multi-
stability is rarely considered in the current debate on
alternative microbial community types detected in
recent sequencing data sets (a notable exception is
(Shetty et al., 2017)).

The mechanisms discussed above should not be
confounded with ways to manipulate microbial
communities. Costello et al. (2012) previously
pointed out two such ways, namely (i) directly via
the addition or removal of individual community
members or (ii) indirectly by changing environmen-
tal parameters, which then favor different commu-
nity members. Both factors may simultaneously
contribute to each of the three mechanisms, but
their consequences depend on the mechanism
involved. Thus, the knowledge of the mechanism
underlying community types will also ease their
manipulation.

Multi-stability: a proof-of-concept

In the following, we demonstrate with a three-
species toy model how multi-stability generates
alternative community types. Multi-stability
requires interactions between species, more speci-
fically the presence of a positive circuit (Thomas's
conjecture, (Thomas and D'Ari, 1990)). Such cir-
cuits can be achieved for example through mutual
inhibition between two species, as demonstrated by
the genetic toggle switch (Gardner et al., 2000).
Following this principle, we built a model in which
three species inhibit each other, such that one
species dominates while the other two are main-
tained at low abundance due to the repression by
the dominant species (Figure 2a). The inhibition,
mediated for example through exchange of (toxic)
compounds or competition, is described by decreas-
ing sigmoidal Hill functions (Figure 2b and
Supplementary Material). The inhibition coeffi-
cients Kij encode the strength of the inhibition of
species i by species j. All inhibition coefficients
together form the inhibition matrix K. Of note, the
inhibition is the stronger the smaller the inhibition
coefficient.

Depending on the initial abundances, either one
of the three species dominates the community

(Figure 2c). Importantly, in the simulations, the
model parameters are not altered; a change in
initial abundances is sufficient to reach another
community state, demonstrating the presence of
three alternative stable states in the system. This
multi-stability is also clearly seen in the bifurcation
diagrams shown in Figure 2d. A bifurcation
diagram displays, as function of a control para-
meter, all possible states of a dynamical system as
well as their stability. In our example, the control
parameter is the growth rate of species 1 (blue),
which may change in response to environmental
conditions such as nutrient concentration or pH.
The state of the dynamical system is defined by the
abundances of the three species. The thick color
curves in Figure 2d denote stable states, whereas
dashed curves represent unstable states. Two
low-abundance stable states and one high-
abundance stable state are visible, which coexist
in the region highlighted by the orange background
(tri-stability).

Switches from one community to another can be
induced by changing the control parameter beyond
the boundary of the tri-stability region. This is
demonstrated in Figure 2e, where a pulse perturba-
tion temporarily lowers the growth rate of the blue
species below the boundary of the tri-stability region.
In consequence, a switch from blue to green species
dominance occurs. Crucially, the green species
continues to dominate the community even after
the end of the perturbation. A second perturbation,
which increases the growth rate of the blue species
above its original value (before the first perturba-
tion), is needed to return to blue dominance, high-
lighting hysteresis. In real microbial communities, a
variety of environmental factors could act as pulse
perturbations, for example rain in soil communities,
particular food components, such as fibers in
gut communities and menstruation in vaginal
communities.

Our model can be generalized to larger commu-
nities. As a proof-of-concept, we model a community
of 15 species, which form three groups with strong
inter-group inhibition and weak intra-group inhibi-
tion (Figure 3a). The tri-stable community is domi-
nated by either one of its three groups depending on
initial species abundances (Figure 3b). Interestingly,
like the model of Gibson and colleagues, our proof-
of-concept model generates distinct clusters or
gradients, depending on the inter-group interaction
strengths (Figure 3c). Next, we generated a random
inhibition matrix with a strongly heterogeneous
distribution of interaction strengths (Figure 3d,
inset). When carrying out simulations with this
inhibition matrix and varying initial abundances,
we detect distinct sample groups representing alter-
native stable states (Figure 3d). Temporarily increas-
ing the growth rate of a SIS induces a community
switch, which can only be reversed when this
growth rate is lowered below its initial value
(Figure 3e).
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Implications of multi-stability

Knowing whether a community under study is multi-
stable or not has important implications for the
interpretation of microbial sequencing data. If a
host-associated microbial community is multi-stable,
it is not necessarily meaningful to explain differences
in microbial composition across hosts with differ-
ences in host physiology, life style, genetics or other
properties, since alternative stable states may be the

result of a past perturbation rather than a current
difference in host properties. Thus, the generative
mechanisms underlying community types are of great
relevance for understanding community variation.

Multi-stability has also implications when deter-
mining whether community dynamics is universal.
The question about the universality of community
dynamics was recently raised by Bashan and
colleagues, who also presented a method to address

Figure 2 Toy model for multi-stable communities. (a) The toy model community consists of three species, each of which competes with
the other two. (b) The toy model describes the dynamics of each species as a function of its growth rate bi, its death rate ki and an inhibition
term fi. The inhibition term models how all species lower the species' growth rate using a Hill function, which takes inhibition coefficients
Kij and the Hill coefficient n (here n=2) as parameters. The interaction coefficients form a matrix, the values of which are shown. The
smaller the inhibition coefficients, the stronger the inhibition. (c) Numeric simulation of the model demonstrates that three stable states
exist, which depend on the initial abundances of the species. (d) The three bifurcation diagrams show for each species the range of the
three stable states. (e) When perturbing the system by temporarily decreasing the growth rate of b1 below the first tipping point, the green
species replaces the blue one as the dominant species in the system. A second perturbation, increasing the growth rate of the blue species
beyond the second tipping point, is needed to return to the original state. More details are provided in the Supplementary Material.
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Figure 3 For caption see next page.
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it with microbial abundance data (Bashan et al.,
2016). Their dissimilarity-overlap-curve method
assumes that species following the same dynamics
end up with the same abundance profiles, an
assumption that is violated by multi-stability. Thus,
multi-stable communities may well follow a uni-
versal dynamics despite being classified as non-
universal by the dissimilarity-overlap-curve method.

Finally, the presence of multi-stability strongly
questions community neutrality. According to the
neutral model (Rosindell et al., 2011), the commu-
nity dynamics is entirely stochastic and species
interactions do not matter. Since according to
Thomas's conjecture (Thomas and D'Ari, 1990), the
presence of a positive circuit is a necessary condition
for multi-stability, multi-stability implies the pre-
sence of species interactions and thus non-neutral
community dynamics.

Evidence for multi-stability

Microbial abundance data alone are not sufficient to
differentiate between possible mechanisms. If envir-
onmental data are available, then a strong association
to an environmental parameter may point to the first
mechanism (that is, continuous response to environ-
mental change). For instance, the enterotypes have
previously been linked to diet (Wu et al., 2011),
inflammation (Chatelier et al., 2013) and stool
consistency/transit time (Falony et al., 2016). Yet, in
another study, high-or-low (bimodal) abundance
patterns of selected gut species could not be explained
by differences in diet or other metadata and,
supported by additional longitudinal analysis, were
interpreted as indicative of bistability (Lahti et al.,
2014). Bimodal distributions were also observed in
vaginal microbiota (Faust et al., 2015). However,
bimodality alone is not sufficient to prove multi-
stability. As mentioned by Scheffer and colleagues
(Scheffer et al., 2009), a non-multi-stable system may
respond to environmental change in a strongly non-
linear manner, leading to abrupt community change
and thus bimodality. The difficulty of distinguishing
true multi-stability from a response to potentially
subtle environmental change has been discussed in

depth before (Connell and Sousa, 1983). To identify
multi-stability, Scheffer and colleagues suggest to look
for early warning signs, which increase near the
tipping point (Scheffer et al., 2009). The recent
analysis of an artificial oral microbiome subjected to
repeated sucrose pulses revealed a characteristic early
warning sign, namely the critical slowing down of pH
recovery, which ultimately led to an abrupt change of
the ecosystem (Koopman et al., 2015). However, early
warning signs are only applicable to systems exposed
to a changing environmental parameter or system
variable (for example, pH in (Koopman et al., 2015))
and require long time series. To overcome this
limitation, Lahti and colleagues recently proposed to
aggregate multiple short time series across many
individuals to quantify resilience in bacterial abun-
dance profiles and thus obtain an indicator of
bistability (Lahti et al., 2014). With this indicator, the
Prevotella genus was identified to exhibit alternative
states of low and high abundance in the human gut.

A telltale sign of multi-stability is hysteresis, that is,
the failure to return to the original community state
once the original conditions are restored after a
perturbation. Hints of hysteresis are seen in otherwise
stable vaginal microbiota that switch from one
dominant Lactobacillus species to another upon
perturbation in form of menstruation or sexual
intercourse in a few women (Gajer et al., 2012).
Incomplete recovery, for example of gut communities
exposed to antibiotic treatment (Dethlefsen and
Relman, 2011), likewise may point to multi-stability.
These observations are however insufficient to con-
clude that these microbiota are multi-stable.

Although there is to our knowledge no conclusive
experimental evidence yet for multi-stability as a
mechanism behind alternative microbial commu-
nities, the indications justify a deeper investigation.

Discussion

In recent years, the interpretation of alternative
community types in the gut (enterotypes) has been
hotly debated. While some authors interpret them as
gradients or as artifacts resulting from gradients of
dominant gut organisms (Knights et al., 2014;

Figure 3 Proof-of-concept model for multi-stable communities. (a) The first version of the proof-of-concept model consists of three groups of
five weakly interacting species (n=2, Kij≈1). Each group strongly inhibits the other two groups (n=2, Kij≈0.5). (b) There are three stable states,
each dominated by either the blue, red or green group. Each panel shows the stable distribution of the 15 species for randomly sampled initial
abundances. (c) When carrying out simulations with slightly varying growth rates and inhibition coefficients and plotting resulting total group
abundances together in a ternary plot, the group structure is clearly visible (upper triangle plot). However, when the inter-group inhibitions
are lowered, the distinction between groups lessens (middle triangle). A gradient between two groups can also emerge if their mutual
inhibition is lower than their inhibition with the third group (bottom triangle). (d) We also explored a version of the proof-of-concept model
without pre-defined group structure, where inhibition coefficients were sampled from an exponential distribution and the Hill coefficient n
was set to 4 (inset). When repeating simulations with varying initial abundances and visualizing stable state abundances in a bar plot, distinct
groups emerge. The bar plot only colors abundances of the five species that vary the most strongly across groups, whereas more homogeneous
species are uniformly colored in gray. (e) As in the toy model, a community type switch can be induced by temporarily increasing the growth
rate of a species (species 4 here, cyan curve). The two bar plots depict the abundance distribution before and after community type switching.
Since species 4 and 8 inhibit each other, the abundance of species 8 is low in the new stable state (lower bar plot) as compared to the first
stable state (upper bar plot). Hysteresis is demonstrated by the fact that the growth rate of species 4 has to be reduced below its original value
to return to the original state. More details are provided in the Supplementary Material.
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Gorvitovskaia et al., 2016), others describe them as
peaks in the landscape of all possible community
configurations (Falony et al., 2016; Figure 1a). In the
context of this debate, it is worthwhile to point out that
each of the three mechanisms can generate gradients or
clusters, depending on model parameters. Although it
is important to discuss how to interpret community
types, we think that the current gradient-versus-cluster
debate obscures the more interesting question about
which mechanism explains these patterns.

Here, we treated each mechanism separately, but it
is likely that a combination of them determines
community dynamics in microbial ecosystems. For
instance, enterotypes may represent alternative
stable states of a multi-stable system in healthy
persons, but dysbiotic communities in Crohn's
disease or ulcerative colitis may be driven by a
strong change in environmental conditions (for
example, inflammation). In addition, enterotypes
may differ in their resistance to environmentally
induced community shifts (Vieira-Silva et al., 2016).

In the metacommunity model as well as in our
proof-of-concept model, states emerge through a few
strong interactions. Thus, according to both models,
the SIS, but not necessarily the most abundant species,
determine the community type. Gibson and colleagues
point out the special interest of SIS as targets of
community engineering efforts. These species can be
considered as levers with which to switch the
community from one type to another. In simulations
with the proof-of-concept model, we observed that the
SIS are the ones that differ most across community
types, whereas weakly interacting species do not differ
much (Figure 3d). Thus, if our model applies to real-
world microbial communities, SIS could play the role
of the bi-stable tipping elements described by Lahti
and colleagues (Lahti et al., 2014).

The further investigation of mechanisms behind
community types and the identification of strongly
interacting microbial species constitutes a promising
topic for future research.
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