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 Background: Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although it is not life-threatening, the ac-
companying rapid and irregular ventricular rate can lead to hemodynamic deterioration and obvious symp-
toms, especially the risk of cerebrovascular embolism. Our study aimed to identify novel and promising genes 
that could explain the underlying mechanism of AF development.

 Material/Methods: Expression profiles GSE41177, GSE79768, and GSE14975 were acquired from the Gene Expression Omnibus 
Database. R software was used for identifying differentially expressed genes (DEGs), and Gene Ontology and 
Kyoto Encyclopedia of Genes and Genomes enrichment analyses were subsequently performed. A protein–pro-
tein interaction network was constructed in Cytoscape software. Next, a least absolute shrinkage and selection 
operator (LASSO) model was constructed and receiver-operating characteristic curve analysis was conducted 
to assess the specificity and sensitivity of the key genes.

 Results: We obtained 204 DEGs from the datasets. The DEGs were mostly involved in immune response and cell com-
munication. The primary pathways of the DEGs were related to the course or maintenance of autoimmune and 
chronic inflammatory diseases. The top 20 hub genes (high scores in cytoHubba) were selected in the PPI net-
work. Finally, we identified 6 key genes (FCGR3B, CLEC10A, FPR2, IGSF6, S100A9, and S100A12) via the LASSO 
model.

 Conclusions: We present 6 target genes that are potentially involved in the molecular mechanisms of AF development. In 
addition, these genes are likely to serve as potential therapeutic targets.
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Background

Atrial fibrillation (AF) is the most prevalent (0.51%) and per-
sistent heart rhythm disorder globally [1]. AF, increases the 
risk of blood clots causing thromboembolism, confers a near-
ly 5-fold increased risk of a debilitating stroke, and is a major 
risk factor for cardiovascular outcomes, including stroke [2,3]. 
Given its asymptomatic nature, many cases of AF go undetect-
ed until complications occur. Early detection of AF increases 
the chances of preventing stroke and other complications [4]. 
Therefore, it is imperative to explore the molecular mechanisms 
of AF pathogenesis as a means of improving the early diagno-
sis and treatment interventions of the disease.

Changes in genetic expression in AF are gradually gaining re-
search attention [5,6]. Using the expression profiles of AF-
associated target genes as a guide to examine the pathogen-
ic sites of genetic variation and target gene regulation could 
be an effective approach [7,8]. Population studies show that 
a positive family history of AF increases the risk of developing 
AF among first-degree relatives by 30% [9,10]. The search for 
AF-associated genetic loci is propelled by the existing knowl-
edge on the heritability of AF in the general population. Several 
genes, including some related to ion channel function, have 
been revealed to be associated with AF [11]. Ion channel-relat-
ed genes associated with AF are primarily related to potassium 
channels. Previous studies have identified specific potassium 
channel genes or subunits that are associated AF. Monogenic 
AF pedigrees revealed that mutations leading to the gain or loss 
of function of KCNQ1, which encodes the potassium channel 
a subunit, are likely to be involved in the initiation and main-
tenance of AF [12]. Studies on KCNEI suggested that these AF-
related genes are associated with decreased IKs current den-
sity and prolonged duration of atrial action potential [13,14]. 
Analysis of a genome cohort with sporadic AF identified that 
KCNJ3 and KCNJ5 were associated with AF through a gain-of-
function mutation in the IKACh channel [15]. Other studies have 
found that the CRP gene promoter associated with triallelic 
polymorphism is a potential genetic predictor of thromboem-
bolic stroke in AF patients [16,17]. In addition, the redistribution 
and density change of gap junction channels trigger changes 
in the corresponding conduction velocity and anisotropic con-
duction, thus creating the re-entry loop of arrhythmias [18]. 
Several studies have explored the contribution of connexins to 
AF. At the preclinical stage, heterogeneity and decreased ex-
pression of connexins have been observed in AF [19]. Indeed, 
deletion of mouse homologues of AF-related regions in mice 
led to reduced expression of Cx43 [7]. Studies have also linked 
the expression of tumor-related genes with AF, and these genes 
often function as sentinel molecules in monitoring inflamma-
tory responses and tissue homeostasis [20]. For example, the 
action potential duration in atrial myocytes was significantly 
shortened after the knockdown of esophageal cancer-related 

gene-4 (ECRG4) [21]. Knockdown of ECRG4 activated inflam-
matory pathways, as well as the genes associated with car-
diac remodeling, which may shed light on the maintenance 
of re-entrant circuits in AF [22]. However, a causal relation-
ship between ECRG4 and AF has not been established in vivo. 
Although many genes potentially related to AF have been ex-
plored, detailed molecular mechanisms behind the initiation, 
perpetuation, and maintenance of AF remain elusive because 
of the complex nature of AF pathogenesis and the focus on 
single families in previous studies. Currently, the understand-
ing and applicability of genes associated with AF are imperfect.

In the present study, based on a comprehensive bioinformatics 
analysis, we identified DEGs between sinus rhythm (SR) and 
AF samples, and further elucidated their potential molecular 
mechanisms and pathology in AF. This study adds several new 
candidate genes and related molecular pathways to those al-
ready associated with AF in previous studies. In future stud-
ies, these candidate genes and pathways could be investigat-
ed more closely to identify new and clear gene targets and 
potentially provide guidance for subsequent clinical studies.

Material	and	Methods

Data	Information	and	Processing

The gene expression profiles of the GSE41177, GSE79768, and 
GSE14975 datasets were retrieved from the National Center for 
Biotechnology Information Gene Expression Omnibus database 
(NCBI GEO, http://www.ncbi.nlm.nih.gov/geo). The datasets con-
tained data from AF patients with persistent AF for >3 months 
and SR patients without AF and not using any anti-arrhythmia 
drugs, with the latter serving as a control group. The GSE41177 
dataset comprised 32 atrial appendage tissues from patients 
with persistent AF and 6 cases with SR. The GSE79768 and 
GSE14975 datasets consisted of atrial appendage tissues from 
14 AF and 12 SR cases and 5 AF and 5 SR cases, respectively. 
The microarray data from GSE41177, GSE79768, and GSE14975 
were based on the GPL570 platform (Affymetrix Human Genome 
U133 Plus 2.0 Array, HG-U133_Plus_2). The raw data were pro-
cessed and analyzed in R (version 3.6.2). First, the raw data un-
derwent background correction with the limma package (http://
www.bioconductor.org/packages/limma/). Then, a robust mul-
tichip average was created and perfect matches from the raw 
data were log2 transformed. Afterwards, batch normalization 
and data merging for the 3 datasets was conducted using the 
sva package (http://www.bioconductor.org/packages/sva/).

Identification	of	DEGs

Gene annotation was conducted before the analysis of the 
DEGs between AF and SR samples. The probe identification 
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numbers of the merged data were matched with the gene 
symbols using the affy package (http://www.bioconductor.org/
packages/affy/). If multiple probes were mapped to the same 
gene, the median of the expression value was selected as the 
gene expression value. Next, we utilized the limma package 
to identify the DEGs, and the cutoff criteria were set at an ad-
justed P-value (adj. P) <0.05 and an absolute value of log fold 
change (|log2 FC|) >1. We apply adj. P to correct false posi-
tives. The data for the listed DEGs were processed and plot-
ted in a heatmap and volcano plots using the pheatmap and 
ggplot2 R packages, respectively.

Gene	Ontology	and	Pathway	Enrichment	Analysis

Based on the analysis of DEGs, added potential functional 
annotations in Functional Enrichment analysis tool (Funrich) 
were performed. Gene Ontology (GO) term enrichment analy-
sis, included biological process (BP), cellular component (CC), 
and molecular function (MF). In addition, the Database for 
Annotation, Visualization, and Integrated Discovery (DAVID, 
version 6.8, https://david.ncifcrf.gov/) was applied to analyze 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment. DAVID is a biological information database 

with gene annotation, gene symbol conversion, visualization, 
and integrated discovery function, and it provides compre-
hensive and systematic biological function annotation infor-
mation of genes. Subsequently, we visualized the KEGG path-
way analyses using the ggplot2 R package. The cutoff criterion 
was set at adj. P<0.05.

Analysis	of	Protein–protein	Interaction	Networks	of	DEGs

The protein–protein interaction (PPI) networks of the DEGs 
were analyzed using the STRING online database (version 10.5; 
http://string-db.org/) to predict PPIs and protein functional as-
sociations. A confidence score of ≥0.4 was set as the thresh-
old. After that, Cytoscape software (version 3.7.2; http://cyto-
scape.org/) was used to analyze and visualize the biological 
networks and node degrees of DEGs. The cytoHubba plugin 
(version 0.1) was utilized to identify the PPI networks. Based 
on the 4 filtering algorithms (Stress, Closeness, EcCentricity, 
and MCC), the top 20 hub genes obtained by each algorithm 
were used. Subsequently, co-expression of the hub genes and 
enrichment genes in the pathways was identified and present-
ed in a Venn diagram.
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Figure 1.  (A) Volcano plot of potential differentially expressed genes (DEGs). Red dots denote upregulated genes; green dots denote 
downregulated genes. (B) Heat maps for the DEGs between atrial fibrillation (AF) and sinus rhythm (SR).
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Construction	of	the	LASSO	Model	And	ROC	Curve	Analysis

Based on the hub genes, we constructed a least absolute 
shrinkage and selection operator (LASSO) model because of 
its strong predictive value using the glmnet package (http://
www.bioconductor.org/packages/glmnet/). Then, the expres-
sion data of the hub genes, based on the ratio 7: 3, were ran-
domly allocated to the training and testing sets. The receiv-
er-operating characteristic (ROC) curve was plotted using the 
pROC package in R. The value of ROC area under the curve 
(AUC) was obtained to assess the sensitivity and specificity of 
the key genes screened by the LASSO model.

Results

Identification	of	DEGs	in	AF

We obtained the microarray datasets GSE41177, GSE79768, 
and GSE14975 from the GEO database. The datasets contained 
51 AF and 23 SR samples. With the cutoff criteria set at adj. 
P<0.05 and |log2 FC| >1, we identified 204 DEGs (Figure 1). 
Compared with the control SR differential genes in the data-
sets, AF-related genes were mostly upregulated. The expres-
sion heatmaps of the DEGs are shown in Figure 1A, 1B. These 
genes were well clustered between the AF and control cases.

GO	Term	Enrichment	Analysis	of	DEGs

We identified the DEGs for the GO analysis using the Funrich 
software, and the DEGs were examined based on 3 catego-
ries: BP, CC, and MF. In the BP group, the DEGs were main-
ly enriched in immune response, cell communication, and sig-
nal transduction; in the CC group, the DEGs were primarily 
enriched in plasma membrane and exosomes; and in the MF 
group, the enrichment of the DEGs was mostly in the recep-
tor activity, MHC class I receptor activity, and MHC class II re-
ceptor activity (Figure 2A-2C, Table 1).

Signaling	Pathway	Enrichment	Analysis

The KEGG pathway enrichment analysis was performed for 
the DEGs, and the results are shown in Figure 2D and Table 2. 
Enrichment of the DEGs was mainly in the Staphylococcus au-
reus infection, intestinal immune network for IgA production, 
systemic lupus erythematosus, asthma, and viral myocarditis.

PPI	Network	and	Hub	Genes	Identification

Using the STRING database and Cytoscape software, we con-
structed 4 PPI networks for the DEGs as shown in Figure 3A-3E. 
Furthermore, the top 20 hub genes of each dataset were iden-
tified using the 4 algorithms (Stress, Closeness, EcCentricity, 
and MCC) of the cytoHubba plugin. Among these hub genes, 

Figure 2.  Biological functions based on Gene Ontology (GO) analysis of the differentially expressed genes (DEGs): (A) biological process 
(BP); (B) cellular component (CC), and (C) molecular function (MF). (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of the DEGs.
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SPI1, HCK, TLR8, FPR2, RAC2, IGSF6, CSF3R, CXCR4, S100A8, 
S100A9, FCGR3B, TYROBP, S100A12, and CLEC10A exhibited 
the highest degree of association with AF and are listed in the 
Venn diagram (Figure 3F).

Validation	of	the	Diagnostic	Value	of	Key	Genes

The construction of a LASSO model was based on the A gene 
expression profile of the 14 hub genes (Figure 4A). Based on 
the model, 6 genes were identified according to the regres-
sion coefficients that were not equal to zero. ROC curve anal-
ysis (Figure 4B, 4C) identified the AUC for FCGR3B, CLEC10A, 
FPR2, IGSF6, S100A9, and S100A12 in AF patients and normal 
controls; in the training set, the AUC values were 0.9981 (95% 
confidence interval [CI], 0.993-1), 0.9944 (95% CI, 0.9821-1), 
0.987 (95% CI, 0.9655-1), 0.9481 (95% CI, 0.8566-1), 0.9852 

(95% CI, 0.9616-1), and 0.9981 (95% CI, 0.993-1); in the test 
set, the AUC values were 0.8762 (95% CI, 0.7271-1), 0.9714 
(95% CI, 0.9079-1), 0.981 (95% CI, 0.9358-1), 0.8857 (95% 
CI, 0.7092-1), 0.8952 (95% CI, 0.7517-1), and 0.9429 (95% 
CI, 0.825-1).

Discussion

The initiation and development of AF are regulated by the ex-
pression of many genes. Here, we systematically investigated 
gene expression profiles obtained from AF microarray studies. 
Gene expression data were downloaded from 3 GEO datasets 
in the GCBI. To better explore the DEGs, we identified the po-
tential and remarkable DEGs, biological pathways, and process-
es based on comparisons between AF and normal SR samples.

Category GO term Genes

BP Immune response HLA-DQB2; FCGR3B; IGLL1; CLEC10A; LST1; LILRA6; CD27; C1QC; IGSF6; CD28; 
LGALS1; IFI6; TREM1; FCN1; FCER1G; HLA-DPB1; CLC; CRTAM; C1QB; HLA-DRA; 
C1QA; TNFRSF17; HLA-DQA1

Cell communication PDAP1; CTNNB1; RLN1; PROKR2; OMP; ARRB2; RAB8A; PREX1; RCAN1; CMTM2; 
MS4A2; FPR2; S100A9; S100A12; RAB8B; JAM3; PROK2; PILRA; ARF5; RGS18; 
HRAS; CLEC5A; FRZB; CD1E; HCK; S100A8; PDGFD; HCST; TSPAN15; TLR8; CSF3R; 
CBLN1; STK17B; CXCR4; EPCAM; NPY1R; TYROBP; RAC2; CXCR2; GNB2; SELL; 
UTS2; TXNIP; PPBP; MIF; IL1R2; S100P; IGFBP2; ITGA4; GPR34; FAP; IGFBP3; 
TNNC1; BLNK; CCL19; CHGB; LY96; CRLF1; HTR2B

Signal transduction PDAP1; CSF2RA; CTNNB1; RLN1; PROKR2; OMP; ARRB2; RAB8A; PREX1; RCAN1; 
CMTM2; MS4A2; FPR2; S100A9; S100A12; RAB8B; JAM3; PROK2; PILRA; ARF5; 
RGS18; HRAS; CLEC5A; FRZB; CD1E; HCK; S100A8; PDGFD; HCST; TSPAN15; TLR8; 
CSF3R; CBLN1; MS4A7; STK17B; CXCR4; EPCAM; NPY1R; TYROBP; RAC2; CXCR2; 
GNB2; SELL; UTS2; P2RY13; TXNIP; PPBP; MIF; S100P; IGFBP2; ITGA4; GPR34; FAP; 
IGFBP3; TNNC1; BLNK; CCL19; CHGB; LY96; CRLF1; HTR2B

CC Plasma membrane CSF2RA; CTNNB1; HLA-DQB2; PROKR2; ARRB2; KLRD1; RAB8A; PREX1; CYBA; 
CLEC10A; CMTM2; MS4A2; CCDC109B; RABAC1; MCOLN1; FPR2; LST1; S100A9; 
LILRA6; TREH; CD27; S100A12; RAB8B; JAM3; PILRA; ARF5; HRAS; IGSF6; CLEC5A; 
FRZB; HCK; S100A8; HCST; SIDT1; TLR8; CSF3R; CBLN1; CD28; STT3A; PPIB; CXCR4; 
EPCAM; LGALS1; NPY1R; CLIC4; TYROBP; RAC2; SET; CXCR2; CCR2; SELL; UTS2; 
TREM1; EVI2B; FCN1; P2RY13; FCER1G; HLA-DPB1; C16orf54; CLC; CORO1A; IL1R2; 
TMED2; S100P; CRTAM; FXYD1; ITGA4; GPR34; VAMP8; FAP; IGFBP3; HLA-DRA; 
FCGR1B; BLNK; ATP1B4; LY96; HTR2B; TNFRSF17; HLA-DQA1

Exosomes CTNNB1; ALYREF; ALDH16A1; RPN1; RAB8A; GLIPR2; EIF3I; COTL1; CORO1C; 
S100A9; TREH; RAB8B; C1QC; PILRA; ARF5; HRAS; S100A8; PFN1; S100A4; 
TSPAN15; VMO1; PPIB; CXCR4; EPCAM; LGALS1; CLIC4; RAC2; MNDA; GNB2; 
EVI2B; FCN1; HLA-DPB1; EIF2S3; COL15A1; EEF1A2; EIF5A; CORO1A; MIF; TMED2; 
ARPC3; S100P; ITGA4; C1QB; VAMP8; HLA-DRA; CHGB; HLA-DQA1; LYZ

MF Receptor activity FCGR3B; KLRD1; CLEC10A; MS4A2; LST1; LILRA6; CD27; PILRA; CLEC5A; TLR8; 
CD28; TYROBP; TREM1; FCER1G; IL1R2; ITGA4; TNFRSF17

MHC class I receptor activity HLA-DQB2; SET; HLA-DPB1; HLA-DRA; HLA-DQA1

MHC class II receptor activity HLA-DQB2; SET; HLA-DPB1; HLA-DRA; HLA-DQA1

Table 1. Significantly enriched GO terms in AF.
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GO analysis revealed that a considerable number of the co-ex-
pressed DEGs were primarily associated with immune response, 
cell communication, signal transduction, plasma membrane, 
exosomes, receptor activity, MHC class I receptor activity, and 
MHC class II receptor activity. Previous studies indicated that 
the immune response can be a complex and powerful factor 
in the pathophysiological process of AF and its concomitant 
complications [23,24]. The major immune cells found in the 
left atrial appendages of patients with AF were immunolog-
ically active monocytes and macrophages, suggesting a pro-
inflammatory state characterized by increased infiltration of 
iNOS-positive, but Arg1-negative immune cells [25,26]. AF-
induced cardiac injury processes of the myocardium initiate 
a cardiac immune response as shown by damage-associated 
molecular patterns (DAMPs), such as extracellular matrix and 
reactive oxygen species [27]. The pattern recognition receptor 
then initiates recognition of DAMPs, before the activation of 
innate and adaptive immune cells. This immune process forms 
a long-term feedback loop and promotes the formation of per-
manent forms of AF [28]. Inflammation and immune response 

are dependent on the onset and maintenance of AF, which is 
in turn dependent on inflammation and immune response. In 
addition, a clinical phenomenon that AF promotes inflamma-
tion supports a vicious cycle of “AF begets AF” [29]. The re-
sults of our pathway analysis showed that the DEGs identi-
fied were mainly associated with the course or maintenance 
of autoimmune diseases and chronic inflammatory diseas-
es. Multiple systems of systemic lupus erythematosus (SLE), 
a chronic inflammatory autoimmune disease, may be an in-
dependent risk factor for AF since SLE has cardiac manifesta-
tions. Recent studies have shown that the disease status of 
SLE is independently associated with AF after adjusting for age, 
sex, race, and coronary artery disease [30]. Moreover, system-
ic inflammation and disease pathways of chronic inflammato-
ry diseases are considered as pathogenic contributors to the 
initiation and development of AF [31,32]. Chemokines guide 
the migration and activation of systemic leukocytes and may 
influence AF development [33]. Some studies have suggest-
ed that the level of inflammatory cytokines/chemokines is re-
lated to the progression of AF to myocardial fibrosis [34]. The 

Rank Pathway Genes

1 Staphylococcus aureus infection C1QA; C1QB; FPR2; HLA-DPB1; FCGR3B; C1QC; HLA-DQA1; HLA-DRA

2
Intestinal immune network for IgA 
production

CXCR4; TNFRSF17; ITGA4; HLA-DPB1; HLA-DQA1; HLA-DRA; CD28

3 Chemokine signaling pathway
HRAS; PPBP; RAC2; GNB2; ARRB2; CXCR4; PREX1; HCK; CCR2; CCL19; 
CXCR2

4 Systemic lupus erythematosus
C1QA; C1QB; HLA-DPB1; FCGR3B; HIST1H3G; C1QC; HLA-DQA1; 
HLA-DRA; CD28

5 Asthma FCER1G; MS4A2; HLA-DPB1; HLA-DQA1; HLA-DRA

6 Osteoclast differentiation CYBA; JUND; LILRA6; SPI1; FHL2; FCGR3B; BLNK; TYROBP

7 Leishmaniasis CYBA; ITGA4; HLA-DPB1; FCGR3B; HLA-DQA1; HLA-DRA

8 Cytokine-cytokine receptor interaction
IL1R2; PPBP; CXCR4; CCR2; CCL19; TNFRSF17; CSF3R; CXCR2; CSF2RA; 
CD27

9 Natural killer cell mediated cytotoxicity HRAS; RAC2; FCER1G; FCGR3B; KLRD1; TYROBP; HCST

10 Hematopoietic cell lineage IL1R2; CSF3R; ITGA4; CD1E; CSF2RA; HLA-DRA

11 Viral myocarditis RAC2; HLA-DPB1; HLA-DQA1; HLA-DRA; CD28

12 Graft-versus-host disease HLA-DPB1; HLA-DQA1; HLA-DRA; CD28

13 Cell adhesion molecules (CAMs) SELL; ITGA4; HLA-DPB1; JAM3; HLA-DQA1; HLA-DRA; CD28

14 Allograft rejection HLA-DPB1; HLA-DQA1; HLA-DRA; CD28

15 Phagosome CYBA; CORO1A; COMP; HLA-DPB1; FCGR3B; HLA-DQA1; HLA-DRA

16 Type I diabetes mellitus HLA-DPB1; HLA-DQA1; HLA-DRA; CD28

17 Leukocyte transendothelial migration CYBA; RAC2; CXCR4; ITGA4; JAM3; CTNNB1

18 Autoimmune thyroid disease HLA-DPB1; HLA-DQA1; HLA-DRA; CD28

Table 2. Significantly enriched pathways in AF.
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Figure 3.  (A) Protein–protein interaction (PPI) networks of the differentially expressed genes (DEGs). The top 20 genes in cytoHubba 
plugins: (B) Stress, (C) Closeness, (D) EcCentricity, and (E) MCC. (F) Venn diagrams of the top 20 genes.

expression of cytokines in AF promotes the degree of the re-
cruitment of immune cells [35]. As a classic way related in im-
mune reaction, transforming growth factor (TGF)-b and inter-
leukin (IL)-6 were expressed more frequently in the atria of 
macrophages after migration in AF [36].

Further analysis of the co-expression genes in the PPI network 
and LASSO model identified 6 key genes (FCGR3B, CLEC10A, 
FPR2, IGSF6, S100A9, and S100A12) as the most significance. 
Among the key genes, FCGR3B showed a closer association 
with AF. FCGR3B encodes a low-affinity receptor for the Fc 
portion of gamma immunoglobulins (IgG) known as FcgRIIIb 
(CD16b). The FcgRIIIb can bind either the monomeric or aggre-
gated IgG, and it may function to capture dedicated immune 
complexes in the peripheral circulation [37]. On neutrophils, 
FcgRIIIb regulates immune responses [38]. Our findings pro-
vide strong evidence that recruitment of neutrophils, partic-
ularly polymorphonuclear neutrophils, promotes the develop-
ment of AF [39,40]. Human FcgRIIIb lacks intracellular signaling 
motifs and is anchored in the cell membrane via a glycophos-
phatidyl inositol anchor [41]. In addition, intracellular signal-
ing promotes phagocytosis of antibody-opsonized microbes 
by human neutrophils through FcgRIIIb in collaboration with 
other associated FcgR [42]. In the rapid adhesion of neutro-
phils to endothelial cells, FcgRIIIb binding immune complexes 
remains an important link [43]. Thus, this gene is involved in 
the recruitment and activation of polymorphonuclear neutro-
phils at the site of inflammation [44].

Although the potential role of FCGR3B in autoimmunity has 
been extensively investigated, its role in AF development 

remains unclear [45]. The protein interacts with the Fc portion 
of the IgG molecule involved in immune regulation. Moreover, 
the variation of FCGR3B copy numbers is associated with sus-
ceptibility to several autoimmune diseases [46]. Importantly, 
FCGR3B could be linked to cardiovascular disorder of the myo-
cardium and coronary heart disease [47]. In addition, CD16+ 
monocytes have been shown to be involved in atrial remodel-
ing in the pathophysiology of AF [48]. Therefore, the FCGR3B 
gene could be a potential biomarker for AF.

CLEC10A is one of the members of the c-type lectin domain 
family 12, which serves as a characteristic galactose lectin on 
macrophages and dendritic cells. CLEC10A can be activated 
through Toll-like receptor signaling and increase the secre-
tion of various cytokines, including tumor necrosis factor-a, 
IL-8, and IL-10 [49]. In addition, lectin has been linked to the 
development of AF, and it can particularly predict thrombosis 
and left atrial appendage remodeling in patients with AF [50]. 
A synergistic interaction exists between lectin and TGF-b1, 
which can induce AF by activating the TGF-b1/Smad pathway 
in patients with AF [51]. Formyl peptide receptors (FPRs) be-
long to a G-protein-coupled chemokine receptor family and in-
clude 3 subtypes (FPR1, FPR2, and FPR3) that play important 
roles in host defense and inflammation [52]. FPR2 is involved 
in the initiation and resolution of inflammation. Similarly, the 
FPR2 signaling has important vascular effects through the in-
flammatory response [53,54].
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Conclusions

In summary, we used bioinformatics analysis tools to delineate 
the pathomechanism of AF based on DEGs. Autoimmune and 
chronic inflammatory pathways, neutrophil chemotaxis, and 
immune response were confirmed to play roles in the develop-
ment of AF. In addition, 6 genes, including FCGR3B, CLEC10A, 
FPR2, IGSF6, S100A9, and S100A12 were identified as poten-
tial AF biomarkers. Our findings pave the way for further re-
search on AF occurrence and development.

There are some limitations of our study. First, the clinical atrial 
tissue samples were not analyzed in the laboratory. Therefore, 
future studies on the mechanism of AF occurrence and devel-
opment should incorporate such samples. In addition, given 
the current limited datasets, the sample sizes were relatively 
small and a multicenter study involving a larger sample size is 
needed. Further investigation is required to determine wheth-
er the 6 key genes (FCGR3B, CLEC10A, FPR2, IGSF6, S100A9, 
and S100A12) activate any of the pathways or other mecha-
nisms known to induce AF in humans.
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Figure 4.  (A) Least absolute shrinkage and selection operator (LASSO) regression analysis of the hub genes. (B) Receiver-operating 
characteristic (ROC) curve of the hub genes in the training cohort. (C) ROC curve of the hub genes in the testing cohort.
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