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ABSTRACT Bacillus velezensis 5RB is capable of producing large amounts of 2,3-
butanediol. Whole-genome sequencing revealed that the strain contains one circular
chromosome of 3.91 Mbp without plasmids. A large part of the genome is devoted
to carbohydrate metabolism, encoding an abundance of enzymes participating in
polysaccharide utilization pathways.

The organic chemical 2,3-butanediol (2,3-BD) is the starting reagent in chemical
syntheses and an ingredient in foods and pharmaceuticals (1). Biotechnological

approaches for 2,3-BD production have progressed over the past decade, turning
2,3-BD into a major product of mixed-acid fermentations (2, 3). Currently, the aims are
to use nonpathogenic Bacillus strains (4) and convert renewable raw materials (5).

B. velezensis 5RB was isolated in the Veliko Tarnovo region of Bulgaria from lake
sediment containing plant roots. Single colonies of the strain were grown in nutrient
broth (Oxoid) at 30°C. Genomic DNA was extracted using a GeneJET genomic DNA
purification kit (Thermo Fisher Scientific). The TruSeq DNA PCR-free kit was used for
library construction; the sequencing was performed on an Illumina HiSeq 2500 instru-
ment with FastQC quality control (Macrogen, Inc., South Korea). Quality-filtered data
contained 43,639,513,900 total bases and 289,794,196 read counts. The assembly was
done using SOAPdenovo2 software (6) yielding 26 contigs with a total length of
3,910,395 bp, 134.22� genome coverage, an N50 value of 394,584 bp, and a 46.5% G�C
content. The NCBI Prokaryotic Genome Annotation Pipeline (7) detected 4,605 genes,
3,745 of them encoding proteins, 81 tRNAs, and 8 rRNAs.

Strain 5RB belongs to the Bacillus amyloliquefaciens operational group (8), with a
99% similarity with soy isolate B. velezensis YJ11-1-4 (GenBank accession number
NZ_CP020874) (9). In silico DNA-DNA hybridization (DDH) (10) resulted in a DDH value
of 90.20% with the B. velezensis FZB42 genome (CP000560) and a relatively lower DDH
of 85.7% with that of the type strain NRRL B-41580 (LLZC00000000).

B. velezensis 5RB contains genes which are typical for plant-associated rhizobacterial
genomes (11–13). The metabolic model of Rapid Annotations using Subsystems Tech-
nology (RAST) (default settings) (14) built by ModelSEED v2.3 predicted a 2,3-BD
synthesis pathway engaging ilvB, alsS, and ilvH (encoding �-acetolactate synthase), alsD
(�-acetolactate decarboxylase), and bdhA [(R,R)-2,3-butanediol dehydrogenase; EC
1.1.1.4]. The last enzyme was identical to the 2,3-butanediol dehydrogenase of B.
amyloliquefaciens KHG19 (GenBank accession number CP007242) (15) but different
from those of B. velezensis FZB42 and NRRL B-41580T, which may explain the overpro-
duction of 2,3-BD by B. velezensis 5RB.

A large portion of the genome of B. velezensis 5RB is devoted to carbohydrate
metabolism (225 genes). The following genes encode glycoside hydrolases: amyE, malL,
sacA, xynA, xynB, xynD, xynC, and eglS. This rich enzyme spectrum enables the conver-
sion of cellulose, hemicellulose, starch, and inulin and is promising for the use of B.
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velezensis 5RB to produce 2,3-BD in biotechnological processes for simultaneous sac-
charification and fermentation (SSF) of renewable plant substrates.

Secondary metabolite production was analyzed using the antiSMASH v4.2.0 tool
(16). Seven complete genomic clusters encoding antimicrobials were observed. Three
of them encode the synthesis of the polyketides macrolactin, bacillaene, and difficidin,
and four of them encode the nonribosomal production of fengycin, bacillibactin,
bacilysin, and the cyclic lipopeptide surfactin. The synthesis by B. velezensis 5RB of a
number of substances with an antibiotic nature would allow its application in industrial
microbial fermentations in nonsterile conditions.

Data availability. This whole-genome sequencing (WGS) project has been depos-
ited at DDBJ/ENA/GenBank under the accession number QXJL00000000 (raw data are
available under SRA numbers SRX5028064 and SRR8208868).
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