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Abstract

Genotype imputation methods have become increasingly popular for recovering untyped genotype data. An important
application with imputed genotypes is to test genetic association for diseases. Imputation-based association test can
provide additional insight beyond what is provided by testing on typed tagging SNPs only. A variety of effective
imputation-based association tests have been proposed. However, their performances are affected by a variety of genetic
factors, which have not been well studied. In this study, using both simulated and real data sets, we investigated the effects
of LD, MAF of untyped causal SNP and imputation accuracy rate on the performances of seven popular imputation-based
association methods, including MACH2qtl/dat, SNPTEST, ProbABEL, Beagle, Plink, BIMBAM and SNPMStat. We also aimed to
provide a comprehensive comparison among methods. Results show that: 1). imputation-based association tests can boost
signals and improve power under medium and high LD levels, with the power improvement increasing with strengthening
LD level; 2) the power increases with higher MAF of untyped causal SNPs under medium to high LD level; 3). under low LD
level, a high imputation accuracy rate cannot guarantee an improvement of power; 4). among methods, MACH2qtl/dat,
ProbABEL and SNPTEST perform similarly and they consistently outperform other methods. Our results are helpful in
guiding the choice of imputation-based association test in practical application.

Citation: Pei Y-F, Zhang L, Li J, Deng H-W (2010) Analyses and Comparison of Imputation-Based Association Methods. PLoS ONE 5(5): e10827. doi:10.1371/
journal.pone.0010827

Editor: Michael Nicholas Weedon, Peninsula Medical School, United Kingdom

Received September 20, 2009; Accepted April 29, 2010; Published May 26, 2010

Copyright: � 2010 Pei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Xi’an Jiaotong University. The investigators of this work were also benefited from grants from the Ministry of Education of
China, National Institutes of Health (grant numbers R01 AR050496, R21 AG027110, R01 AG026564, R21 AA015973, P50 AR055081) and National Science
Foundation of China, Huo Ying Dong Education Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dengh@umkc.edu

Introduction

The advance in high-throughput genotyping technologies has

promoted large-scale genetic association studies aiming to identify

genetic variants predisposing to complex diseases [1,2]. The

successful utility of genome-wide association studies (GWAS) has

identified a large quantity of SNPs predisposing to a variety of

complex diseases, e.g., type 2 diabetes, obesity, and osteoporosis

[3,4,5]. However, the throughput of most commercial genotyping

platforms remains relatively unsatisfactory compared to the total

available SNPs across the human genome. As an example, the

Affymetrix SNP 6.0 assay contains approximately 1,000K SNPs,

which account only for one third of the total number of over three

million SNPs identified by the HapMap project [6,7]. Disease-

causing variants may exist within those untyped SNPs which, when

typed, could be more informative than their flanking typed SNPs [8].

A potential solution for the problem of low genotyping coverage

is to impute untyped SNPs from their nearby genotyped SNPs

through their linkage disequilibrium (LD) pattern. It has been

shown that association analyses with imputed genotypes can boost

the signal over that obtained by analyses of typed genotypes only.

Imputed genotype-based association can also be more powerful

than tagging approaches which test only single SNPs or small

haplotypes of SNPs in a genotyping chip [9,10,11,12].

Several effective genotype imputation methods have been

proposed [9,17,18]. These methods can produce a probability

vector for the three possible genotypes. A critical issue with

imputed genotypes is how to integrate them effectively into

association analyses. One can use these posterior probabilities

directly or pick up the ‘‘best-guess’’ genotype to perform the

subsequent association analysis. Several specialized methods

have been proposed to model imputed genotypes into associa-

tion framework [9,13,19,20,21]. Nonetheless, little is known

about their relative performances, and investigators may wonder

which methods should be adopted in a particular application. A

variety of factors have influences on imputation accuracy [22],

but not necessarily on subsequent association tests. A compre-

hensive comparison among methods must take these influential

factors into account. Among previous studies, Marchini and

Howie [23] demonstrated the improved power of their method

IMPUTE/SNPTEST by comparing it with SNPMStat. How-

ever, their comparison was evaluated on a relatively small

number of selected data sets under relatively limited conditions.

Guan & Stephens [24] studied the effect of imputation accuracy

on association power, however their study was performed solely

on the software BIMBAM. Hao et al. [25] compared the

performance of MACH and Beagle, but not included other

popular methods.
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Additional comparisons were also conducted when new

methods were proposed [13,19]. Nonetheless, none of them was

conducted in a systematic and comprehensive manner. We thus

perceive a substantial need to evaluate and compare the

performances of most popular imputation-based association

methods in a variety of conditions, in order to provide guidance

for real applications.

In this study, using both simulated and real data sets, we

evaluated the effects of several influential factors on the

performances of several imputation-based association methods.

These factors include LD level, minor allele frequency (MAF) of

untyped causal SNP, and imputation accuracy rate (AR). We

selected seven popular methods for investigation, including

MACH2qtl/dat, SNPTEST, ProbABEL, Beagle, Plink, BIMBAM

and SNPMStat. We also compared their performance under

various conditions.

Results

Type-I error rates
Type-I error rates are listed in Table 1 and Table 2. When

testing association at the imputed potential causal SNP, all

methods had correct type-I error rates that were close to the target

level 5% under all conditions. When testing for the entire region,

all but SNPMStat remain to have reasonable error rates, whereas

SNPMStat had an inflated type-I error rate under low LD level.

However, when testing for the entire region under high LD level,

all methods were conservative. We thus estimated testing accuracy

and positive prediction value (PPV) for each method (please refer

to the method section for the definitions of accuracy and PPV) as

well when testing for the entire region, in order to make methods

comparable.

Power estimates
Table 3 and Table 4 list power estimate, accuracy and PPV

when testing for the entire region. For both quantitative and

qualitative traits, MACH2qtl/dat, ProbABEL and SNPTEST had

the best performance under most situations, followed by

SNPTEST-BG. Beagle had similar performance to SNPTEST-BG

under high LD level, but was inferior under medium LD level.

SNPMStat and Plink had the lowest power. As BIMBAM estimated

p-value through permutation with 1,000 replicates, its output

had a resolution 1.0e-03, which did not reach the significant

level (2.0e-04) with Bonferroni correction. We thus did not include

BIMBAM in the analysis for the entire region.

Figure 1 displays power estimate when testing at a single SNP.

For both quantitative and qualitative traits, power increased with

increasing LD level. For example, the power of SNPTEST when

analyzing quantitative trait was 9.2% at low LD level, then

increased to 54.7% at medium LD level, and reached 86.5% at

high LD level. Among methods, MACH2qtl/dat, ProbABEL and

SNPTEST performed similarly and in general produced the

highest power, followed by SNPTEST-BG, BIMBAM and

SNPMStat. Beagle had similar performance to SNPTEST-BG

under high LD level. But under medium LD level, it has similar

performance to Plink and was not as good as other methods. Plink

had a lower power than other methods under all LD levels.

Figure 2 displays the influence of MAF of untyped causal SNP

on power estimates when analyzing quantitative traits at a single

SNP. Under low LD level, only a small portion of imputed SNPs

could pass the quality control. Consequently, the number of SNPs

passing the QC under each MAF interval was close to zero.

Therefore, we report only the results under medium and high LD

levels. Under medium LD level, power increased with increasing

MAF interval. For example, when the MAF interval increased

from 0.05 to 0.45, the power of SNPTEST increased from 46.6%

to 59.8%. Among methods, MACH2qtl, ProbABEL and

SNPTEST again had the highest power, followed by

SNPTEST-BG and BIMBAM. Under high LD level, all methods

but BIMBAM had similar power which maintained at high rates

ranging from 81.8% to 88.4%, while that of BIMBAM ranged

from 67.3% to 79.2%.

The influence of MAF when analyzing qualitative trait at a

single SNP is shown in Figure 3. The trends in power estimates

were similar to that for quantitative trait. In this case, power of all

methods under high LD level clearly increased with increasing

MAF interval. Among methods, MACH2dat, ProbABEL and

SNPTEST again had the highest power in most situations,

followed by SNPTEST-BG. Beagle had similar performance to

SNPTEST-BG under high LD level, but was inferior under

medium LD level. SNPMStat and BIMBAM had approximately

equal powers, which were higher than that of Beagle under

medium LD level, but lower under high LD level. Plink was not as

good as other methods under all situations.

We then evaluate the influence of imputation accuracy rate

(AR) on power estimate. AR was defined as the number of

Table 1. Type-I error rates of various imputation-based association methods for the causal SNP under the significant level of 5%.

Quantitative Trait Qualitative Trait

Low-LD Medium-LD High-LD Low-LD Medium-LD High-LD

Genotyped-1 SNP/6kb 5.0 5.2 5.1 4.9 5.1 4.3

Ideal 5.1 5.0 5.0 5.0 5.1 5.1

SNPTEST 5.0 5.0 4.8 5.0 5.0 4.8

SNPTEST-BG 5.0 5.0 5.1 5.0 5.1 5.1

MACH2qtl/dat 5.0 5.0 5.0 4.9 4.9 5.0

BIMBAM 5.0 4.8 5.0 5.0 4.8 5.0

Beagle - - - 4.9 5.1 4.9

Plink - - - 4.4 4.3 4.4

ProbABEL 5.1 5.1 5.0 5.1 5.2 5.1

SNPMStat - - - 7.0 6.0 4.7

doi:10.1371/journal.pone.0010827.t001

Imputation-Based Association
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correctly imputed genotypes divided by the total number of

untyped genotypes. As an illustration, we selected SNPTEST to

analyze because it performed well in terms of both AR and power.

Figure 4a displays the power estimate for quantitative trait. It was

clear that under medium LD level, power increased from 39.6% to

53.2% with AR decreasing from 88.6% to 69.3%. Under high LD

level, both power and AR maintained at high levels. The trends for

qualitative trait were similar, as shown in Figure 4b.

Real data
Figure 5 displays the results when analyzing the real data set

described in the method section. All methods boosted the signal at

imputed markers. The minimum p-values for MACH2dat,

SNPTEST-BG, SNPTEST, ProbABEL and SNPMStat were

close to 1.0e-05 and those for Beagle, BIMBAM (based on

100,000 permutations) and Plink were close to 1.0e-04.

Running Time
Running time was measured on a Linux cluster with 4

computation nodes, each having two Intel Xeon Quad-core

processors and 7 GB RAM. Time for performing association tests

in a 250kb region with 1,000 subjects was recorded and converted

to that with a single core processor. For ProbABEL, running time

was measured as the sum of imputation time by MACH and

association test computation time. All the methods completed

analysis within 15 minutes. Running time for MACH2qtl/dat,

SNPTEST-BG, SNPTEST, ProbABEL, Beagle, Plink, BIMBAM

and SNPMStat was 13.2, 13.1, 13.2, 13.2, 2.1, 1.0, 4.0 and

4.2 minutes, respectively.

Discussion

In this study, using both simulated and real data sets, we

investigated and compared the performances of seven imputation-

based association methods: MACH2qtl/dat, SNPTEST,

ProbABEL, Beagle, Plink, BIMBAM and SNPMStat under a

variety of conditions. Our conclusions include: 1). all the investi-

gated methods can boost signals with imputed genotypes, and the

power of association improves under medium and high levels of

LD, with the magnitude of power increase depending on the

strength of LD; 2) the power increases with increasing MAF of

untyped causal SNPs under medium LD level; 3). high imputation

AR cannot guarantee a power improvement in regions with low

LD level; 4). among methods, MACH2qtl/dat, SNPTEST and

ProbABEL have similar performance and have higher power than

other methods for both quantitative and qualitative traits.

On testing association in regions with low or medium LD level,

SNPMStat has an inflated type-I error rate. This phenomenon is

Table 2. Type-I error rates of various imputation-based association methods for the test region under the significant level of 5%.

Quantitative Trait Qualitative Trait

Low-LD Medium-LD High-LD Low-LD Medium-LD High-LD

Genotyped-1 SNP/6kb 5.0 5.1 4.7 5.5 5.3 3.8

Ideal 5.1 5.1 4.6 4.9 5.1 2.2

SNPTEST 5.7 5.6 3.6 4.8 3.9 2.6

SNPTEST-BG 4.8 5.1 3.8 4.2 5.1 2.8

MACH2qtl/2dat 4.4 4.3 2.9 4.9 2.7 1.8

Beagle - - - 4.5 3.5 1.8

Plink - - - 4.4 5.2 2.0

ProbABEL 3.8 5.1 3.2 5.0 5.1 2.2

SNPMStat - - - 8.4 7.3 1.6

doi:10.1371/journal.pone.0010827.t002

Table 3. Power estimates of various imputation-based association methods for testing the whole region under the significant
level of 5%.

Quantitative Trait Qualitative Trait

Low-LD Medium-LD High-LD Low-LD Medium-LD High-LD

Power Genotyped-1 SNP/6kb 5.3 10.7 29.6 5.1 8.2 23.7

Ideal 32.8 34.8 39.0 22.3 24.5 28.1

SNPTEST-BG 4.8 10.6 35.6 4.9 9.1 27.2

SNPTEST 5.5 14.0 38.1 4.9 10.3 27.3

MACH2qtl/2dat 5.1 12.3 35.5 4.8 10.1 27.2

Beagle - - - 5.0 6.1 25.5

Plink - - - 4.9 7.6 15.8

ProbABEL 5.2 12.8 36.3 5.2 10.5 27.9

SNPMStat - - - 7.2 9.2 20.6

doi:10.1371/journal.pone.0010827.t003

Imputation-Based Association
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Table 4. Accuracy and positive prediction value (PPV) estimates of various imputation-based association methods for testing the
whole region under the significant level of 5%.

Quantitative Trait Qualitative Trait

Low-LD Medium-LD High-LD Low-LD Medium-LD High-LD

Accuracy Genotyped-1 SNP/6kb 50.1 52.8 62.4 49.8 51.5 60.0

Ideal 63.8 64.9 67.3 58.7 59.7 62.9

SNPTEST-BG 49.6 52.8 65.5 50.1 52.3 62.2

SNPTEST 49.9 54.2 67.2 50.1 53.2 62.4

MACH2qtl/2dat 50.4 54.0 66.3 50.0 53.7 62.7

Beagle - - - 50.3 51.3 61.9

Plink - - - 50.3 51.2 56.9

ProbABEL 50.7 53.9 66.6 50.1 52.7 62.9

SNPMStat - - - 50.5 51.2 59.0

PPV Genotyped-1 SNP/6kb 51.3 67.8 86.2 47.9 60.8 86.2

Ideal 86.6 87.3 90.1 82.0 82.8 92.7

SNPTEST-BG 45.8 67.5 88.4 51.1 67.3 90.7

SNPTEST 49.1 71.4 91.3 50.7 72.5 91.3

MACH2qtl/2dat 53.7 74.1 92.4 49.5 78.9 93.8

Beagle - - - 52.6 63.5 93.4

Plink - - - 52.7 59.4 88.8

ProbABEL 57.8 71.5 91.9 51.0 67.3 92.7

SNPMStat - - - 51.5 56.1 84.6

doi:10.1371/journal.pone.0010827.t004

Figure 1. The effect of LD level on power estimate. (a) Quantitative traits; (b) Qualitative traits.
doi:10.1371/journal.pone.0010827.g001
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likely to be caused by the fact that SNPMStat uses only a small

number of SNPs to impute, which may lead to a less accurate

imputation in low or medium LD level and, consequently, to a

higher genotyping error that could inflate type-I error of

association test [26]. We also observed that all methods had

type-I error rates that were lower than the target level when testing

association for the entire region under high LD level, which is

probably caused by the overly conservative Bonferroni correction

when applied to highly correlated tests.

Statistical power of association test is influenced by a variety of

attributes of data, e.g., locus effect, MAF, LD level, and sample

size [27]. Obviously, testing markers has inferior power than

testing the causal SNP itself [8,9]. However, causal SNPs are

usually not genotyped. Alternatively, genotype imputation takes

chance to observe genotypes on more representative markers or

causal SNPs themselves, and thus sheds light on power

improvement over tests on genotyped SNPs only. Nonetheless,

the pattern in power improvement is context dependent and

complicated. In our simulation, power increased with increasing

LD level and/or MAF of untyped causal SNP in regions with a

medium LD level. In order to interpret this pattern, we calculated

the MAF of imputed and causal SNPs, and the LD measure D9

between them. Under low, medium and high LD levels, the

average values of D9 were 0.21, 0.66 and 0.95, respectively, and

the average MAF discrepancies were 0.07, 0.03 and 0.006,

respectively. Low LD level virtually eliminates any detectable

signal [27] and results in a power that was close to type-I error

rate. Medium LD level, on the other hand, could retain some

association signal through imperfect LD, resulting in a power that

was lower than that on causal SNPs. Additionally, the power is

influenced by MAF in that the discrepancy of allele frequency

between imputed and causal SNPs becomes narrower as MAF

increases, resulting in an increase of power [27]. High LD level

assures nearly perfect match between imputed and causal SNPs,

and thus retains substantial portion of the true effect size, resulting

in power reaching nearly to that by testing on causal SNPs under

all MAF intervals.

Our results show that in regions with medium or high LD level,

the imputation-based test can improve the association power even

under moderate imputation AR (69.2% under medium LD level).

This conclusion agrees with that of Guan and Stephens, who

indicated that imputation-based methods could be robust to

imputation AR and could improve power to detect associations

even when average imputation accuracy was not perfect.

However, our results also show that high imputation accuracy

cannot guarantee an improvement of power in regions with low

Figure 2. The effect of MAF on power estimate for quantitative trait. (a) Medium LD level; (b) High LD level.
doi:10.1371/journal.pone.0010827.g002
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LD level. Our previous study has shown that imputation accuracy

is primarily determined by the LD between imputed and typed

SNPs, and their MAF. Under low LD level, though the LD level

across the entire region is low, SNPs with small MAF may exhibit

locally high LD level, resulting in high imputation accuracy.

However, association tests are usually low-powered in regions with

low LD level, as demonstrated by our simulations. This

discordance between our study and that of Guan and Stephens

is partially due to the fact that the real data sets they used may

exhibit on average higher LD levels than the simulated data sets in

our study.

Different methods use imputed genotypes differently for

association tests. SNPTEST and SNPTEST-BG use the imputed

genotypes from the software IMPUTE as input. SNPTESTBG

utilizes the ‘‘best-guess’’ genotype, while SNPTEST considers the

uncertainty and takes the posterior probability into analyses. The

superior of SNPTEST to SNPTEST-BG demonstrates that

incorporating the uncertainty of imputation can improve associ-

ation power. BIMBAM tests association on the mean-genotype

from the software fastPHASE. fastPHASE was not as good as

IMPUTE in terms of AR [22]. When the LD level is fixed, low AR

weakens the correlation between imputed and original SNPs and

enlarges the discrepancy between allele frequencies. For example,

under medium LD level, the average D9 between imputed and

original SNPs was 0.57 for fastPHASE (0.66 for IMPUTE) and the

average allele frequency discrepancy for fastPHASE was 0.06 (0.03

for IMPUTE). Therefore, the power of BIMBAM was not as good

as SNPTEST-BG. Beagle performed similarly to IMPUTE under

high LD level, but was inferior under medium LD level in terms of

AR. Therefore, the power of Beagle was similar to that of

SNPTEST-BG under high LD level, but inferior under medium

LD level.

Among methods, all but SNPMStat implement a two-stage

approach: 1) imputing untyped genotypes; 2). performing

association tests on imputed genotypes. In these methods, all

individuals are assumed to be randomly sampled from a

‘‘population’’. However, affected subjects are more likely to be

more closely related to each other than this assumption would

imply [13]. To circumvent this assumption, SNPMStat imple-

ments a maximum likelihood (ML) approach to integrate genotype

imputation and association simultaneously. This approach, by

taking disease status into account when imputing, could theoret-

ically lead to more accurate imputation and powerful association

test. However, the computation of fitting a joint model of genotype

Figure 3. The effect of MAF on power estimate for qualitative trait. (a) Medium LD level; (b) High LD level.
doi:10.1371/journal.pone.0010827.g003
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and phenotype is challenging. As a compromise, SNPMStat uses a

small number of SNPs to impute untyped SNPs, which may omit

additional correlations among SNPs. The factor that takes a

dominant effect on the final performance is context dependent.

Our results show that the method SNPMStat generally was not as

good as ProbABEL, SNPTEST-BG, SNPTEST and BIMBAM,

agreeing with the conclusion stated by Marchini and Howie [23],

who demonstrated that more information was gained by use of all

the available genotypes for imputation and of advanced popula-

tion-genetics models than by modeling the difference between

disease statuses. Plink uses multiple-marker tagging to impute

untyped SNP but does not model specific population-genetic

background. Compared to Plink, SNPMStat may offer improved

power. Beagle uses empirical estimates as parameters. It may fit

the model well under high LD level, but may mis-specify the

model to some extent, particular when the sequence exhibits low

LD level. Beagle was inferior to SNPMStat under medium LD

level, which may be partially explained by that modeling the

difference between disease statuses may gain more information

than by use of biased population genetic model.

Results from real data sets further demonstrated that association

with imputed genotypes could boost signals and improve power.

The gene in which the signal was boosted is myelin basic protein

(MBP) gene. This gene encodes a protein that is a major

constituent of the myelin sheath of oligodendrocytes and schwann

cells in the nervous system. MBP-related transcripts are also

present in the immune system, which has long been recognized to

influence drug addiction behavior [28,29]. Molecular and cellular

mechanisms of the nervous system react to addictive drugs to

initiate and maintain patterns of drug-seeking behavior [30].

Given that MBP gene plays such an important role in nervous and

immune system, it seems reasonable to speculate that MBP gene

may influence smoking addiction.

In our simulation, the causal site was assumed to be known in

reference set, which may not be the case in real applications.

Nonetheless, our further analyses showed that the conclusions still

hold even when the causal site was removed from reference

sample. Additionally, the analysis carried out in current study

focused on a SNP marker density of one SNP per 6kb. As denser

genotyping chips have been developed, such as Affymetrix SNP

6.0 further studies considering more parameter settings appear to

be warranted to better evaluate this issue.

Materials and Methods

Genotype simulation
The simulation of genotype data was similar to that adopted in

our previous study [22]. Briefly, haplotypes covering a 250kb

Figure 4. The effect of imputation accuracy rate on power estimate. Each label along x-axis represents a specific combination of LD level and
MAF. Within each label, the first letter ‘‘M’’ and ‘‘H’’ refer to, respectively, medium and high LD level. (a) Quantitative trait; (b) Qualitative trait.
doi:10.1371/journal.pone.0010827.g004
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chromosomal region were simulated with uniformly distributed

recombination rates across the region. The software Cosi [31] was

used which implements a coalescent model to simulate haplotype.

From the pool of simulated haplotypes, a diploid individual was

generated by combining two randomly selected haplotypes. SNPs

with MAF less than 0.05 were excluded from further analyses.

Two-hundred and fifty approximately equally spaced SNPs,

corresponding to a density of one SNP per kb were selected as

the base SNP set on which all subsequent analyses were based.

Two samples were generated, one reference sample and one test

sample. In the reference sample, a total of 90 individuals were

simulated, and genotypes at all the 250 SNPs were known. In the

test sample, a total of 1,000 individuals were simulated, and

genotypes at only a proportion of the 250 SNPs were known. We

determined the marker density to be approximately one SNP per

6 kb (corresponding to 41 SNPs), and they were approximately

equally spaced. The remaining SNPs were referred to as untyped

SNPs and their genotypes were subject to be imputed by

imputation methods.

A variety of parameter values were used to cover various

biological conditions. Three recombination rates (between neigh-

boring sites per generation): 1.0e-7, 1.0e-8 and 1.0e-9 were used to

represent low, medium and high LD levels, respectively, consistent

with a previous study [32]. In addition, effects of MAF

were studied by binning untyped SNPs into one of five equally

spaced intervals between 0.0 and 0.5 (0.05, 0.15, 0.25, 0.35 and

0.45).

Phenotype simulation
We selected one SNP in reference sample but not in test

sample as the causal site. Both quantitative and qualitative

traits were simulated. For quantitative trait, the individual

phenotype value was simulated according to the following

equation

Figure 5. Application to real data set. (a) SNPTEST; (b) SNPTEST-BG; (c) MACH2dat; (d) SNPMStat; (e) ProbABEL; (f) Beagle; (g) Plink; (h) BIMBAM.
doi:10.1371/journal.pone.0010827.g005

Imputation-Based Association
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yi~mzxibzei,

where xi is the genotype value for the ith individual in an

additive manner (xi = 0, 1 or 2 for genotype 11, 12 or 22). b is

the regression coefficient rendering the effect of causal SNP,

and ei is a normally distributed residual effect. We assumed

that the causal SNP explained 1.0% of the total phenotypic

variation.

For qualitative traits, the individual phenotype was simulated by

the following logistic regression equation

Logit Pr DDgenotypeð Þ½ �~log ORð Þ � xizc,

where OR is the odds ratio for the heterozygous genotype at the

causal SNP, c is a constant rendering the specific case: control

ratio. We set OR = 2 in this study.

Real datasets
As an application, we analyzed a real genome-wide association

study for smoking [33]. Basically, the data contain 840 unrelated

Caucasian subjects (378 smokers and 462 non-smokers) each being

genotyped by Affymetrix 500K array (Affymetrix, Santa Clara,

CA). Detailed description of the data can be found in the reference

[33]. We performed a genome-wide association scan with

imputation. By monitoring the results, we then focused our

attention on a 1.5 Mb genomic region at chromosome 18, named

18q23. We aimed to test association between the trait smoking and

the genotyped or imputed genotypes in this region. Reference

sample contained 60 unrelated CEU subjects from the HapMap

Project (HapMap rel #21).

Imputation-based Association Methods
Seven popular imputation-based association methods were

investigated in this study: MACH2qtl/dat, SNPTEST, ProbABEL,

Beagle, Plink, BIMBAM and SNPMStat. To control imputation

quality, the respective quality-control (QC) cut-off recommended

by each method was used. In cases where no cut-off was available,

an empirical setting from extensive real applications would be

adopted. The methods were briefly described below.

MACH2qtl/dat. MACH2qtl uses the dosages/posterior

probabilities inferred from MACH as predictors in a linear

regression framework to test the association with a quantitative

trait. The command for association was: mach2qtl –d sample.dat –p

sample.txt –i sample.mlinfo –dosefile sample.mldose –probfile sample.mlprob.

out.txt. Instead, MACH2dat uses dosage in a logistic regression

model to test association for a qualitative trait [21,34]. The

command was: mach2dat –d sample.dat –p sample.txt –i sample.mlinfo

–dosefile sample.mldose.out.txt. The QC measure produced by

MACH2qtl/dat is termed as rsq, which measures the squared

correlation between imputed and true genotypes. We excluded

SNPs with rsq less than 0.3 according to the authors’

recommendation.

ProbABEL. Like MACH2qtl/dat, ProbABEL uses the

posterior probabilities inferred from MACH as input to test the

association [20]. It takes the uncertainty into consideration by

including posterior dosage/probability to the design matrix of

regression analysis (linear analysis for quantitative trait and logistic

regression for qualitative trait). The command was: palinear/palogist

–pheno phenol.txt –info sample.mlinfo –dose sample.mldose. For QC

purpose, we again excluded SNPs with rsq less than 0.3.

SNPTEST. SNPTEST v 1.1.5 takes the results from the

software IMPUTE as input, and uses ‘‘best-guess’’ genotype or

posterior probabilities to test association. We included both tests

into analysis to compare their relative performance. The

command for qualitative trait was: snptest –cases cases.gen

cases.sample –controls controls.gen controls.sample –o out.txt –frequentist 1

–proper and that for quantitative trait was: snptest -controls controls.ped

pheno.txt -o out.txt -qt -frequentist 1 –proper. For analysis with ‘‘best-

guess’’ genotype, we used the option‘‘–call_thresh 0.9’’ to specify the

best-guess genotype as the imputed genotype with posterior

probability higher than 0.9. The resulting test was referred to as

SNPTEST-BG. For analysis with posterior probabilities, it uses the

distribution of the missing data conditional upon both the

observed data and the values of the model parameters to correct

likelihood-based procedure. As the QC measure, SNPTEST

produces a ‘‘proper-info’’ to measure the relative statistical

information about the parameters of interest. For QC purpose,

we set a cut-off 0.4 to the measure, as used in extensive

applications [35,36].

Beagle. Beagle version 3.0 uses a hidden Markov model

(HMM) to infer haplotype phase with both typed and untyped

SNPs, and perform association test with the inferred haplotypes

[18]. The command for inferring haplotypes was: java –jar beagle.jar

unphased = geno unphased = reference.txt markers = pos.txt missing = x

nsample = s log = output, and that for testing association was: java –

Xmx800m –jar beagle.jar data = output.bgl trait = pheno test = a. Its

current implementation analyzes qualitative traits only. As for

QC measure, Beagle produces a measure r2 to estimate the

squared correlation between the allele dosage with highest

posterior probability and the true allele dosage for the marker.

As the definition of r2 is similar to that of rsq in MACH, we again

set the cut-off to 0.3.

Plink. Plink v 1.0.7 selects a set of proxy SNPs (using the

reference sample information) and then phases these SNPs in both

reference and test samples jointly. The association at a single

imputed SNP is then examined by grouping haplotypes by

flanking SNPs. The command was: plink –file ref –merge test.ped

test.map –pheno pheno.txt –mpheno i –proxy-assoc all –out out.txt. The

current implementation analyzes qualitative traits only. Plink

produces a measure ‘‘info’’ which refer to how well plink manages,

if at all, to impute the SNP. We set a cut-off 0.8 to this measure in

accordance with the software’s recommendation.

BIMBAM. BIMBAM v 0.95 is a Bayesian imputation-based

association test [19]. It takes the imputation results from the

software fastPHASE as input, and then uses Bayesian regression to

test the association between imputed genotypes and phenotypes.

The command to perform association was: bimbam_lin test.geno –p

test.pheno –g ref.geno –p 0 –pos pos.txt –o out.txt –i 1 –pval 1000.

Considering the heavy computation burden it would take, we

performed 1,000 replicates of permutation to estimate an

empiricalp-value. We used the observed/expected dosage

variance as its QC measure, which can be calculated by the

following equation

var dosageð Þ= 2 � allelefreq � allelefreqð Þð Þ:

We set the QC cut-off as 0.3 according to a previous study [36].

SNPMStat. SNPMStat v 3.0 simultaneously fits a model of

association and imputes genotypes by integrating inference of

missing genotypes and estimation of odds ratio into a single

likelihood framework. It derives the observed-data likelihood that

properly reflects the biased nature of the case-control sampling

and that incorporates appropriate external data. The

maximization of the observed data likelihood leads to valid and

efficient analyses of genetic effects. The command we used was:

SNPMStat –ur –no_remove –out out.txt. SNPMStat produces a QC

measure M_D (multilocus disequilibrium) to measure the

Imputation-Based Association
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correlation between the imputed SNP and a set of typed SNPs

with the best prediction. We set the cut-off as 0.5 [37].

Tests of association
We evaluated the performances of various association tests with

three strategies: 1) test only the 41 genotyped SNPs; 2) test both

the genotyped and imputed SNPs; 3) test the ideal genotypes (all

the 250 genotyped SNPs).

For each parameter setting, 10,000 replicates were simulated to

estimate power and type-I error rates. The powers at the single

causal site and over the entire region were estimated. For the latter

one, we took the minimal single site p-value over the region and

adjusted it with Bonferroni correction to form the final p-value.

Power was defined as the proportions of significant replicates at

the nominal level 0.05. Under each MAF interval, we randomly

selected 10 SNPs and took each of them in turn as causal SNP to

simulate phenotype, and the averaged power was reported. We

note that the power are comparable among methods only when

their type-I error rates are comparable as well. Thus, for those

conservative or liberal methods, we also calculated accuracy [38]

and positive prediction value (PPV) [39], respectively. Accuracy of

a test is defined as

Accuracy~ TPzTNð Þ= TPzTNzFPzFNð Þ,

where TP (true positive) and FN (false negative) were the positive

and negative results obtained when the causal site contributed to

the phenotype. Similarly, FP (false positive) and TN (true negative)

were the positive and negative results obtained when the causal site

didn’t contribute to the phenotype. Analogously, PPV is defined as

PPV~TP= TPzFPð Þ:
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