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Abstract 

Background: Alzheimer’s disease has become one of the most common neurodegenerative diseases worldwide, 
which seriously affects the health of the elderly. Early detection and intervention are the most effective prevention 
methods currently. Compared with traditional detection methods such as traditional scale tests, electroencephalo-
grams, and magnetic resonance imaging, speech analysis is more convenient for automatic large-scale Alzheimer’s 
disease detection and has attracted extensive attention from researchers. In particular, deep learning-based speech 
analysis and language processing techniques for Alzheimer’s disease detection have been studied and achieved 
impressive results.

Methods: To integrate the latest research progresses, hundreds of relevant papers from ACM, DBLP, IEEE, PubMed, 
Scopus, Web of Science electronic databases, and other sources were retrieved. We used these keywords for paper 
search: (Alzheimer OR dementia OR cognitive impairment) AND (speech OR voice OR audio) AND (deep learning OR 
neural network).

Conclusions: Fifty-two papers were finally retained after screening. We reviewed and presented the speech data-
bases, deep learning methods, and model performances of these studies. In the end, we pointed out the mainstreams 
and limitations in the current studies and provided a direction for future research.

Keywords: Alzheimer’s disease detection, Speech analysis, Deep learning

Background
Dementia is the most common neurodegenerative dis-
ease among the elderly, of which Alzheimer’s disease 
(AD) is the most common type. According to data from 
the World Health Organization, the current incidence 
of AD has shown a significant upward trend in recent 
years, and the number of patients will reach 152 million 
in 2050 [1], which will affect the health of the people seri-
ously and cause an enormous economic burden on home 
care and social security. However, effective treatment is 

not yet available. Studies have shown that the early diag-
nosis and intervention based on early assessment and 
screening of cognitive impairment can help maintain 
healthy brain activity, retard irreversible brain decline, 
delay disease progression, and prolong patient life [2]. In 
this case, early detection of mild cognitive impairment 
(MCI), which is the early stage of AD, is very important 
for delaying cognitive state decline.

Currently, the mainstream clinical methods for AD 
detection include scale testing, brain magnetic reso-
nance imaging measurement (MRI), cerebrospinal fluid 
analysis, etc. These methods are either time-consuming 
and labor-intensive, or expensive and unfriendly to sub-
jects’ experience. In general, traditional AD detection 
methods such as magnetic resonance imaging, positron 
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emission tomography (PET) imaging, and cerebrospinal 
fluid (CSF) assays [3], are not appropriate for large-scale 
nationwide early AD screening applications. Therefore, 
some studies focus on developing a cheaper and more 
convenient method to detect AD.

Relevant studies have shown that language disorders 
usually appear in the early process of AD, and it is possi-
ble to detect AD by capturing the acoustic and linguistic 
features of subjects through audio and automatic speech 
recognition technology [4–6]. Some studies have given 
the results of studies on distinguishing characteristics 
between AD and healthy control (HC) group. Compared 
with cognitive normal people, AD patients usually speak 
more slowly with more pauses between words [7] and 
suffer from word finding and word retrieval difficulties 
[6, 8, 9].

Dozens of speech-based methods have been explored 
for the research on AD detection. Studies have shown 
that the acoustic measures have a high correlation with 
pathological language features and voice changes in auto-
matic language processing were proven to be useful for 
AD detection [10, 11]. In addition, previous studies of 
speech pathology have revealed that people with demen-
tia have linguistic manifestations including pauses, filler 
words, restarts, repetitions, and incomplete statements. 
Fraser, K.C. et  al. extracted linguistic features such as 
semantics, syntax, and information and achieved 91% 
accuracy [4] in the AD detection task by using the logis-
tic regression classifier. Liu, Z. et al. extracted and fused 
duration features, acoustic features, linguistic features, 
the AD detection, and linguistic features, and finally 
obtained 81.9% accuracy of AD detection based on the 
logistic regression classification method [12]. In addition 
to these, Satt, A. et al. utilized recordings while subjects 
completed cognitive tasks to extract relevant acoustic 
features, and achieved an accuracy of 87% in the classifi-
cation between AD and control [5].

With the wide application of deep learning, we can find 
that neural networks have made significant progress in 
the field of speech modeling. Hinton, G. et  al. applied 
deep neural networks (DNNs) to acoustic modeling and 
obtained better recognition results than Gaussian Mixed 
Model (GMM), thus opening up a new field in speech rec-
ognition [13]. Therefore, researchers began to try to apply 
various deep learning methods to the field of speech-based 
AD detection. Rosas, D.S. et al. extracted linguistic features 
and used a 3-layer neural network reaching a binary clas-
sification accuracy of 78.3% [14]. However, there is fewer 
speech data for Alzheimer’s patients, and the improvement 
in classification results is relatively small by using neu-
ral networks. Recent studies have shown that pre-trained 
models such as BERT [15] achieve promising results on a 
variety of benchmark tasks, and can capture a wide range 

of linguistic facts including lexical knowledge, phonology, 
syntax, semantics, and pragmatics without a lot of data. 
Apart from this, the pre-trained automatic speech recog-
nition (ASR) model can not only get the transcribed text 
of speech but also extract acoustic embeddings which can 
be used to represent the conversion in speech for better 
automatic analysis. Toth, L. et  al. obtained phonetic seg-
mentation and label of the input signal by applying an ASR 
model based on a special convolutional deep neural net-
work, thereby obtaining acoustic features such as speech 
rate, pause, and hesitation rate [16]. Judging by the cur-
rent research trends, the deep learning method is the most 
mainstream method for AD detection now.

Simultaneously, some review papers on AD detection 
have also been published, such as a systematic review about 
speech-based detection and classification of AD written 
by Inês Vigo et al. [17]. However, most of the classification 
methods are based on traditional machine learning meth-
ods, which have certain limitations due to the excellent 
performance achieved by deep learning methods in AD 
detection.

Therefore, this paper focuses on deep learning-based 
speech analysis for AD detection. This research paper 
is organized as follows: the objects of this review in the 
“Objectives” section, the search and selection process is 
introduced in the “Materials and methods” section, the 
results in the “Results” section, the discussion of these 
selected papers in the “Conclusions” section, and the limi-
tation of our work and our future goals in the “Discussions” 
section.

Objectives
To make a comprehensive discussion on the current appli-
cation of deep learning in speech-based AD detection, this 
review conducted a systematic analysis of selected papers 
in response to the following 5 questions:

(1) What were the characteristics of the databases 
involved in reported studies?

(2) What deep learning model architectures were 
included in reported studies?

(3) How were these deep learning model architectures 
used in reported studies?

(4) What classification performance has been 
achieved?

(5) What were the mainstreams and limitations of 
reported studies?

Materials and methods
Search process
Our searches were conducted on the following electronic 
databases: ACM, DBLP, IEEE, PubMed, Scopus, and Web 
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of Science. Unlike most previous review papers on “Alz-
heimer’s disease detection” [18], we paid more attention 
to these papers which used deep learning methods to 
analyze speech data of elderly people in different health 
states (AD, MCI, and HC). Therefore, we used the follow-
ing keywords for paper search: (Alzheimer OR dementia 
OR cognitive impairment) AND (speech OR voice OR 
audio) AND (deep learning OR neural network). Figure 1 
listed all the search strategies. The last search was con-
ducted on 19 January 2022.

Selection process
The exclusion criteria were as follows: (1) studies that did 
not use deep learning methods; (2) studies do not focus 
on speech or text data; (3) studies without a group of 
MCI and AD; (4) papers that were not written in English; 
(5) studies cannot find the full text. Initial study selec-
tion was performed by two reviewers independently. To 
minimize the bias in selecting studies, papers that were 
not sure to include were resolved in a discussion with the 
third reviewer.

Data extraction and synthesis
The analyzed data in our studies include database names, 
task types, language types, label distributions, and 
whether the databases include an audio or corresponding 
transcript or not.

Results
Study selection
The detail of our search process is displayed in Fig.  2 
through a flow diagram. other source papers retrieved 
from the ADReSS website [19] which were not found in 
the other six sources. After the search process, a total of 
710 papers were retrieved; 293 duplicates were removed 
by Endnote and manual screening. After screening by our 
exclusion rules, 52 studies were finally included.

Speech databases
In the process of building a deep learning model, a high-
quality database can improve the quality of model train-
ing and the accuracy of prediction. At present, several 
speech databases for cognitive impairment of the elderly 
have been established around the world, providing great 
support for researchers to explore more efficient cogni-
tive impairment assessments.

According to our research, the linguistic tasks involved 
in the studies on AD detection based on deep learning 
methods can be divided into three categories: seman-
tic verbal fluency (SVF), spontaneous speech (SS), and 
reading. Therefore, the related speech databases will also 
be introduced from these three aspects in this review 
(Table 1).

Semantic verbal fluency tasks
The semantic verbal fluency (SVF) test has high sensitiv-
ity and specificity for the diagnosis of AD, so it is widely 

Fig. 1 Search strategies in ACM, DBLP, IEEE, PubMed, Scopus, and Web of Science
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used to assess language skills, semantic memory, and 
executive functions of AD patients. During the SVF task, 
patients were asked to list all names they can remember 
from a category within one minute, such as animals, veg-
etables, and locations [20].

Animal naming
The subjects were asked to say the name of the animal 
they can think of as quickly as possible within 60 s and 
were reminded if they stop. At the end of the 60 s, the 
total number of animals (NOT including repetitions or 
non-animal words) were counted as their scores [22].

Lopez-De-Ipina, K. et al. constructed a well-distributed 
animal naming database called PGA-OREKA, which 
presents a novel proposal based on automatic analy-
sis of speech and disfluencies aimed at supporting MCI 
diagnosis [21]. The PGA-OREKA database contains 62 
healthy people and 38 MCI patients, and it is a subset 
of the cohort of the Gipuzkoa-Alzheimer Project (PGA) 
of the CITA-Alzheimer Foundation which includes 187 
healthy people and 38 MCI patients.

Vegetable and location naming
Similar to animal naming, in vegetable and loca-
tion naming tests, subjects were asked to say as many 
words related to the designated topic as possible within 
one minute. Chien, Y.W. et  al. from National Taiwan 

University constructed a fluency test database based on 
the Mandarin_Lu corpus [23]. Mandarin_Lu corpus from 
DementiaBank contains interview recordings of 52 AD 
patients [24], Chien, Y.W. et al. selected 30 patients and 
segmented the first-minute response of the audio data, 
and then recruited 30 additional healthy subjects to com-
plete vegetable and location naming tasks.

Spontaneous speech tasks
Spontaneous speech (SS) means speech without respond-
ing to a question. Temporal parameters of spontaneous 
speech have been proven to be able to provide sensitive 
measures of a subject’s speech and language skills [25]. 
Several different types of spontaneous language tasks 
are covered in this review paper: conversation/inter-
view speech, event description, recall story, and picture 
description.

Conversation/interview speech
Through natural language processing and analysis of the 
subject’s speech obtained from free and simple conver-
sational speech, some vital biological features that reflect 
early signs of AD can be extracted for early screening.

Lopez-De-Ipina, K. et  al. built up a multicultural and 
multilingual database called AZTIAHO [26], which con-
tains 20 h of video recordings of 50 healthy control and 20 
AD patients. The recordings consisted of conversational 

Fig. 2 Flow diagram of the search and selection process in our study
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speech where subjects tell pleasant stories or feelings and 
interact with each other.

Day/life/dream description
During these tests, subjects were asked to spontane-
ously describe events such as tell about the day yesterday 
in detail. Gosztolya, G. et  al. established the Hungarian 
MCI-mAD Database [27], which recorded 225 voices of 
75 subjects (25 AD, 25 MCI, and 25 HC).

Recall story
Subjects were given orally presented stories, reading 
materials, or films to learn the specific stories. Then they 
were asked to recall and retell the story spontaneously 
twice, immediately and in a few minutes, to the examin-
ers without reference to those materials.

The Wallet Story database was collected based on the 
immediate and late retelling of a memorized story from 
(Bayles and Tomoeda, 1993), which is the evaluation of 
the episodic memory, one of a standardized test battery 
named ABCD (Arizona Battery for Communication Dis-
orders) for the comprehensive assessment and screen-
ing of dementia. The Wallet Story database included 23 
elders with MCI and 12 healthy aging adults, which had 
70 narratives in total.

Picture description (PD)
Subjects were asked to look at a picture or a series of pic-
tures that make up a story and describe orally the con-
tent in pictures within a limited time. Pictures include 
the cookie theft (a girl and a boy stealing cookies and a 
woman washing dishes in the kitchen), the dog story (a 
boy who hides a dog that he found on the street), the Cin-
derella story, and so on.

Dementiabank [28] is a multimedia interaction for the 
study of communication in dementia. Pitt corpus [29], 
ADReSS database [19], and ADReSSo database [30] are 
subsets of this database. Pitt corpus mainly included 
recordings of spoken picture descriptions extracted from 
participants through the cookie theft picture description 
from the Boston Diagnostic Aphasia Exam [31], which 
contained 87 speech recordings in AD patients and 79 
speech recordings in healthy controls in the training set, 
and 71 speech recordings without annotations in the 
testing set. ADReSS database contained speech samples 
(WAV format) and transcripts (CHA format) with cor-
responding MMSE (Mini-Mental State Examination) 
scores as labels, which included 156 subjects, 108 were 
for training and 48 were for the test (train:test = 7:3). 
The ADReSSo database was established after the ADReSS 
database and included 87 AD patients and 79 HC.

Reading
Transcripts reading
Subjects were given short passages or articles to read 
aloud and their speeches were recorded. The Gothen-
burg MCI study was conducted as an experiment with 
55 Swedish participants (30 HC and 25 AD) who were 
instructed by a clinician to read a short passage, consist-
ing of 144 words, as part of their evaluation [32].

Deep learning techniques
In order to investigate the recent progress of deep learn-
ing methods in speech-based AD detection, we list some 
key information in the selected papers in the table below: 
linguistic tasks, the distribution of participants for each 
label in the database, the feature types used in papers, the 
specific model architecture, the model training strategy, 
and the best performance (Table 2).

Feature types
Feature types mentioned in our paper include demo-
graphic features (DeF), duration features (DF), traditional 
acoustic features (TAF), traditional linguistic features 
(TLF), acoustic embeddings, and linguistic embeddings. 
Demographic features include age, years of education, 
and gender. Duration features contain the duration of the 
speaker speaking and its statistics. Traditional acoustic 
features include properties of the sound wave (MFCCs 
or Formant), speech rate, and the number of pauses. Tra-
ditional linguistic features include lexical (word rate or 
types and their characteristics, e.g., word frequency, rep-
etitions), semantic (word meaning, e.g., idea density), and 
syntactic (grammar of sentences, e.g., syntactic complex-
ity, grammatical constituents) features. Acoustic embed-
dings (AE) means the feature vector representations of 
speech, which can be extracted by ASR models or pre-
trained models (such as speech BERT or YAMNet). Lin-
guistic embeddings (LE) are a type of automatic feature 
that refers to the vector representations corresponding to 
input tokens, which can be obtained by models such as 
BERT [15], ERNIE [77], or Longformer [78].

Model architectures
In this paragraph, we briefly introduce some deep learn-
ing models used in the selected papers, and the model 
structure used in each paper can be viewed in the table.

Feedforward neural network
Earlier researchers started to use feedforward neu-
ral networks (FNN) [79] as feature classifiers in their 
studies to distinguish healthy people from cognitively 
impaired patients.
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Table 2 Deep learning techniques in all included papers

References Year Task Sample Feature type Classifier Pre-train Evaluation Metrics Best 
Performance

Bertini, F. et al. 
[33]

2022 SS-PD-CT1 AD (137)/HC 
(43)

AE auDeep Yes CV Accuracy 93.30%

Meghanani, A. 
et al. [34]

2021 SS-PD-CT2 AD (54)/non-AD 
(54)

TLF FNN No Test Accuracy 83.33%

Rohanian, M. 
et al. [35]

2021 SS-PD-CT3 AD (122)/HC 
(115)

TAF/TLF/DF biLSTM No Test Accuracy 84%

Shah Syed, M.S. 
et al. [36]

2021 SS-PD-CT2 AD (72)/non-AD 
(72)

TAF LSTMa No Test Accuracy 74.55%

Mahajan, P. et al. 
[37]

2021 SS-PD-CT2 AD (82)/non-AD 
(82)

TAF/DF/TLF/
DeF

CNN+biLSTMa No Test Accuracy 72.92%

Meghanani, A 
[34].

2021 SS-PD-CT2 AD (78)/non-AD 
(78)

TAF CNN+LSTM No Test Accuracy 64.58%

Lindsay, Hali 
et al. [38]

2021 VF4 HC (66)/MCI 
(66)

LE SVM Yes CV AUC 

Rodrigues 
Makiuchi, M. 
et al. [39]

2021 SS-PD-CT1SS-
CVS1

CT1: AD (168)/
HC (98) CVS1: 
AD (49)/MCI 
(42)/HC (72)

TAF GCNN No CV Accuracy

Liu, Z. et al. [40] 2021 SS-PD-CT1 AD (252)/HC 
(232)

AE CNN+biLSTMa Yes CV Accuracy 82.59%

Wang, N. et al. 
[41]

2021 SS-PD-CT3 AD (87)/HC (79) TLF/LE C-Attention-
Unified model

Yes Test Accuracy 80.28%

Bertini, F. et al. 
[42]

2021 SS-CVS2SS-PD2 eD (16)/MCI 
(32)/HC (48)

TAF FNN Yes CV Accuracy 90.57%

Roshanzamir, A. 
et al. [43]

2021 SS-PD-CT1 AD (170)/HC 
(99)

LE LR Yes CV Accuracy 88.08%

Saltz, P. et al. [44] 2021 SS-PD-CT2SS-
PD-CT1

CT2: AD (78)/
non-AD (78)

LE BERTXLNet Yes CV Accuracy

Liu, Z. et al. [45] 2021 SS-PD-CT2 AD (87)/non-AD 
(79)

TLF/TAF/LE BERT Yes CV Accuracy 97.18%

Guo, Y. et al. [46] 2021 SS-PD-CT2SS-
PD-CT4

CT2: AD (78)/
non-AD (78) 
CT4: AD (115)/
HC(839)

LE BERT Yes Test Accuracy 82.10%

Pan, Y. et al. [47] 2021 SS-PD-CT2 AD (78)/non-AD 
(78)

LE BERT large Yes Test Accuracy 84.51%

Chlasta, K. et al. 
[48]

2021 SS-PD-CT2 AD (78)/non-AD 
(78)

AE DemCNN Yes Test Accuracy 62.50%

Gauder, L. et al. 
[49]

2021 SS-PD-CT2 AD (87)/non-AD 
(79)

AE CNN Yes Test Accuracy 78.90%

Haulcy, R. et al. 
[50]

2021 SS-PD-CT2 AD (78)/non-AD 
(78)

LE SVM, RF Yes Test Accuracy 85.40%

Syed, Z.S. et al. 
[51]

2021 SS-PD-CT2 AD (78)/non-AD 
(78)

TLF/LE SVM, LR Yes Test Accuracy 91.67%

Tsai, A.C. Y. et al. 
[52]

2021 SS-Recall1 & 
SS-PD-CT6SS-
PD-CT1

SS-Recall1 & 
SS-PD-CT6 : AD 
(40)/HC (40)CT1: 
AD (257)/HC 
(242)

LE BERT Yes Test Accuracy

Zhu, Y. et al. [53] 2021 SS-PD-CT2 AD (78)/non-AD 
(78)

AE/LE Longformer Yes Test Accuracy 89.58%

Aparna Balago-
palan et al. [54]

2021 SS-PD-CT2 AD (78)/non-AD 
(78)

LE BERT Yes Test Accuracy 83.32%

Yuan, J. et al. 
[55]

2021 SS-PD-CT2 AD (78)/non-AD 
(78)

LE ERNIE-large Yes Test Accuracy 89.60%
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Table 2 (continued)

References Year Task Sample Feature type Classifier Pre-train Evaluation Metrics Best 
Performance

Xue, C. et al. [56] 2021 SS-CVS9 dementia (330)/
MCI (451)/HC 
(483)

TAF LSTM No CV Accuracy 67.50%

Roozbeh, S. 
et al. [57]

2021 SS-PD-CT5 AD (26)/46 (HC) TAF/TLF FNN No CV Accuracy 93.05%

Koo, J. et al. [58] 2020 SS-PD-CT2 AD (78)/non-AD 
(78)

TAF/TLF/AE CNN+biLSTMa Yes Test Accuracy 81.25%

Cummins, N. 
et al. [59]

2020 SS-PD-CT2 AD (54)/non-AD 
(54)

TAF/LE biLSTMa Yes Test Accuracy 85.20%

Sarawgi, U. et al. 
[60]

2020 SS-PD-CT1
SS-PD-CT2

CT1: AD (168)/
HC (99)CT2: AD 
(78)/non-AD 
(78)

TLF/TAF FNN No CV
Test

Accuracy
Accuracy

La Fuente 
Garcia, S. D. et al. 
[61]

2020 SS-PD-CT1SS-
CVS3

CT1: AD (82)/HC 
(82) CVS3: AD 
(30)/HC (16)

TAF FNN No Test UAR 

Lopez-De-Ipina, 
K. et al. [62]

2020 VF1 MCI (38)/HC 
(62)

TAF CNN No CV Accuracy 92%

Casanova, E. 
et al. [63]

2020 SS-Recall2SS-
Recall3SS-
PD4SS-PD5

AD (41)/MCI 
(55)/HC (194)

TLF RNN+CRFa Yes CV F1-score 81.00%

Pan, Y. et al. [64] 2020 SS-CVS4 ND (21)/MCI 
(24)/HC (25)

AE LRSVM Yes CV F1-score

Searle, T. et al. 
[65]

2020 SS-PD-CT2 AD (78)/non-AD 
(78)

LE DistilBERT Yes Test Accuracy 81%

Li, Y [66]. 2020 SS-PD-CT1 AD (155)/HC 
(145)

DeF/LE/TLF/TLF LR Yes CV Accuracy 91.25%

Rosas, D.S. et al. 
[14]

2019 SS-CVS3 Dementia (62)/
HC (160)

TLF FNN No Test Accuracy 86.42%

Chien, Y.W. et al. 
[67]

2019 SS-Recall5 AD (30)/HC (30) TAF biLSTM Yes Test AUC 83.80%

Fritsch, J. et al. 
[68]

2019 SS-PD-CT1 AD (168)/HC 
(98)

TLF LSTM No CV Accuracy 85.60%

Hong, S.Y. et al. 
[69]

2019 SS-PD-CT1 AD (169)/HC 
(99)

LE RNNa Yes CV Accuracy 83.50%

Gabor, G. et al. 
[27]

2019 SS-CVS5SS-
Recall4

mAD (25)/MCI 
(25)/HC (25)

TLF/DF/DeF SVM Yes CV Accuracy 86.00%

Themistocleous, 
C. et al. [70]

2018 Reading HC (30)/MCI 
(25)

TAF/DeF FNN No CV Accuracy 83%

Klumpp, P. et al. 
[71]

2018 SS-PD-CT1 AD (168)/HC 
(98)

LE FNN No Test Accuracy 84.40%

Lopez-De-Ipina, 
K. et al. [72]

2018 VF1SS-CVS6SS-
PD3

VF1: MCI (38)/
HC (62)CVS6: 
AD (20)/HC (20)
PD3: AD (6)/HC 
(12)

TAF CNN No CV Accuracy

Orimaye, S. O. 
et al. [73]

2018 SS-PD-CT1 AD task: AD 
(99)/HC (99) 
MCI task: MCI 
(19)/HC (19)

TLF D2NNLM-5n No Test AUC 

Warnita, T. et al. 
[74]

2018 SS-PD-CT1 AD (169)/HC 
(98)

TAF GCNN No CV Accuracy 73.60%

Chien, Y. W. et al. 
[23]

2018 VF2VF3 AD (30)/HC (30) TAF biLSTM Yes Test AUC 95.40%

Lopez-de-Ipina, 
K. et al. [12]

2017 VF1SS-CVS6SS-
PD3

MCI (40)/HC 
(60)

TAF CNN No CV Accuracy
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Convolution neural network
As the convolutional neural network (CNN) [80] has 
achieved good results in computer vision tasks, CNN-
related models have also begun to be gradually applied 
to NLP tasks, such as sentence classification, semantic 
parsing, search query retrieval, and other traditional 
NLP tasks. Therefore, researchers also began to use 
CNN models and linear gated convolution neural net-
work (GCNN) [81] to classify speech or text data of AD 
patients.

Recurrent meural network
In order to add timing information from speaker audio 
to the model, researchers began to use model architec-
tures including recurrent neural network (RNN) [82], 
long short-term memory (LSTM) [83], gated recur-
rent unit(GRU) [84], bidirectional LSTM(BiLSTM) 
[85], etc. At the same time, researchers also combine 
these models with CNN or other neural networks, 
such as pyramidal bidirectional LSTM followed by a 
CNN layer (pBiLSTM-CNN) proposed by Meghanani. 
A [86].

Attention‑based neural network
With the rise of attention mechanisms [87], researchers 
began to apply some attention mechanisms to improve 
the accuracy of the model, such as adding atten-
tion mechanisms to RNN models or CNN and LSTM 
models.

To identify AD with a small amount of data, research-
ers utilize models pre-trained on large-scale databases 
as feature extractors to obtain better representations, 
such as Longformer, BERT, and ERNIE.

Conclusions
What were the characteristics of the databases involved 
in reported studies?
Twenty-seven different databases were used in 52 studies, 
in which the appearance frequency of the Pitt corpus and 
ADReSS database were highest. Fourteen studies used 
Pitt corpus from Dementiabank, and 19 studies included 
the ADReSS database.

In 27 databases, 11 languages were used. Twenty-
five databases used only one language in one database, 
including Spain, Chinese, English, Hungarian, Italian, 
Japanese, Brazilian Portuguese, and Swedish. Two data-
bases used more than one language in one database. For 
example, AZTIAHO included English, French, Spanish, 
Catalan, Basque, Chinese, Arabian, and Portuguese.

In 29 databases, labels include AD (Alzheimer’s dis-
ease), MCI (mild cognitive impairment), and HC (healthy 
control). Eleven databases contain only AD and HC 
labels; 7 databases contain only MCI and HC labels; 11 
databases contain AD, MCI, and HC labels.

For now, the databases in reported studies were small 
in single or few languages with uneven distribution. 
Besides, most were built for cross-sectional studies rather 
than cohort studies.

What deep learning model architectures were included 
in reported studies?
Four deep learning methods were applied in these 
selected papers: FNN, CNN, LSTM, and attention mech-
anism-based models. Figure  3 shows each number of 
these methods. These models were generally basic, and 
embeddings were extracted by models and collected for 
classification.

Table 2 (continued)

References Year Task Sample Feature type Classifier Pre-train Evaluation Metrics Best 
Performance

Lopez-de-Ipina, 
K. et al. [21]

2017 VF1 MCI (38)/HC 
(62)

TAF CNN No CV Accuracy 75%

D Beltrami et al. 
[75]

2016 SS-CVS7
SS-PD1

MCI (19)/HC 
(20)

TLF/TAF FNN No CV
CV

F1-score
F1-score

Laszlo, T. et al. 
[76]

2016 SS-CVS5SS-
Recall4

MCI (48)/HC 
(36)

DF/DeF SVM Yes CV Accuracy 88.10%

Laszlo, T. et al. 
[16]

2015 SS-CVS8 MCI (32)/HC 
(19)

TAF/DF SVM Yes CV Accuracy 80.40%

Lopez-de-Ipina, 
K. et al. [26]

2013 SS-CVS6 AD (20)/HC (20) TAF/DF FNN No CV Accuracy 94.60%

a  in Classifier means attention-based method. The full names of abbreviations can be found in “Abbreviations”
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How were these deep learning model architectures used 
in reported studies?
The use of deep learning can be divided into three catego-
ries. First, the models trained on the large database were 
directly used to extract embedding, and then machine 
learning classifiers were used. Second, the models were 
pre-trained on a large database and then fine-tuned 
on dementia-related databases. In some situations, 

Self-training and data augmentation methods were used 
in the pre-trained process. Thirdly, deep learning mod-
els were built and trained from scratch using dementia-
related databases.

What classification performance has been achieved?
The performance advantages of deep learning compared 
to the traditional method
Balagopalan, A. et al. tested on the ADReSS dataset using 
different classification models, including SVM, NB, RF, 
FNN, and BERT. According to the results presented in 
the paper, when using the FNN method, it can achieve 
an average accuracy of 77.08% on the ADReSS test set in 
3 runs, which is higher than the performance of RF and 
NB but lower than the average accuracy of 81.25% for 
the SVM classifier. However, when using BERT, it got the 
best result for classification with an accuracy of 83.32% 
[54]. Not only linguistic features, but deep learning has 
also achieved better results on acoustic features. Bertini, 
F. et al. used an autoencoder to extract unsupervised fea-
tures from audio data and then utilized FNN to achieve 
93.3% classification accuracy on the Pitt dataset, which 
is better than the results obtained by traditional machine 
learning methods such as SVM, NB, and RF [33].

In the detection process of AD, utilizing deep learning 
methods can effectively improve the performance of the 
classification models when compared with traditional 
machine learning methods.

Besides, we compared methods without pre-train-
ing and methods with pre-trainig by box plotting in 

Fig. 4 Comparison of deep learning methods without and with pre-training

Fig. 3 Paper numbers of FNN, CNN, LSTM, and attention 
mechanism-based models
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SS-PD-CT2 task with a test set for evaluation in Fig. 4. It 
exhibits that using the pre-training method is more use-
ful than training models from scratch.

Performance difference based on different tasks
On the task selection, SS works better than others tasks 
generally. In 2017 and 2018, Lopez-De-Ipina, K. et  al. 
conducted research on AD detection based on VF and SS 
tasks, in which acoustic features were mainly used. The 
detection accuracies on SS tasks were higher than the 
result on the VF task [72].

SS tasks can be divided into several different subtasks, 
including PD, Conversation/interview, and Recall.

In PD tasks, most tasks were based on ADReSS or Pitt 
database. There were 21 studies that used the ADReSS 
database and that 11 studies used the Pitt database. The 
test set on ADReSS database was uniform, detection 
accuracy in more than 75% of studies can reach more 
than 80%, and the best result can reach 91.67%. Cross-
validation predictions from 85% of studies on the Pitt 
database exceeded 80% accuracy, and the best result can 
reach 91.25%. Ten reported studies contain conversation 
tasks [14, 16, 26, 27, 39, 42, 56, 64, 75, 76].

Though different databases were used, high accuracy 
can be achieved by cross-validation evaluation, in which 
85% of studies exceeded 85% accuracy and the best result 
can reach 95%.

In Recall tasks, four related studies are included, and all 
can achieve 80% accuracy.

Comparisons of methods for the ADReSS Challenge
The ADReSS Challenge is the most recent internationally 
representative speech-based AD detection competition, 
which was held in Interspeech 2020–2021. The main 
objective of the ADReSS challenge is to make available 
a benchmark dataset of spontaneous speech, which is 
acoustically pre-processed and balanced in terms of age 
and gender, defining a shared task through which differ-
ent approaches to AD recognition in spontaneous speech 
can be compared. Pre-training methods are mainly used 
in the top five participating teams of the ADReSS chal-
lenge, which include two types of useful ways of deep 
learning techniques.

The first way is pre-training based on deep learning 
architecture and large datasets, and then fine-tuning on 
the ADReSS dataset. Saltz, P. et al. [44]; Yuan, J. et al. [55]; 
and Zhu, Y. et  al. [53] used BERT, ERNIE, Longformer-
based model architecture to pre-train and then fine-tune, 
which reached 90%, 89.6%, and 89.58% on ADReSS test 
set respectively. In terms of characteristics, Saltz, P. et al. 
and Yuan, J. et  al. used linguistic embedding only, and 
Zhu, Y. et  al. used acoustic and linguistic embedding. 
Besides, Saltz, P. et  al. used augmented data during the 

training stage, Yuan, J. et al. encoded the pause into the 
transcript and then acquired embedding vector for classi-
fication, and Zhu, Y. et al. used Longformer-based trans-
fer learning.

The second way is extracting features based on deep 
learning architecture, and then training traditional 
machine learning classifiers based on the extracted fea-
tures. Syed, Z. S. et al [51] combined traditional linguistic 
features and linguistic embedding extracted from a pre-
trained BERT-based model, and then trained through 
ensemble learning and fused based on majority-voting, 
eventually reaching 91.67% accuracy on the ADReSS test 
set. Haulcy, R. et al. [50] extracted linguistic embedding 
from BERT with SVM or RF classifier and achieved 85.4% 
accuracy.

In addition, some other text-based pre-trained mod-
els work well. For example, the accuracies of BERT, part 
of BERT or BERT-based adaptation models [46, 47, 
54, 65] were between 81% and 84.51%. Except for the 
text-based pre-trained models, audio and image-based 
pre-trained models also have been explored in speech-
based AD detection. Chlasta, K. et  al [48] trained 
modified VGGNet architecture to extract acoustic 
embedding, while Gauder, L. et al. [49] trained wav2vec 
2.0 framework to extract acoustic embedding vector, of 
which both added modified CNN modules for classifi-
cation, reaching 62.5% and 78.9% accuracy, respectively.

Another training method in the ADReSS Challenge 
is training from scratch. Traditional linguistic and 
acoustic features have been applied with the archi-
tectures such as FNN [34, 60], attention mechanism-
based LSTM [86] and CNN-LSTM [36] model reached 
83.33%, 64.58%, and 74.55% accuracy, respectively. 
After the duration features were added, BiLSTM with 
highway layers, CNN-BiLSTM-attention-based archi-
tecture [35], and dense layer with GRU model [37] 
reached 84%, 84%, and 72.92% accuracy, respectively.

When using limited clinical data, choosing proper 
pre-trained task and fine-tuned models are impor-
tant and effective for disease classification. Generally, 
CNN-based architectures extract local information, 
and the LSTM or BERT-based model extracts temporal 
information. Specifically, pre-training a speech or text 
encoder with a large speech or text corpus, and using 
the attention mechanism to map the correspondence, 
then a fine-tuning model with AD or MCI dataset is a 
general method to build a framework to train the AD 
classification from scratch.

The algorithms and performances for detecting MCI
As an intermediate transition state between the normal 
aging process and mild AD, MCI plays an important role 
in early screening or AD. Among the screened papers, 
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16 of them performed MCI detection experiments. 11 of 
the 16 papers were about distinguishing MCI and healthy 
people, while the rest were about three classifications of 
AD, MCI patients, and cognitive normal elders.

For the classification of MCI versus cognitive normal 
subjects, Lindsay, Hali et  al. [38] utilized three different 
pre-trained models (FastTest, Spacy, Wiki2Vec) to extract 
word embeddings, then used a SVM classifier to predict 
labels in different languages (French, German, Dutch), 
and can achieve 66%, 68%, and 69% AUC, respectively. 
For three-classification experiments for AD, MCI, and 
HC, Rodrigues Makiuch, M. et al. [39] using a gated con-
volutional neural network (GCNN), achieving an accu-
racy of 60.6% in 40 s of speech data.

MCI manifests as mild cognitive decline. Compared 
with AD, most MCI patients have less severe memory 
loss and perform relatively normal on memory tests. 
As can be seen from the papers we screened, it is more 
difficult to detect MCI patients than to distinguish AD 
patients from cognitive normal elders-based speech anal-
ysis. And we can find that there are not many studies on 
MCI detection at present, so it is of great value to further 
explore the methods of detecting MCI with deep learning 
techniques.

What were the mainstreams and limitations of reported 
studies?
The mainstreams and limitations of these selected studies 
were mainly reflected in language tasks, data modalities, 
extracted features, and model performance.

Language tasks
Varied databases were built to collect speech from AD 
and healthy people based on varied tasks. Through the 
databases we introduced in section  4.2 of this article, 
we can find that the current mainstream language tasks 
focus on: Semantic verbal fluency tasks, Spontaneous 
speech tasks, and some other reading tasks.

Semantic verbal fluency tasks contain animal naming 
tasks, vegetable, and location naming tasks. As for tasks 
collecting spontaneous speech, it compromised speech 
from interviews or conversations speech, recall tasks, and 
picture description tasks.

From this, we can find that there are many kinds of lan-
guage tasks, which makes it difficult for researchers to 
compare their research results.

Therefore, based on the picture description task, the 
Pitt corpus and the ADReSS database have constructed 
comparable distribution-balanced databases, and 
researchers have begun to focus on these two databases 
for AD classification tests.

However, the languages of Pitt corpus and ADReSS 
databases are both English, and the amount of data is 

small, so the current research is also limited to a certain 
extent.

Data modalities
Based on our table in the “Deep learning techniques” 
section, we can see that researchers used speech, text, or 
speech and text to conduct experiments, in which some 
compared the classification results on the same evalua-
tion test set.

The current research trend is to obtain more charac-
teristic information by combining multimodal data. Dif-
ferent modalities have different representations, so there 
is some overlap and complementarity of information, as 
well as a variety of information interactions. Researchers 
may no longer be limited to the speech and text informa-
tion of AD patients. Improving the accuracy of the over-
all decision-making results by integrating multi-modal 
data such as eye movement data, writing data, and gait 
performance is also an interesting topic that needs fur-
ther investigation.

Extracted features
Traditional linguistic and acoustic features were mostly 
from handcrafted definitions thus these features were 
explainable. Deep learning-based feature extraction or 
classification techniques achieved high accuracy for AD 
classification but short of the lack of interpretability.

Deep learning-based feature extraction methods need 
a large scale of data, which is hard to precisely define and 
varies on a different scale of data. Besides, tasks were 
chosen to pre-train the model for features extraction, 
for example, ASR or BERT, were not fully compared and 
analyzed for AD classification tasks.

Model performance
How were these deep learning model architectures used 
in reported studies? and What classification perfor-
mance has been achieved? In this paper, the deep learn-
ing model architectures and training strategies adopted 
by the selected papers are presented. In the current study, 
the researchers use the pre-training model to solve the 
problem of insufficient training data in AD detection and 
achieve good results. Most speech-based AD detection 
using deep learning methods can achieve an accuracy of 
about 85%. In the ADReSS challenge, some researchers 
have achieved an accuracy of nearly 90% using pretrained 
models. However, traditional cognitive impairment 
screening scales, such as MMSE or MOCA, can usu-
ally achieve a screening accuracy of more than 93% [5]. 
Therefore, as a more convenient AD detection method, 
speech-based deep learning technology needs to be fur-
ther improved.
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Discussions
Limitation of our studies
In this review, the following limitations may down the 
outcome confidence level of our paper:

(1) In the process of paper search, our search keywords 
are missing “pre-trained model,” which leave out 
some papers that refer to “pre-trained model” but 
do not mention “deep learning” or “neural network”. 
Although we add some papers from other sources, 
this problem increases the risk of bias of the paper 
search results.

(2) Because of our selection criteria, only papers 
written in English were selected, which resulted 
in some non-English databases and studies not 
being included in this review, thus increasing 
the language bias and affecting some language-
related features.

(3) Due to the overlap of deep learning methods in 
many papers, for example, the classifier proposed 
by Liu, Z. et al. is a combination of CNN, BiLSTM, 
and attention, so it is difficult to separate it into a 
specific deep learning category [40]. The lack of a 
very clear standard in the process of classifying 
deep learning methods also increases the error of 
statistical analysis to a certain extent.

(4) In the process of analyzing the performance of deep 
learning models, there may be some potential risks 
of bias. Because we were only focused on the best 
performance of the model in the paper, different 
databases, different testing methods, and different 
evaluation indicators may possibly lead to a skewed 
understanding that how well the algorithms worked.

Research directions
The purpose of this review paper is to investigate cur-
rent researchers’ application of deep learning methods for 
speech-based AD detection and to explore future possi-
bilities. The current dementia-related databases are usu-
ally small, with a single language, uneven distribution, and 
inconsistent tasks. However, fusing the multi-modal data 
rather than using only one modality can extract more use-
ful information for the classification of AD patients, and 
the application of pre-trained models can also greatly 
improve the classification accuracy. Another point to note 
is that the databases in the papers we screened lack cohort 
study data, so it is difficult to prove the reliability of the 
results of speech analysis on intra-individual repeated 
testing. Besides, currently, speech-based AD detection 
has not been widely applied clinically.

So our future goals are as follows:

(1) To establish and publish a balance-distributed Chi-
nese AD database, including the speech data of the 
picture-distribution task and the writing data of the 
clock-drawing test.

At the same time, we hope researches can collect 
cohort data to study the tracking performance of speech 
analysis in individual patients over time.

(2) To explore the potential of new deep learning mod-
els to improve classification accuracy by utilizing 
speech, writing, and other multi-modal data.

Improving the interpretability of feature representa-
tions that have been extracted by deep learning methods 
in the assessment of cognitive impairment.

(3) To establish efficient and accurate computer-aided 
diagnosis methods, which can shorten the time of 
large-scale AD screening. The study on AD detec-
tion also promotes the development of portable 
diagnostic devices, which could timely detect AD 
and timely intervene to delay the disease.

(4) In addition to Alzheimer’s disease, there are 
other causes of dementia, so we hope that future 
researchers can use speech analysis to detect other 
types of dementia.
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