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Formation of 3-hydroxyglutaric acid in glutaric aciduria type I:
in vitro participation of medium chain acyl-CoA dehydrogenase
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Abstract
3-Hydroxyglutaric acid (3-OH-GA) in urine has been identified as the most reliable

diagnostic marker for glutaric aciduria type I (GA I). We showed that hydratation of

glutaconyl-CoA to 3-hydroxyglutaryl-CoA, which is subsequently hydrolyzed to

3-OH-GA, is efficiently catalyzed by 3-methylglutaconyl-CoA hydratase (3-MGH).

We have now investigated whether mitochondrial acyl-CoA-dehydrogenases can

convert glutaryl-CoA to glutaconyl-CoA. Short-chain acyl-CoA dehydrogenase

(SCAD), medium-chain acyl-CoA dehydrogenase (MCAD), and long-chain acyl-

CoA dehydrogenase (LCAD) accepted glutaryl-CoA as a substrate. The highest kcat
of glutaryl-CoA was found for MCAD (0.12 ± 0.01 second−1) and was about

26-fold and 52-fold higher than those of LCAD and SCAD, respectively. The turn-

over of MCAD for glutaryl-CoA was about 1.5% of that of its natural substrate

octanoyl-CoA. Despite high Km (above 600 μM) and low turnover rate, the oxidation

of glutaryl-CoA by MCAD in combination with 3-MGH could explain the urinary

concentration of 3-OH-GA in GA I patients.
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1 | INTRODUCTION

Glutaric aciduria type I (GA I) is an inborn error of metabo-
lism that results from deficiency of glutaryl-CoA dehydroge-
nase (GCDH), which catalyzes the oxidative decarboxylation
of glutaryl-CoA to crotonyl-CoA.1,2 Two biochemically
defined subgroups of patients have been described based on

urinary metabolite excretion of glutaric acid (GA). Most
patients excrete large amounts (high excretors) of GA with
urinary concentrations between 850 and 1700 mmol/mol cre-
atinine.2,3 However, in some GA I patients (low excretors),
the urinary concentration of this compound is within the normal
range of up to 4 mmol/mol creatinine.4 Indeed, there are some
GA I patients who were identified solely by increased urinary
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concentrations of 3-hydroxyglutaric acid (3-OH-GA), which is
found in both, “high excretor” and “low excretor” patients.5–7

Increased levels of 3-OH-GA have also been found in patients
with short-chain 3-hydroxyacyl CoA dehydrogenase (SCAD)
deficiency,8 in patients with disorders of long-chain fatty acid
oxidation and mitochondrial disorders,9 and in ketotic patients.10

It has been suggested that 3-OH-glutaryl-CoA may be produced
in constant but limited amounts from accumulating glutaryl-
CoA via glutaconyl-CoA in a two-step process mediated by
mitochondrial β-oxidation enzymes. We previously showed that
hydratation of glutaconyl-CoA to 3-OH- glutaryl-CoA is
efficiently catalyzed by 3-methylglutaconyl-CoA hydratase
(3-MGH).11 We now investigated whether mitochondrial acyl-
CoA dehydrogenases (ACADs) can convert glutaryl-CoA to
glutaconyl-CoA, and thus, in combined action with 3-MGH,
could explain the formation of 3-OH-GA in GA I patients.

2 | MATERIALS AND METHODS

Recombinant human medium-chain acyl-CoA dehydrogenase
(MCAD) was expressed and purified as described before,12,13

recombinant human long-chain acyl CoA dehydrogenase
(LCAD) as described by Eder et al. 1997 and short-chain acyl
CoA dehydrogenase (SCAD) as described in reference 14
butyryl-CoA, propionyl-CoA, hexanoyl-CoA, octanoyl-CoA,
phenylpropionyl-CoA, and palmitoyl-CoA, glutaryl-CoA
were obtained from Sigma-Aldrich (St. Louis, Missouri).

The activity of recombinant human acyl-CoA dehydroge-
nases13 was measured at different substrate concentrations in
Tris buffer with an assay using ferricenium hexafluorophosphate
as an electron acceptor.15 Enzyme activity was additionally con-
firmed by identification of the product glutaconyl-CoA by
HPLC and analyzing it bymass spectrometry.11 The kinetic con-
stants (Km and Vmax) were estimated by computer-fitting of the
data (n = 4) using an algorithm based on the Michaelis-Menten
equation. The turnover number (kcat) was calculated using the
molecular mass of the acyl-CoA dehydrogenases (43 kDa).16,17

In addition to glutaryl-CoA, the activities of acyl-CoA dehydro-
genases toward their (optimal) substrates were determined as a
control. The pH dependence of the activity toward the different

substrates was measured in the range of pH 7.0-8.5 in Tris buffer
adjusted to the desired pH value with KOH or HCl.

3 | RESULTS

All three ACADs were able to catalyze the dehydrogenation of
glutaryl-CoA to glutaconyl-CoA (Table 1). The production of
glutaconyl-CoA was demonstrated by the ferricenium assay and
by identification of the product by HPLC followed bymass spec-
trometry. At pH 7.5, MCAD exhibited the highest kcat of
0.12 second−1, although about 70 times lower thanwith the natu-
ral substrate octanoyl-CoA. SCAD and LCAD were much less
active for the substrate glutaryl-CoA with kcat values of 0.0023
and 0.0045 second−1, respectively. Interestingly, the Km values
for glutaryl-CoA were about equal with each enzyme (600-
900 μM), indicating that only the CoA moiety is responsible for
binding to the enzyme, whereas the hydrophilic glutaryl-CoA
moiety does not interact well with the hydrophobic binding
pockets. With increasing pH, the specific activities of all ACADs
with their “natural” substrates increased for all three enzymes
(Figure 1, top panel). In contrast, the activity of MCAD with
glutaryl-CoA at high concentration (1.2mM) exhibited an “oppo-
site” behavior, that is, it decreased with pH. SCAD and LCAD,
on the other hand, behaved much as with their normal substrates,
although the increase in activity with increasing pH was compar-
atively small (Figure 1, bottom panel). At pH>8.5, the difference
in activities between MCAD and SCAD or LCAD per enzyme
quantity was only about 5-fold. Noteworthy is also that at lower
glutaryl-CoA concentration (<600 μM) the activities were sub-
stantially reduced for all three enzymes at all pH values.

TABLE 1 Kinetic parameters for MCAD, SCAD, and LCAD (kinetic paramters for the substrate glutaryl-CoA are given in bold)

Enzyme Substrate Km (μM) kcat (s
−1) kcat/Km (pM−1 second−1)

SCAD Glutaryl-CoA 850 ± 98 0.0023 ± 0.0001 2.7

Hexanoyl-CoA 430 ± 29 0.014 ± 0.006 33

MCAD Octanoyl-CoA 6.0 ± 0.3 8.2 ± 0.4 1 360 000

Glutaryl-CoA 660 ± 42 0.12 ± 0.01 180

LCAD Palmityl-CoA 63 ± 4 0.143 ± 0.023 2300

Glutaryl-CoA 650 ± 45 0.0045 ± 0.0001 6.9

Synopsis
3-OH-GA in GA I is most likely generated through
MCAD-mediated dehydrogenation of accumulating
glutaryl-CoA followed by 3-MGH-mediated
hydratation and spontaneous hydrolysis.
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4 | DISCUSSION

Kinetic data obtained with recombinant human MCAD,
SCAD, and LCAD in the present study provide a rationale for
previously unexplained biochemical findings in patients with
classical and atypical forms of GA I. GA, the product of hydro-
lysis of glutaryl-CoA, is usually the dominating pathological
metabolite in GA I but present in highly variable concentra-
tions. In contrast, the formation of 3-hydroxyglutarate in GA I
appears to be quite stable at approximately 0.1 mol per day and
is independent from the urinary concentrations of GA
(unpublished observation). Our present data indicate that the
oxidation of glutaryl-CoA in GA I is most probable catalyzed
by MCAD rather than by SCAD or LCAD, with high Km and
low turnover rates, although we cannot exclude that other acyl-
CoA dehydrogenases, like isovaleryl-CoA dehydrogenase,
may also be involved in the oxidation of glutaryl-CoA and thus

may contribute to the formation of 3-OH-GA. Future in vivo
studies and/or tracer flux analyses taking into account the com-
plete cell metabolism should be able to provide more details on
metabolic rerouting in GCDH deficiency.

Acyl-CoA dehydrogenases belong to the family of homo-
tetrameric flavoenzymes with subunit molecular masses of
40 to 50 kDa17 that mediate the α,β-dehydrogenation of acyl-
CoA thioesters to enoyl-CoA in the mitochondrial β-oxidation
of fatty acids and are also involved in the degradation of leu-
cine, isoleucine, valine, and lysine.18 As previously reported,
the activities of ACADs are strongly pH dependent18 and
dependent on the type of buffer used.19 Assuming a pH
around 7.5 within the cell, the dehydrogenation of glutaryl-
CoA by MCAD (and to a much lesser extent by SCAD and
LCAD) is expected to occur at a low but constant rate at con-
centrations in the mM range. Such concentrations are thought
to be reached in the mitochondria of all (classical and atypi-
cal) patients with GA I, including those with “mild” GA1 and
residual GCDH activity. Assuming that there is no “better”
enzyme for this reaction, the first step in the short pathway to
3-OH-glutaryl-CoA biosynthesis would be rate limiting, and
turnover is not significantly affected by changes in mitochon-
drial glutaryl-CoA concentrations from “very high” to
“extremely high” in different variants of GA I. In “low
excretor” patients with at least one hypomorphic GCDH
mutation and residual enzyme function, the intramitochondrial
elevation of glutaryl-CoA is sufficient to lead to noticeable
conversion into glutaconyl-CoA without noticeable produc-
tion of free GA. 3-MGH efficiently converts glutaconyl-CoA
to 3-OH-glutaryl-CoA with a kcat of 1.4 seconds−111 in a
reversible reaction. After hydrolysis, the products glutaconic
and 3-hydroxyglutaric acid is excreted as free acid into the
blood and finally into the urine (Figure 2).

FIGURE 1 pH-dependence of the activity of selected ACADs for
glutaryl-CoA (bottom panel) and for natural substrates as comparison
(top panel). The substrates were hexanoyl-CoA, octanoyl-CoA, and
palmitoyl-CoA for SCAD, MCAD, and LCAD, respectively, (top
panel) and glutaryl-CoA (bottom panel). The data points are the
average of four single determinations, and the vertical bars indicate the
SD. For their normal substrates, the following apparent pK's MCAD:
8.05, LCAD: 7.75, SCAD: 7.85. The apparent pK's estimated for
glutaryl-CoA as substrate are MCAD: 7.6, LCAD: 7.3, SCAD: 8.2
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FIGURE 2 Proposed metabolic pathway of 3-OH-GA formation.
Glutaryl-CoA is formed within the catabolic pathway of lysine, tryptohan,
and hydroxylysine. Deficient activity of glutaryl-CoA dehydrogenase
(GCDH) results in elevated levels of glutaryl-CoA. Glutaryl-CoA can be
degraded by MCAD (and lower activity of SCAD or LCAD), and the
subsequent conversion of glutaconyl-CoA to 3-hydroxyglutaryl-CoA
(3-OH-GA-CoA) is catalyzed by 3-methylglutaconyl-CoA hydratase (3-MGH11)
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The formation of 3-OH-GA in patients with SCAD or
LCAD deficiency appears to be unrelated to the accumulation
of glutaryl-CoA as a precursor of 3-OH-glutaryl-CoA. Molven
et al.8 suggested that 3-OH-glutaryl-CoA may be hydrolyzed
to 3-OH-GA when the conversion of 3-OH-glutaryl-CoA to
3-ketoglutaryl-CoA is blocked. The increased excretion of
3-OH-GA in ketotic patients was thought to be caused by
increased protein catabolism and thus increased flux through
the lysine degradative pathway.10

There is no urinary excretion of 3-OH-GA in glutaric
aciduria type II (GA II), the deficiency of the electron transfer-
ring flavoprotein (ETF), which mediates the electron transport
from all mitochondrial acyl-CoA dehydrogenases (including
SCAD, MCAD, and LCAD) to the respiratory chain. Instead,
the excretion of 2-OH-GA is a useful marker for this disease.20

In GA II, without functional ETF as electron acceptor, accu-
mulating glutaryl-CoA cannot be converted into glutaconyl-
CoA, precluding the subsequent generation of 3-OH-GA.
This observation also supports the notion that 3-OH-GA in
GA I is generated within the mitochondria and not in
another cellular compartment such as the peroxisomes.

In conclusion, we report that 3-OH-GA in GA I is most
likely generated through MCAD-mediated dehydrogenation
of accumulating glutaryl-CoA followed by 3-MGH-mediated
hydratation and spontaneous hydrolysis. Throughput in this
pathway appears to be not proportional to the amount of accu-
mulating glutaryl-CoA, explaining a constant production of
3-OH-GA relatively independent of residual GCDH activity.
GA production, in contrast, is much more dependent on resid-
ual GCDH activity, with high excretion only in severe
enzyme deficiency. Thus, 3-OH-GA is the most sensitive met-
abolic indicator of impaired GCDH function.
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