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ABSTRACT
Understanding mechanisms that underly the transition from acute to chronic pain and identifying 
potential targets for preventing or minimizing this progression have specific relevance for chronic 
postsurgical pain (CPSP). Though it is clear that multiple psychosocial, family, and environmental 
factors may influence CPSP, this review will focus on parallels between clinical observations and 
translational laboratory studies investigating the acute and long-term effects of surgical injury on 
nociceptive pathways. This includes data related to alterations in sensitivity at different points along 
nociceptive pathways from the periphery to the brain; age- and sex-dependent mechanisms 
underlying the transition from acute to persistent pain; potential targets for preventive interven-
tions; and the impact of prior surgical injury. Ongoing preclinical studies evaluating age- and sex- 
dependent mechanisms will also inform comparative efficacy and preclinical safety assessments of 
potential preventive pharmacological interventions aimed at reducing the risk of CPSP. In future 
clinical studies, more detailed and longitudinal peri-operative phenotyping with patient- and 
parent-reported chronic pain core outcomes, alongside more specialized evaluations of somato-
sensory function, modulation, and circuitry, may enhance understanding of individual variability in 
postsurgical pain trajectories and improve recognition and management of CPSP.

RÉSUMÉ
La compréhension des mécanismes qui sous-tendent la transition de la douleur aiguë à la douleur 
chronique et la détermination de cibles potentielles pour prévenir ou minimiser cette progression 
ont une pertinence particulière pour la douleur chronique. La détermination de cibles potentielles 
pour prévenir ou minimiser cette progression sont particulièrement pertinentes pour la douleur 
postopératoire chronique (DPOC). Bien qu'il soit clair que de multiples facteurs psychosociaux, 
familiaux et environnementaux peuvent influencer la DPOC, cette revue se concentrera sur les 
parallèles entre les observations cliniques et les études translationnelles en laboratoire qui étudient 
les effets aigus et à long terme d'une blessure chirurgicale sur les voies nociceptives. Cela inclut les 
données relatives aux altérations de la sensibilité à différents points le long des nociceptives, de la 
périphérie au cerveau; les mécanismes dépendant de l'âge et du sexe qui sous-tendent la transition 
de la douleur aiguë à la douleur persistante; les cibles potentielles des interventions préventives et 
l'impact d'une blessure chirurgicale antérieure. Les études précliniques en cours, qui évaluent les 
mécanismes dépendant de l'âge et du sexe, permettront également d'évaluer l'efficacité compara-
tive et la sécurité préclinique d'éventuelles interventions pharmacologiques préventives potentiel-
les visant à réduire le risque de DPOC. Dans les futures études cliniques, un phénotypage péri- 
opératoire plus détaillé et longitudinal avec des résultats rapportés par les patients - et les parents- 
ainsi que des évaluations plus spécialisées de la fonction de la modulation et des circuits somato-
sensoriels, pourrait améliorer la compréhension de la variabilité individuelle des trajectoires de la 
douleur postopératoire et améliorer la reconnaissance et la gestion de la DPOC.
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Introduction

Understanding mechanisms that underly the transition 
from acute to chronic pain and identifying potential targets 
for preventing or minimizing this progression are high 
priorities for pain research1,2 and have specific relevance 
for persistent postsurgical pain.3 Though enhanced 

sensitivity of nociceptive mechanisms provides a warning 
of acute injury and is adaptive, pain that persists beyond the 
expected period of recovery can be associated with signifi-
cant pain-related disability and mediated at multiple points 
along nociceptive pathways. Chronic pain may reflect 
ongoing excitation, decreased inhibition or inability to 
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recruit endogenous inhibition, failure of active resolution 
mechanisms (e.g., resolvins and interleukin 10), or unmask-
ing of hyperalgesia related to prior exposures or 
injuries.2,4–6

Nociceptive mechanisms and responses to injury and 
analgesia vary throughout postnatal development.7 

Laboratory studies can evaluate mechanisms underlying 
clinical observations in children with chronic postsurgi-
cal pain (CPSP) by (1) quantifying alterations in sensi-
tivity at different points along nociceptive pathways 
from the periphery to brain, (2) evaluating age- and sex- 
dependent mechanisms underlying the transition from 
acute to persistent pain, (3) identifying potential thera-
peutic targets and comparing the safety and efficacy of 
interventions instituted before surgery (i.e., preventive) 
and/or after injury (i.e., during maintenance phase when 
hypersensitivity is established), and (4) determining the 
impact of prior exposures, such as different forms of 
stress and injury. This review will focus on parallels 
between clinical observations and related evaluations 
in translational laboratory studies to investigate the 
mechanisms and pathophysiology of CPSP.

Laboratory Models of Surgical Injury

Because pain following surgery may be related to skin 
incision, muscle injury, inflammation, and/or nerve 
injury,8 specific models have been developed to investigate 
acute and persistent alterations in nociceptive processing 
following surgical injury.9 Specific contributions of addi-
tional factors that can contribute to, or exacerbate, pain 
following surgery (e.g., peripheral inflammation, full- 
thickness skin wound, visceral injury, immune challenge, 
traumatic nerve injury, stress) can also be evaluated at 
different postnatal ages. Studies performed in rodents 
allow comparison of age- and sex-dependent injury effects 
across different stages of mammalian development.10 

Many evaluations have focused on initial injury in the 
neonatal period and early infancy (first one to two weeks 
of postnatal life in rodents) because responses in the devel-
oping nervous system may differ from those at older ages, 
but associated persistent changes in somatosensory func-
tion can have an impact on the response to subsequent 
injury into adulthood.11

Plantar hind paw incision incorporates incision of the 
skin and underlying plantaris muscle and produces cel-
lular and molecular alterations specific to this type of 
injury.6,12,13 Acute behavioral hyperalgesia (reduced 
hindlimb reflex thresholds) is evoked, with the degree 
and duration of sensitivity influenced by postnatal 
age14,15 but not sex.16 In younger animals, incision- 
induced electrophysiological changes in large dorsal 

root ganglion neurons persist beyond the period of 
behavioral hyperalgesia, afferent-evoked activity 
in second-order dorsal horn neurons is more marked 
and rapid,17,18 and noxious-evoked potentials in the 
somatosensory cortex are enhanced and more resistant 
to increasing isoflurane anesthesia.19 In addition, inci-
sion produces developmentally regulated long-term 
changes in nociceptive processing and response to re- 
incision20,21 that differ from other injury models (see 
reviews for inflammatory, nerve injury, arthritis, stress, 
and immune challenge models7,11,22–28).

Laparotomy in newborn mice29 and skin/muscle inci-
sion on the thigh (modified from the adult skin/muscle 
incision and retraction model30) at postnatal day (P)3 
are associated with persistent alterations in sensory 
thresholds and in the latter with an enhanced degree 
and duration of hyperalgesia following re-incision of the 
ipsilateral hind paw.16 Rodent models of inguinal hernia 
repair31,32 and thoracotomy33 have not been assessed in 
juvenile animals.

Developmental Mechanisms of Acute and 
Chronic Surgical Pain

Pain and hyperalgesia following surgical injury involve 
alterations in peripheral and central nociceptive 
pathways.6,9 In clinical studies, this can be evaluated 
with a range of techniques during or after surgery that 
include, but are not limited to, measurement of reflex 
thresholds,34 somatosensory testing,35–37 physiological 
reactivity and evoked responses (e.g., stress hormones,38 

inflammatory markers, monitors of autonomic tone39), 
and brain responses with electroencephalography and 
neuroimaging.40–42 Though these measures may identify 
children and adolescents with enhanced sensitivity in the 
perioperative period or delayed recovery, further long-
itudinal studies are required to assess feasibility and utility 
at different ages and evaluate associations with the degree 
and/or risk of CPSP.

Nociceptive mechanisms contributing to persistent 
pain can include cellular plasticity with changes in mole-
cular profile and translation regulation that shift the 
nociceptor toward hyperexcitability, alterations in neu-
ronal circuitry and activity, systems-level changes such 
as immune cell recruitment or cell proliferation, and 
organism-level effects related to comorbidities and affec-
tive, behavioral, and motivational changes.2

Peripheral and Spinal Mechanisms

Acute peripheral hyperalgesia following surgery has been 
quantified by changes in sensory withdrawal thresholds in 
human infants.34 At older ages, quantitative sensory 
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testing (QST) has identified altered sensitivity and 
dynamic allodynia adjacent to neonatal surgical scars in 
extremely preterm-born children and young adults43,44 

and punctate hyperalgesia many years following child-
hood surgery.45–47 Associations between persistent altera-
tions in scar-related sensitivity and the degree or duration 
of pain if subsequent surgery is required in the same 
region require further evaluation.

Peripheral nociceptors respond to noxious stimuli 
following birth, and primary hyperalgesia in the region 
of plantar hind paw incision has been demonstrated 
across a range of postnatal ages in rodents.14,15 Surgical 
injury will also evoke a peripheral inflammatory 
response that can contribute to acute hyperalgesia at all 
postnatal ages, with longer-term alterations in sensitivity 
varying with the type and degree of insult.48,49

Growth hormone signaling influences activity and 
development of peripheral nociceptive neurons in neo-
natal rodents, and a detailed series of experiments fol-
lowing dorsal hind paw and muscle incision identified 
sequestration of growth hormone by infiltrating macro-
phages and upregulation of transcription factors related 
to excitatory receptors and channels that lead to noci-
ceptor sensitization.50 Hyperinnervation following full- 
thickness skin wounding may contribute to persistent 
sensitivity and is more pronounced at younger ages due 
to differences in trophic and nerve guidance factors 
(nerve growth factor,51 neurotrophin 3,52 ephrin 
signaling53) and is also seen following plantar incision.11

Afferent input induces central sensitization in the 
spinal cord, with increased excitation and/or impaired 
inhibition.6,54 Mechanisms can include changes in synap-
tic function, reduced local and/or descending inhibitory 
effects, and potential maladaptive and long-term changes 
due to translational effects on gene expression.54 

Developmental changes in spinal cord structure and func-
tion, including larger and overlapping cutaneous recep-
tive fields and a relative excess of excitatory and delayed 
maturation of inhibitory synaptic signaling, contribute to 
low reflex thresholds.20,55 Hind paw incision in neonatal 
rodents induces a range of age-dependent acute and per-
sistent alterations in spinal cord synaptic function, includ-
ing increased excitatory signaling and reduced inhibitory 
transmission, alterations in receptor expression, ion chan-
nel function, and differential gene expression56 (see 
Brewer and Baccei’s20 review for details).

Clinically, preventive interventions for postsurgical pain 
focus on reducing afferent input (e.g., local anesthetic 
blockade), reducing excitation (e.g., N-methyl-D-aspartate 
antagonist), or enhancing inhibition (e.g., 
gabapentinoids).57–59 In rodents, neonatal peri-incision 
sciatic blockade has preventive analgesic effects (lack of 
hyperalgesia at 24 h),15,60 whereas opioids block 

hyperalgesia only during the duration of action of the 
drug and sensitivity at later time points does not differ 
from saline controls.61 More specific targeting of mechan-
isms that underlie the transition from acute to persistent 
pain or that enhance endogenous pain resolution mechan-
isms may more specifically reduce the risk of CPSP,1 but 
efficacy and safety require evaluation in preclinical models 
at different stages of postnatal development.

Descending Modulation

The balance between descending inhibition and facilita-
tion can be assessed in clinical populations with condi-
tioned pain modulation (CPM).62 In adults, inhibition is 
the usual baseline response, and reduced inhibitory CPM 
before surgery predicted CPSP.59,63 In adolescents with 
idiopathic scoliosis, reduced inhibitory modulation or 
a shift to facilitation was seen in 21% and 28% 
respectively,64 but potential links with risk of CPSP 
require evaluation in longitudinal perioperative studies. 
In adolescents with established neuropathic CPSP, robust 
inhibition was identified in only 44%, and 30% demon-
strated a facilitatory response (Figure 1).35 Though iden-
tifying impaired CPM preoperatively may inform risk and 
individualized therapy,36,63 age-dependent effects also 
need to be considered because the degree of inhibitory 
CPM is reduced at younger ages (8–11 vs. 12–17 years.).65

Descending modulation is mediated by brainstem cen-
ters (e.g., periaqueductal gray, rostroventral medulla, locus 
coeruleus) that receive input from higher centers (e.g., 
amygdala and limbic system) and have descending projec-
tions that can inhibit or facilitate spinal excitability.66 In 
adult rodents, nociceptive C-fiber input is tonically inhib-
ited (although this shifts to facilitation following injury), 
whereas at younger ages there is a relative excess of 
facilitation.67,68 The delayed maturation of inhibitory 
mechanisms is influenced by endogenous opioid and endo-
cannabinoid signaling,69 and surgical injury in neonatal 
rodents produces long-term changes in the balance of 
inhibitory/facilitatory modulation.70

Brain Structure and Circuits

Clinical neuroimaging studies have evaluated changes in 
structure, connectivity, or blood flow in brain regions 
associated with attention, sensory/discriminative, and 
affective/motivational aspects of pain experience71–74 

and also identified predictors of the transition from 
acute to persistent pain.75 In adolescents with complex 
regional pain syndrome, alterations in brain structure 
and connectivity have been linked with self-reported 
outcomes (e.g., amygdala circuits and fear of pain) that 
improved following interdisciplinary treatment.76,77 
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Magnetic resonance imaging is feasible in children with 
moderate–severe persistent postsurgical pain,78 but pre- 
and postsurgery studies are yet to identify risk factors for 
CPSP in children, and effects on brain structure asso-
ciated with prior neonatal surgery and intensive care 
also require consideration.43,79,80

Nociceptive circuits in the brain and central responses 
to noxious and innocuous stimuli undergo significant 
changes in the postnatal period, and activity-dependent 
maturation of circuits may be altered by injury.20 In infant 

rodents, evoked electroencephalograph responses in the 
somatosensory cortex were rapidly sensitized by hindpaw 
incision.19 Following hind paw surgical injury in adult 
rodents, functional magnetic resonance imaging identi-
fied evoked responses in brain regions involved in sen-
sory/discriminative, affective/attentional, and descending 
modulation,81 and incision-induced reductions in the 
volume of different brain regions (anterior cingulate cor-
tex, amygdala, thalamus, corpus callosum) were also 
influenced by early life stress and maternal separation.82

Figure 1. Characteristics and impact of neuropathic CPSP. (a) Neuropathic CPSP is graded as moderate–severe intensity in both male 
(n = 12) and female (n = 20) adolescents (median [interquartile range] age: 15 [12.9, 16.5] years) and interferes with normal activity. (b) 
Total scores on the Self-report Leeds Assessment of Neuropathic Symptoms and Signs screening tool in the majority of adolescents 
above the cutoff for identification of neuropathic pain in adults (score of 12 or above in 25/32, 78%). (c) Increased anxiety and 
depression is reflected by Pediatric Index of Emotional Distress scores (16–20, mild; 22–28, moderate). (d) Pain Catastrophizing Scale 
for Children scores are increased (15–25, moderate; 26 and above, severe). (e) Impaired quality of life in school, physical, emotional, 
and social domains (Pediatric Quality of Life Inventory–Child Scale) is reflected by low total scores (<78, mild; <70 severe). (g) 
Quantitative sensory testing with a range of modalities identified distinct sensory profiles. Individual patient pain site thresholds were 
converted into z-scores calculated with reference to within-cohort body region–specific control data. The z-score plot for each 
individual patient was grouped according to the closest matching mechanism-related sensory profiles identified in adults: sensory loss 
(n = 6), thermal hyperalgesia (n = 15), or mechanical hyperalgesia (n = 11). Dynamic allodynia to brush, cool (25°C) and warm (40°C) 
rollers in the region of pain was rated on a 0 to 10 numerical rating scale. (h) Conditioned pain modulation was assessed with a cold 
conditioning stimulus (immersion of hand in 5°C water bath) and variable test stimulus (change in contralateral knee pressure pain 
threshold). CPM effect (% change from baseline pressure pain threshold at 15 s) shows a spectrum of individual responses, with a shift 
to facilitation in 8/27 adolescents. CDT, cold detection threshold; WDT, warm detection threshold; CPT, cold pain threshold; HPT, heat 
pain threshold; PPT, pressure pain threshold; MPT, mechanical pain threshold; MPS, mechanical pain sensitivity; WUR, wind-up ratio; 
MDT, mechanical detection threshold. Data for CPSP subgroup extracted from Verriotis et al.35; see full manuscript28for further details 
of project registration (clinicaltrials.gov NCT03312881), methodology, parental consent and participant consent/assent was obtained 
and ethics approval was gained from National Health Service West Midlands-Black Country Research Ethics Committee (Ref: 17/WM/ 
0306; Approval Date: 23-8-2017).
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Nerve Injury and Neuropathic CPSP

CPSP is often associated with characteristics of neuro-
pathic pain in adults.83,84 Although multiple mechanisms 
including inflammation and pain arising from muscles, 
joints, and viscera may also contribute to CPSP,85 this 
section will focus on neuropathic pain, because this can be 
difficult to recognize in children and has specific implica-
tions for management.86 In pediatric studies, there is 
significant variability in the diagnostic criteria and 
reported prevalence of neuropathic CPSP (e.g., 10%– 
89% with CPSP following scoliosis surgery87–89). 
Outcomes used to support possible or probable neuro-
pathic pain have included history and clinical descriptors, 
neuropathic screening tool questionnaires, somatosen-
sory testing, conditioned pain modulation, and response 
to treatment (e.g., topical lidocaine patch)35,87,88–91. In our 
tertiary pediatric pain clinic cohort of adolescents with 
peripheral neuropathic pain (based on clinical features, 
sensory descriptors, screening tool, and somatosensory 
testing), CPSP accounted for 32/52 (62%) cases and was 
associated with moderate–severe pain intensity 
(Figure 1a) and significant pain-related disability 
(Figures 1b–1e).35 QST identified dynamic allodynia and 
distinct sensory profiles in the region of pain and prior 
surgical scars (Figure 1f) that have parallels with QST 
findings in adults.92 Rather than being specific to the 
etiology of neuropathic pain, underlying mechanisms 
and relative efficacy of neuropathic medications may be 
more closely related to the different sensory profiles: 
sensory loss (denervation and spontaneous pain due to 
ectopic action potentials proximal to injured nociceptors; 
response to antidepressants), thermal hyperalgesia (per-
ipheral sensitization with low threshold and spontaneous 
activity in “irritable nociceptors”; predicted efficacy with 
a sodium channel blocker, such as lidocaine patch and 
moderate response to antidepressant or gabapentinoid), 
and mechanical hyperalgesia (sensitization and sponta-
neous activity in peripheral and/or central nervous system 
and predicted efficacy with gabapentinoids).92,93

In rodents, responses to traumatic nerve injury vary 
throughout postnatal development, with a delayed onset 
of allodynia following nerve injury at younger ages that 
has been associated with a switch from an anti- 
inflammatory to pro-inflammatory response in the 
spinal cord.23 Delayed emergence of neuropathic pain 
has also been reported following traumatic or surgical 
nerve injury in children.35,86,94 The potential for precli-
nical studies to also link specific sensory modalities and 
mechanisms to efficacy of pharmacological interven-
tions has been highlighted95 and warrants further assess-
ment at different developmental stages. In addition, 
more complex behavioral tasks in adult rodents have 

evaluated alterations in motivational–affective response 
(e.g., conditioned place preference, social interaction, 
anxiety) and cognitive function (e.g., memory and 
attention)95–98 and have identified long-term effects fol-
lowing surgical injury in early life (increased anxiety, 
impaired attentional performance and learning99).

Impact of Prior Injury

Prior surgery is a risk factor for CPSP in adults,59 and 
repeated surgery is not uncommon during childhood. 
Surgery may be required in early life for congenital 
anomalies and complications of prematurity, and 20% of 
5609 neonates recruited from 31 European countries 
required repeat surgery prior to 60 weeks postmenstrual 
age.100 In infants, repeat surgery in the same dermatome 
as prior neonatal surgery was associated with increased 
perioperative pain and stress.38 A study recruiting 8- to 
18-year-olds for evaluation of CPSP noted that 148/237 
(61%) had undergone previous surgery and 148 (62%) 
had an ongoing pain problem prior to surgery.101 In our 
cohort of 32 adolescents with neuropathic CPSP, 40% had 
required multiple surgeries throughout childhood, and 
pain had only become persistent after the most recent 
surgery in 20%.35 Multiple psychosocial, environmental, 
and genetic factors can influence pain experience and the 
transition from acute to chronic pain,1,2,102 and prior 
hospitalization may influence psychosocial factors such 
as anxiety and catastrophizing that are associated with 
increased risk of CPSP.101,103 Because the response to 
surgery and nerve injury varies with age and surgery 
during childhood has been associated with persistent 
alterations in sensory processing, a past history of prior 
surgery and pain exposures is relevant for the clinical 
assessment of CPSP and evaluation of underlying 
mechanisms. Despite undergoing the same surgery, only 
a proportion of patients develop CPSP, and not all chil-
dren and adults with persistent sensory changes related to 
surgical scars have associated pain. Therefore, in addition 
to identifying factors that increase the risk of CPSP, 
factors associated with improved recovery and resilience 
need to be evaluated.104,105

Epidural, regional, and systemic local anesthetic 
administration reduces the risk of chronic postsurgical 
pain in adults,59 particularly following thoracotomy, 
breast cancer surgery, and cesarean section.106 One 
pediatric study met the inclusion criteria (single study 
following pectus excavatum surgery107 not included in 
meta-analysis), and the authors106 highlighted the need 
for larger, high-quality studies assessing the impact of 
regional anesthesia on CPSP in children. An increasing 
range of local anesthetic techniques are utilized to 
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reduce perioperative pain in children,59,108 and labora-
tory studies demonstrate both acute perioperative and 
long-term benefit on the response to repeat surgery. Use 
of peripheral, regional, and potential long-acting pre-
parations and catheter techniques may have additional 
benefit in children to both reduce the risk of CPSP and 
also minimize the impact of early life surgery on sub-
sequent injury response.

Prior surgery may have triggered biological changes 
that contribute to CPSP, because nociceptive pathways 
can be “primed” by noxious input/injury. Early life 
injury has been associated with a range of developmen-
tally regulated peripheral and spinal cord mechanisms 
that contribute to an enhanced degree and duration of 
hyperalgesia following subsequent re-incision in 
adulthood.11,20 In rodents, reducing primary afferent 
input by sciatic nerve blockade at the time of neonatal 
hind paw incision prevents persistent changes in synap-
tic signaling.109 In addition, pre- and postincision neo-
natal sciatic block prevents the enhanced response to re- 
incision in adulthood (incision-induced hyperalgesia 
does not differ from animals without a prior injury),61 

whereas neonatal opioids do not have this long-term 
effect (enhanced re-incision hyperalgesia does not differ 
from control animals receiving saline at the time of 
neonatal incision).61 As noted above, peripheral growth 
hormone signaling is altered by neonatal incision, and 
injection of growth hormone into hind paw muscles at 
the time of neonatal incision prevented the enhanced re- 
incision response in adulthood.50

Hyperalgesic priming is a form of plasticity in primary 
afferent nociceptive fibers.110 Prior exposure to an inflam-
matory stimulus (e.g., hind paw injection of carrageenan 
or interleukin 6) or hind paw incision results in more 
prolonged hyperalgesia following a subsequent challenge 
several weeks later with a different or previously subthres-
hold mediator.111 Targeting this form of plasticity may 
reduce the transition to persistent pain,111,112 but sex- 
dependent effects need to be considered because mechan-
isms and response to preventive interventions differ in 
adult male and female rodents.113–115

Tissue injuries, including surgical incision, activate 
endogenous inhibitory mechanisms in the spinal cord 
and brain that contribute to the resolution of pain but 
may also mask ongoing hypersensitivity (i.e., latent 
sensitization).116,117 Pathways include endogenous opioid 
signaling, with subsequent opioid antagonist administra-
tion unmasking the hypersensitivity, and long-term 
alterations in the constitutive activity of the mu opioid 
receptor increasing excitatory actions via altered 
N-methyl-D-aspartate receptor function.118 Activity at 
mu opioid receptors and kappa opioid receptors, but 
not delta opioid receptors, modulates latent sensitization 

following hind paw incision, and kappa opioid receptor– 
mediated inhibition of latent sensitization was greater in 
females.119 Similarly, in human adult volunteers, high- 
dose naloxone unmasks hyperalgesia following an experi-
mental thermal injury.120,121 Mechanism-based preven-
tive interventions are effective in adults,2 but because the 
acute and long-term effects of opioid exposure vary with 
postnatal age and sex,122,123 and when opioid is adminis-
tered in the presence or absence of surgical injury,61 

evaluation at younger ages is also required.122,123

Neuroimmune interactions involving neurons, micro-
glia, astrocytes, and T cells contribute to injury-induced 
changes in sensitivity and persistent pain.124,125 However, 
neuroimmune signaling is sexually dimorphic.56,126,127 

Microglial inhibitors in male, but not female, adult rodents 
reduce pain behaviors following peripheral nerve 
injury,128,129 hind paw inflammation,130 and hyperalgesic 
priming,131 whereas T cells may play key modulatory roles 
in females.132 Microglia can be primed by early life expo-
sures, resulting in intrinsic phenotypic changes and an 
exaggerated response to subsequent challenges.133,134 

Neonatal surgical incision primes spinal microglia, result-
ing in an enhanced degree and duration of microglial 
reactivity following re-incision in later life, and the asso-
ciated enhanced hyperalgesia is reduced by microglial inhi-
bitors in adult males.135,136 Preventive, but sex-dependent, 
effects are also evident from early development, because 
microglial inhibitors at the time of neonatal incision pre-
vented the enhanced response to adult re-incision in males 
but not females.16 Microglia also have important roles in 
developing neural circuits (e.g., neurogenesis, synaptic 
pruning, and synaptic plasticity),137,138 and perinatal insults 
can alter the normal sex-dependent trajectory of microglial 
development.139 Therefore, alongside the well-documented 
persistent alterations in excitatory and inhibitory signaling 
induced by neonatal incision,20 microglia may also influ-
ence developing spinal circuits.

Summary

The prevalence and impact of CPSP in children and 
adolescents is increasingly recognized. Detailed peri- 
operative phenotyping and longitudinal follow-up will 
improve prediction of CPSP and identify targets for 
intervention. Alongside patient- and parent-reported 
measures that encompass recommended domains of 
core outcomes for pediatric chronic pain,140 specialized 
evaluations of somatosensory function and pain modu-
lation, and assessments of connectivity and activity in 
central pain circuits, will contribute to understanding 
variability in postoperative pain trajectories. Ongoing 
translational preclinical studies evaluating age- and sex- 
dependent mechanisms will also inform comparative 
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efficacy and preclinical safety assessments of potential 
preventive pharmacological interventions.
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