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Abstract

SARS-CoV-2 vaccine booster dose can induce a robust humoral immune response, however, its cellular mechanisms
remain elusive. Here, we investigated the durability of antibody responses and single-cell immune profiles following
booster dose immunization, longitudinally over 6 months, in recipients of a homologous BBIBP-CorV/BBIBP-CorV or a
heterologous BBIBP-CorV/ZF2001 regimen. The production of neutralizing antibodies was dramatically enhanced by
both booster regimens, and the antibodies could last at least six months. The heterologous booster induced a faster
and more robust plasmablast response, characterized by activation of plasma cells than the homologous booster. The
response was attributed to recall of memory B cells and the de novo activation of B cells. Expanded B cell clones upon
booster dose vaccination could persist for months, and their B cell receptors displayed accumulated mutations. The
production of antibody was positively correlated with antigen presentation by conventional dendritic cells (cDCs),
which provides support for B cell maturation through activation and development of follicular helper T (Tth) cells. The
proper activation of cDC/Tfh/B cells was likely fueled by active energy metabolism, and glutaminolysis might also play
a general role in promoting humoral immunity. Our study unveils the cellular mechanisms of booster-induced
memory/adaptive humoral immunity and suggests potential strategies to optimize vaccine efficacy and durability in
future iterations.

Introduction
COVID-19 (coronavirus disease 2019) has been detec-
ted in more than half a billion cases and linked to over six
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could aid the decision-making on public-health strategy.
Among the different vaccines developed during the pan-
demic, inactivated vaccines are currently widely used in
China and other regions of the world. Protein subunit
COVID-19 vaccines, using the receptor-binding domain
(RBD) of the spike protein as antigens, require less
stringent cold-chain logistics and storage, a factor that
facilitates vaccine accessibility in the global supply”.
Previous studies have found that vaccinated cases have
improved clinical outcomes®. However, waning vaccine
effectiveness has been observed against COVID-19-
related hospitalization and death 5-7 months after the
second dose of the primary series, especially for various
immune-evasive variants. A booster dose of either
homologous or heterologous vaccine appears to increase
the protectiveness against hospitalization and to prevent
disease progression into severe stages’. The adjusted
vaccine effectiveness against symptomatic COVID-19,
based on a real-world study, was estimated to be 78.8%
with three doses of inactivated vaccine and 93.2%-96.5%
for a heterologous booster®. Such adjusted vaccine effec-
tiveness rates were 86.3% against hospitalization and
86.7% against COVID-19-associated deaths following a
three-dose inactive vaccine schedule’. Heterologous
boosters seemed to show higher vaccine effectiveness than
homologous boosters for all evaluated clinical endpoints.
After vaccination, the immune system retains a memory
ability which provides protection from subsequent infec-
tion and prevents disease progression into the severe stage.
Memory cells of the adaptive immune system and anti-
bodies that patrol in the body can recognize the invader
and generate a swift response upon re-encountering. The
period that these components last in the body determines
the durability of immune memories. In most studies, these
are quantified by the titers and spectrum of antibodies and
the magnitude of antigen-specific B cells and T cells.
Waning antibody titer occurs after the primary vaccine
series and thus a booster dose is advocated. However, the
durability of the antibodies to previously and currently
circulating variants following the booster dose, the exact
cellular process of booster-activated B cell immunity and
how long memory B cells could persist are opaque.
Massive single-cell 5 mRNA and V(D)] sequencing
(scRNA/V(D)J-seq) could provide a landscape view of the
cellular heterogeneity and immune repertoire diversity at
single-cell resolution. Previously, this approach has been
employed in demonstration of the BNT162b2 vaccine-
induced antigen-specific CD8 T cell responses®”. Collec-
tively, scRNA-seq and scV(D)J-seq could help understand
the B and T cell clonality, vaccine-induced cellular phe-
notypes and transcriptional signatures, which could
greatly assist in the intervention of COVID-19.
Herein, we investigated both the activation and memory
phases of adaptive humoral immune responses following a
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booster dose of RBD-subunit vaccine (ZF2001) and
inactivated vaccine (BBIBP-CorV), primed with two-dose
inactivated vaccines. Taking advantage of single-cell
immune profiling, we unveil the cellular basis for the
boosting effect and highlight key metabolic pathways
relevant to antibody production, both of which may lead
the development of a next-generation SARS-CoV-2 vac-
cine with higher and more durable efficacy.

Results
Durable response of neutralizing antibodies induced by a
heterologous or homologous booster dose

We carried out a pseudovirus neutralization test
(pVNT) of all the enrolled recipients and evaluated the
neutralizing titer post-homologous BBIBP-CorV/BBIBP-
CorV or post-heterologous BBIBP-CorV/ZF2001 booster
vaccination (Fig. la). The heterologous group showed
substantially higher pVNT values than those of the
homologous group during the 6-month follow-up period.
Although the neutralizing titers against the Omicron BA.1
variant were lower than those against the prototype strain,
it was still retained for at least 6 months.

The Omicron pVNT level 180 days (GMT 75.32, 95%
CI: 55.13-97.39) after the booster dose in the BBIBP-
CorV/ZF2001 group was 6.35 times higher than the
baseline (GMT 11.86, 10.87—-13.02), while the level in
the BBIBP-CorV/BBIBP-CorV group (GMT 36.74,
29.32-46.06) was 3.56 times higher than the baseline
(GMT 10.33, 9.91-10.76, P <0.0001). The tendency of
pVNT titer against the prototype strain was similar to
that against the Omicron Variant within 180 days post
booster dose (Fig. 1b). The levels of anti-RBD total
antibody and IgG isotype were also assessed during
follow-up (Fig. 1c). Consistently, both boosters induced
long-term production of anti-RBD antibodies, showing
the similar trajectory as the neutralizing titer level.
Moreover, the heterologous group displayed higher
antibody levels than the homologous group.

We next compared antibody waning 6 months post
vaccination against other published datasets (Supple-
mentary Fig. Sla). For the three-dose BBIBP-CorV/
ZF2001 and BBIBP-CorV groups in this study, 44.04% and
15.17% of the peak neutralizing antibody activity were
retained at 6 months. For the three-dose CoronaVac and
BNT162b2 groups, 27.20% and 27.77% were retained®’.
For the two-dose CoronaVac and BNT162b2 groups,
antibody waning was more evident, showing only 9.51%,
and 4.69%-10.11% of peak levels®'°712. Thus, the het-
erologous booster strategy displayed certain advantage in
inducing sustainable humoral immunity.

Global profiling of peripheral blood mononuclear cells
Next, we used scRNA-seq and scV(D)]-seq to study the
dynamics of immune cell profiles and B cell clones post
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homologous and heterologous booster vaccination. Since
recipients displayed large variations during each booster
dose, we selected those with extremely high or extremely
low antibody titers to study the cellular basis for antibody
response (Supplementary Table S1). In the homologous
group (InaV), we selected two subjects who were in the
top quartile of neutralizing antibody titer (InaV H group),
and two subjects in the bottom quartile by Day 3 (D3) and
D14 (InaV L group). In the heterologous group (PrSV),
four subjects in the top quartile (PrSV H group) and four
subjects in the bottom quartile (PrSV L group) were
enrolled (Fig. 2a).

The surrogate virus neutralization test (sVNT) was
carried out at D0, D3, D14, D90, and D180 post booster in
the scRNA-seq group (Supplementary Fig. S1b). We
found that B cell immunity was promptly activated within
two weeks of vaccination, declining gradually thereafter.
The sVNT titer of the heterologous booster group was
overall higher than that of the homologous group during

the six months of follow-up. On D14, the pVNT titers in
the PrSV H and PrSV L groups peaked at 38,280 and
1345, respectively, representing ~401 and 199 times of DO
in each group. On D180, the antibody levels in the PrSV H
and PrSV L groups decreased to 4096 and 608, respec-
tively. However, the neutralizing activity was retained in
both high- and low-antibody-titer groups. The same
phenomenon was observed in the homologous booster
group. Six months after vaccination, the PrSV H group
had a 5.66-fold higher antibody level than the InaV H
group (Fig. 2b).

Peripheral blood mononuclear cells (PBMCs) were col-
lected prior to (D0) and on D3, D14, D90, and D180 after
the booster vaccination (Fig. 2a). After quality filtering, we
obtained a total of 454,202 single-cell transcriptomes, with
a median expressed gene and unique molecular identifier
(UMI) counts of 1465 and 3845, respectively. We applied
Uniform Manifold Approximation and Projection (UMAP)
for visualization and clustered cells using a graph-based
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method, which yielded 12 clusters (Fig. 2c). In particular,
we identified six major known cell types by their unique
signature genes, including B cells (CD19, CD79A, CD79B),
T cells (CD3D, CD4, CD8A, KLRBI), dendritic cells (DCs)
(SI00A9, CLECI0A), monocytes (CD14, FCGR3A/CDI6),
natural killer (NK) cells (NKG7, TRDC, NCAMI), and
hemopoietic stem cells'® (EGFL7, GATAZ2) (Fig. 2d). In
addition to the transcriptome analysis, we also used single-
cell B cell receptor (BCR) sequencing (scBCR-seq) to
investigate clonal expansion in the activation phase and
persistence in the memory phase of B cell immunity.

Heterologous booster induced more robust activation of
plasma cells than homologous booster

Within the B cell population, we identified three major
subtypes, ie., naive B cells (MS4A1, IGHD, TCLI1A),
memory B cells (MS4A1, CD27, PTPN6, BLK) and plasma
cells (XBP1, MZBI1) (Fig. 3a, b). Plasma cells (plasmablast
and plasma cell), as the major source of antibody secret-
ing, displayed fast clonal expansion in response to booster
vaccination (Fig. 3c). The heterologous group showed
earlier expansion dynamics than the homologous group.
The major BCR isotypes of expanded clones were IGHA2
and IGHG2 in the homologous group and IGHA1 and
IGHGI in the heterologous group (Fig. 3d), revealing the
qualitative difference in humoral immunity induced by
different boosters (Fig. 1la—c). Consistent with the clonal
expansion, plasma cell proliferation appeared earlier in
the heterologous group (Fig. 3e). According to the gene
ontology (GO) enrichment analysis, plasma cells in the
heterologous group showed higher expression of genes
associated with protein translation, folding and glycosy-
lation. Moreover, oxidative phosphorylation in the mito-
chondria was more apparent (Fig. 3f). Comparing the
differentially expressed genes (DEGs) of plasma cells at
D3/D14 between PrSV and InaV groups, plasma cells
from the PrSV group highly expressed genes involved in
energy metabolism pathways like OXPHOS and aerobic
respiration, indicating that plasma cells in the PrSV group
were more active in producing and secreting antibodies
after booster vaccination (Supplementary Fig. S2a, b).
These features could partially explain the higher antibody
production in the heterologous group.

Early expansion and persistence of B cell clones underlies
sustainable antibody titers

To get deeper insights into the evolution of the adaptive
humeral immune response against SARS-CoV-2 vaccines,
we analyzed the overlap of BCR clones among B cell
subtypes at different time points. To study the origin of B
cells in response to the booster vaccination, we calculated
the BCR clones shared between expanded clones of
plasma cells at D3/D14 and total memory B cell clones
detected at D0/D3/D14 (Fig. 4a). We found that 134
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expanded clones detected in plasma cells were
vaccination-related clones, and 17 of them had shared
BCR with a subset of memory B cells, indicating the recall
of SARS-CoV-2-specific memory B cells. Interestingly,
another 11 expanded plasma cell clones had shared BCR
with naive B cells at DO/D3, suggesting de novo activation
and differentiation of B cells in response to booster vac-
cination. Compared with the de novo clones, the recalled
clones displayed higher frequencies of somatic hypermu-
tation (SHM) (Fig. 4b) and isotype switching (Fig. 4c),
suggesting that antibodies produced by the recalled clones
might have better activity and breadth.

Next, we studied whether B cell memory induced by the
booster could persist for a long period in the memory
phase. Of the 1293 expanded memory BCR clones
detected at D3/D14, 380 of them were detected at D90/
D180, showing good persistence of B cell memory
(Fig. 4d). Compared with total BCR clones detected at
D90/D180, ~60% of these shared clones expressed IgA or
IgG (Fig. 4e), in agreement with their origin of memory
cells. In addition, these persistent clones showed higher
SHM frequency than total clones (Fig. 4f). The SHM
frequencies of persistent clones at D180 were even higher
than those at D90 (Fig. 4g), suggesting continuous anti-
body affinity maturation.

In addition, we analyzed the differences of BCR clone
types between InaV and PrSV groups. We found 10/17
recalled clones, 9/11 de novo clones and 159/380 persis-
tent clones in the InaV group, as well as 15/17 recalled
clones, 10/11 de novo clones and 233/380 persistent
clones in the PrSV group. Thus, we surmise that both
heterologous and homologous boosters can induce the
antigen-related B cell activation and differentiation, and
that the presence of SARS-CoV-2 antigen-specific BCR
clones persists up to at least 180 days.

High antibody titers are associated with active processes
of antigen presentation and follicular helper T cell
activation

Different recipients exhibited highly variable antibody
titers in response to either homologous or heterologous
booster vaccination. It is thus important to understand
the immunological basis responsible for the variation. We
re-grouped the homologous and heterologous booster
recipients to high-antibody-titer and low-antibody-titer
groups, analyzing the key immunological pathways reg-
ulating antibody responses, i.e., antigen presentation and
follicular helper T-cell activation.

We observed the professional antigen-presenting cells
and found that antigen presentation activity of conven-
tional dendritic cells (cDCs) showed positive correlation
with antibody titers (Fig. 5a). In contrast, activity of plas-
macytoid dendritic cells (pDCs) or monocytes displayed
negative correlation with antibody titers. Further analysis
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Fig. 3 Acute B cell activation following by the booster vaccination. a UMAP representation of B cells derived from PBMCs. Clusters are denoted
by color and labeled with inferred cell types. b Dot plot of average expression and percentage of expressed cells of selected canonical markers in
each labeled B cell subtype. ¢ BCR clone differences across time points in each B cell subtype at DO, D3, and D14. d The relative percentage of each
isotype in each B cell subtype at DO, D3, and D14. e Dot plot shows the cell cycle score and average expression of cell cycle markers, TOP2A, MCMé6
and MKI67, in plasma cells. Dot size depicts the percentage of the indicated gene-expressing cells. f The enriched GO-BP terms of upregulated genes
in plasma cells in PrSV group at D3 (left) or D14 (right) post-vaccination. P value was derived by Benjamini & Hochberg test.

of each time point showed that the correlation of ¢cDC
antigen presentation and antibody titer was only evident at
DO (Fig. 5b), suggesting that the basal cDC function plays a
key role. In addition, Toll-like receptor signaling and
cytokine signaling (TNF, IFN, and IL-1) were more active
in ¢cDCs in the high-antibody-titer group at DO, which
could lead to improved cDC activation (Fig. 5¢). GO-BP
enrichment analysis supported that ¢DCs in the high-
antibody-titer group had better cell activation, cell adhe-
sion and antigen presentation (Fig. 5d). Thus, basal ¢cDC
activation and function may be crucial to triggering the
booster-induced antibody response.

In between cDCs and B cells, T cells play crucial
bridging roles. After receiving antigen stimulation from
¢DCs, a portion of T cells differentiate to follicular helper
T (Tth) cells that aid B cell differentiation into plasma
cells and memory cells at the germinal center. The pro-
portions of Tth cells in the high-antibody-titer group
were significantly higher than those in the low-antibody-
titer group at D14 (Fig. 6a). GO-BP enrichment analysis
further showed that upregulated genes in Tth cells in the
high-antibody-titer group at D3/D14 were associated
with virus response (Fig. 6b). The cell-cell communica-
tion analysis indicated that the context-dependent
crosstalk between cDCs, Tfh cells and B cells was
stronger in the high-antibody-titer group at D3/D14 and
D90/D180 (Fig. 6c¢), suggesting that the biological pro-
cesses underlying SARS-CoV-2 immunization, including
antigen presentation and the activation of Tth cells that
help the maturation of B cells, were more active in the
high-antibody-titer group.

Energy metabolism fuels antibody production

Due to the essential role of energy metabolism for all
biological processes, we investigated energy metabolism
dynamics of the immune cells involved in humoral
responses, ie., cDCs, Tth cells, memory B cells and
plasma cells (Fig. 7a; Supplementary Figs. S3, S4, S5, S6).

Mammalian cells can generate ATP molecules through
either glycolysis in the cytosol or the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation (oxphos) in
the mitochondria. Glycolysis relies solely on glucose while
oxphos can utilize carbon sources from glucose, gluta-
mine or fatty acids. cDCs showed the most active energy
metabolism among all cell types, engaging both glycolysis

and oxphos. Tth cells also engaged both glycolysis and
oxphos, though to a lower extent. Memory B cells and
plasma cells, however, depended more on oxphos than
glycolysis. In the high-antibody-titer group, the glutami-
nolysis pathway was upregulated in all four cell types.
Meanwhile, in four cell types, the fatty acid oxidation
pathway showed small but significant upregulation in the
high-antibody-titer group. The glycolysis pathway showed
relatively complex patterns. For instance, compared with
that of the low-antibody-titer group, the glycolysis level of
the high-antibody-titer group was comparable at DO,
upregulated at D3/D14, and downregulated at D90/D180.
Among all three major nutrients, glutamine appeared to
be the most relevant to antibody levels.

The pentose phosphate pathway (PPP) is a metabolic
pathway parallel to glycolysis that contributes to anabo-
lism rather than catabolism. PPP was highly active in
¢DCs, while showing minimal activation in other cell
types. When comparing the high- and low-antibody-titer
groups, we found that the PPP of cDCs was more active at
early time points in the high-antibody-titer group. The
hexosamine biosynthetic pathway (HBP) is a branch of
glycolysis that produces Uridine 5’-diphospho-N-acet-
ylglucosamine (UDP-GIcNAc) for protein glycosylation',
Plasma cells engaged active HBP because glycosylation is
critical for antibody activity. In contrast, memory B cells
showed minimal HBP activity. The HBP activity of plasma
cells also clearly correlated with antibody titers.

Since cDCs are metabolically active, we further analyzed
their nutrient uptake pathways. Compared with the low-
antibody-titer group, glucose and lipid uptake was gen-
erally upregulated in the high-antibody-titer group (Sup-
plementary Fig. S7a, c). Consistently, glutamine uptake
demonstrated an upregulation feature (Supplementary
Fig. S7b). Particularly, cDCs at DO displayed evident dif-
ferences between the high- and low-antibody-titer groups,
highlighting the importance of basal metabolic activity in
fueling booster immunogenicity.

Discussion

In this prospective study, we found that either homo-
logous or heterologous third-dose booster vaccines are
highly immunogenic for healthy adults, and the immune
responses are durable for at least 6 months. The hetero-
logous booster induces faster and more robust activation
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of plasma cells, leading to higher antibody production.
Either homologous or heterologous booster vaccination
can induce memory recall and de novo activation of B
cells, while the induced antibody isotypes are substantially
different between the two boosters. In both cases, the
expanded B cell clones persist for months, explaining the
sustained antibody levels observed in recipients. After
regrouping the recipients into two groups according to

their antibody titers, we found that the activation of ¢cDCs
and Tth cells was positively correlated with the antibody
titer. Active energy metabolism, especially glutaminolysis,
was also crucial for antibody production, suggesting a
potential strategy of nutrient supplementation for
improving vaccine efficacy.

Our observation of sustained antibody levels at the 6th
month time point suggested that the ZF2001 or BBIBP
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booster could both induce significantly increased and
long-term humoral responses against COVID-19, similar
to the phenomenon observed with mRNA vaccines'.
Though the immune responses of the booster may wane
over time, clinical observations have shown that the rate
of confirmed infection, severity rate and mortality would
remain low'®'”. One possible reason for the more durable
antibody titers post boosters compared to the two-dose
vaccination strategy may be the increased SARS-CoV-2-
specific T and B cells after booster injection. Previous
studies have reported that COVID-19 vaccination could
stimulate the spike- and RBD-specific memory B cells
capable of continued protection against SARS-CoV-2'%1?,

Furthermore, booster vaccinations could lead to a
rebound in immune response against SARS-CoV-2 var-
iants compared to two-dose vaccination. The broad
responses may be due to the co-evolution of B cells in
response to different variants, including SHM and mem-
ory B cell clonal turnover®>?",

We further conducted single-cell profiling to reveal the
underlying mechanisms of homologous and heterologous
booster-induced early and long-term humoral immunity.
We found that both the BBIBP-CorV/ZF2001 hetero-
logous booster group and the BBIBP-CorV homologous
booster group were able to recall functional B cell
responses, induce de novo activation of naive B cells and



Ai et al. Cell Discovery (2022)8:114

Page 11 of 15

a
O oo O b3p14 O Dpsop180
DC Tfh
Glycolysis_score Glycolysis_score Glycolysis_score Glycolysis_score
1 1 1
) 075
Fatty_acid =7 HBP_score Fatty_acid HBP_score Fatty_acid d HBP_score Fatty_acid HBP_score
degradation_score {iy = degradation_score' degradation_score degradation_score
-
LD
glutamine ] JFOPPP_score o amine DPPP_score  glutamine OLZ PPP_score  giutamine PPP._score
degradation_score degradation_score degradation_score degradation_score: =
,
b‘/
b- d
TCAswre OXPHOS_score TCA_score OXPHOS_score TCA_score OXPHOS_score
Memory Plasma
Glycolysis_score Glycolysis_score Glycolysis_score Glycolysis_score
1 1 1 1
075 075 075 0.75
Faty_acid e HBP_score Faty._acid o8 HBP_score Fatty_acid o8 _HBP_score Fatty_acid e HBP_score
degradation,_score degradation, scord degradation_score. degradation_score
025 5
PPP_score PPP_score PPP_score
glutamine glutamine glutamine - glutamine PPP_score
degradation_score degradation_score degradation_score degradation_score
TCA_score oxPos,scors TCA_score OXPHOS_score TCA_score OXPHOS_score TCA_score OXPHOS_score
b
DO D3/D14 D90/D180 DO D3/D14 D90/D180 DO D3/D14 D90/D180
2 i 2 i “ ® % i
F = | = | = Py |y | ety I e
£ o g s § o2 Titer
£ 4 ) i EH
: g <$> H mL
g o2 <) £ o
: i ‘ ‘ : £ A
H 3
H L H L H he H L H L H L H L H L H ; 8
Fig. 7 Energy metabolism of the key immune cells involved in humoral immunity. a Radar Plots shows energy metabolism pathway scores and
relative carbon metabolism pathway scores normalized according to all scored cells, ranging from 0 to 1. b Violin plots show the Fatty acid
degradation score, Glycolysis score and Glutamine degradation score of cDCs between high- and low-antibody-titer groups at DO, D3/D14 and D90/
D180. Values are means + SD. *P < 0.05, **P < 0.01, ***P < 0.001.

activate plasma cells (both IgA and IgG) and its differ-
entiation of isotypes, possibly accounting for the sig-
nificant increase in humoral responses post booster
vaccination. This is in accordance with the fact that both
IgG and IgA were highly produced antibody isotypes
during serological and mucosal immunity, either post
breakthrough infection or vaccination, in which IgG led to
phagocytosis and cytokine secretion and IgA could fur-
ther enhance IgG function and enrich cytokine secre-
tion??"2*, At D90/D180, we recorded persistence of
expanded B cell clones for months, which led to the
sustained antibody levels in the recipients. Our results
showed that heterologous booster dose could induce a
stronger and earlier antigen-specific immune response
compared with homologous booster, possibly due to the
differences in production strategy between these vaccines.
BBIBP-CorV vaccine was developed based on 3 strains
which covered the main population of SARS-CoV-2%°,
whereas ZF2001 targets the RBD of SARS-CoV-2 spike
protein, containing a dimeric form of the RBD?. SARS-
CoV-2 spike-specific memory B cells were enriched in

convalescent patients several months post infection, while
monoclonal antibodies against nucleoprotein (NP) and
open reading frame 8 (ORF8) were non-neutralizing and
non-protective in vivo, highlighting the significance of
immunization-induced neutralizing spike-specific mem-
ory B cells”. Other heterologous vaccination regimens,
such as the adenovirus-based ChAdOx1 (AstraZeneca)
vaccine followed by mRNA BNT162b2 (Pfizer-BioNTech)
vaccine for SARS-CoV-2, also generate robust immune
responses that may provide better antibody responses
than standard homologous ChAdOx1 vaccine series®".
According to the results of antibody responses against
the RBD in this study, it is not surprising that
ZF2001 showed better performance than BBIBP-CorV?>,
However, BBIBP-CorV might induce more comprehen-
sive cellular immunity than ZF2001, which remains to be
further studied.

Enhancing humoral responses post vaccination could
significantly improve vaccine efficacy. As such, exploring
potential strategies to increase antibody titers is of great
importance. Our study found that higher antibody titers
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were closely associated with activities of cDCs, which was
first reported among SARS-CoV-2 research after the
vaccines were approved for full use. DCs were the most
important antigen-presenting cells that could activate
downstream T cell and B cell immune responses, thus
playing key roles in the pathogenesis of COVID-19*?",
SARS-CoV-2 infection is known to disrupt DC immune
responses, leading to the possible stimulation of pro-
inflammatory cytokines®>. Although not reported in other
SARS-CoV-2 vaccines, the function of DCs was previously
demonstrated to influence the performance of modified
vaccinia Ankara by cytokine production and activation of
co-stimulatory molecules for T cell stimulation and cell
death®®. The development of DC-based therapeutic can-
cer vaccines have similarly revealed the vital role of DCs
in vaccination®, This study revealed the importance of
¢DCs in increasing humoral immune responses post
booster vaccination, suggesting the potential of activating
Toll-like receptor and cytokine pathways to stimulate
cDCs to elicit stronger T cell and B cell responses, with
the added potential benefits of achieving higher antibody
titers and even broader immunity against SARS-CoV-2
and its variants of concerns (VOCs).

Antibody production is highly dependent on energy
supply. Optimizing energy metabolism thus represents
another promising avenue to improve vaccine efficacy.
This aspect has been sparsely studied prior to the devel-
opment of the SARS-CoV-2 vaccines. Here, it was
revealed that glutamine was the nutrient most relevant to
antibody production. Glutamine is the most important
nitrogen source in cells and plays a key role in amino acid
transformation by transaminases®>*°. Clinical studies
have shown that glutamine supplementation can reduce
the need for intensive care in COVID-19 patients®.
Moreover, glutamine can promote both humoral and
cellular immunity induced by influenza virus vaccine®®. It
is thus reasonable to hypothesize that glutamine supple-
mentation during SARS-CoV-2 vaccination might have a
benefit in promoting humoral immunity.

In summary, our study unveils the cellular mechan-
isms of booster-induced humoral immunity and points
out several future directions to improve vaccine efficacy
in the global battle against the quickly evolving SARS-
CoV-2 viruses.

Materials and methods
Participant enrollment and sample collection

We conducted a prospective cohort study
(NCT05095298) to evaluate the immunogenicity of the
ZF2001 (PrSV group) or BBIBP-CorV (InaV group)
booster injection primed with two doses of BBIBP-CorV
vaccination. 71 and 63 participants were enrolled in the
ZF2001 or BBIBP-CorV booster group, respectively, and
neutralizing antibody titer was evaluated at DO, D3, D14,
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D90, and D180 post booster’”*’. In this study, two
participants from the BBIBP-CorV booster group were
selected who had the top 25% neutralizing antibody titer
(InaV H group), and two participants in the bottom 25%
by D3 and D14 (InaV L group). In the ZF2001 booster
group, four participants in the top 25% (PrSV H group)
and four participants in the bottom 25% (PrSV L group)
were enrolled. We further collected blood samples and
conducted single-cell sequencing. This study was
approved by the ethical committee of Huashan Hospital
Affiliated to Fudan University (KY2021-749). Written
informed consent was obtained from all the enrolled
patients.

Detection of anti-SARS-CoV-2 RBD neutralizing responses,
antibody and IgG

We assessed the anti-RBD responses induced by a third
dose of boosting vaccination, including plasma sVNT,
anti-RBD antibody and IgG tests. Blood samples were
taken from participants for serology tests at DO, D14 and
D28 after the booster shot. Plasma sVNT titer was
determined by using a SARS-CoV-2 Neutralizing Ab
detection kit (PerkinElmer SuperFlex Anti-SARS-CoV-2
Neutralizing Ab Kit, SDX-57042). The anti-RBD anti-
body and IgG was measured by PerkinElmer SuperFlex
Anti-SARS-CoV-2 Ab Kit and SuperFlex Anti-SARS-
CoV-2 IgG Kit.

According to the manufacturer’'s instructions
(www.perkinelmer.com), we used superparamagnetic
microparticles together with direct chemiluminescence
technology to detect antibody in plasma samples. Plasma
was serial diluted before detection, 50 pL diluted sample
was added to each of the sample wells then mixed with
50 uL. SARS-CoV-2 RBD protein labeled with acridinium
ester. Signals were captured using PerkinElmer SuperFlex
automatic chemiluminescence immunoassay analyzer.

To measure the neutralizing titer, the signals were
converted to sVNT titer using a reference standard curve
plotted with kit-suppled reagents. The sVNT titer was
determined by the reciprocal of the last dilution that
resulted in >50% reduction of the chemiluminescence
signal. The concentration of the anti-SARS-CoV-2 anti-
body or IgG of the samples was correlated with the
luminous intensity. Written informed consent was
obtained from each participant, and this study was
approved by the Ethics Committee of Jiangsu Provincial
Center of Disease Control and Prevention.

pVNT

Blood samples were taken from participants at DO, D14,
and D28 after the boosting vaccination. The samples were
taken from the participants of the control groups at DO.
Pseudovirus incorporated with spike protein from either
prototype or variants (Alpha, Beta, Gamma, and Delta)


http://www.perkinelmer.com
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were constructed using a procedure reported pre-
viously *'. On the day before transfection, 293 T cells were
prepared and adjusted to the concentration of 5-7 x 10°
cell/mL with DMEM complete medium. 30 ug of plasmid
pcDNA3.1.52, which expressed the spike protein was
transfected according to the previously established
instructions. Afterwards, diluted G*AG-VSV (VSV G
pseudovirus) was added into flasks. Serial dilutions of
human plasma and pseudoviruses with concentrations of
1300 TCID 50/mL were added into the plates. After
incubation, HuH-7 cells were added into the plates.
Chemiluminescence detection was performed after 24-h
incubation. Serial fold of dilutions were prepared and the
last column was used as the cell control without pseu-
dovirus. Positive was determined to be ten-fold higher
than the negative (cells only) in terms of relative lumi-
nescence unit (RLU) values. The Reed-Muench method
was used to calculate the virus neutralization titer. The
results were based on 3-5 replicates unless otherwise
specified.

Single cell collection, sorting, library preparation, and
sequencing

PBMCs were isolated using HISTOPAQUE-1077
(Sigma-Aldrich, 10771) solution according to the manu-
facturer’s instructions. Briefly, 4 mL of fresh peripheral
blood was collected in Ethylene Diamine Tetraacetic Acid
(EDTA) anticoagulant tubes and subsequently layered
onto HISTOPAQUE-1077. After centrifugation, PBMCs
remained at the plasma-HISTOPAQUE-1077 interface
and were carefully transferred to a new tube. Erythrocytes
were removed using red blood cell lysis buffer and
washed twice with sorting buffer (phosphate buffered
solution (PBS) supplemented with 2% fetal bovine
serum). The cell pellets were re-suspended in sorting
buffer and were subsequently passed through a 40-pum
Flowmi Cell Strainer.

The frozen PBMC cells were thawed according to the
User Guide CG00039_Demonstrated Protocol Fresh
Frozen Human PBMC:s. Briefly, the frozen PBMC cells
were thawed in a water bath at 37 °C and washed in warm
complete growth medium (RPMI medium with 10% fetal
bovine serum). The cell pellets were re-suspended in
sorting buffer and were subsequently passed through a
40-pm Flowmi Cell Strainer. Single-cell suspensions were
stained with 7-Aminoactinomycin D (7AAD) for fluor-
escence activated cell sorting (FACS), performed on a BD
Melody instrument.

Cell viability and cell concentration were determined
using a Countstar Automated Cell Counter. Cell viability
of PBMCs was greater than 90% and the cell concentra-
tion was adjusted to 500-1200 cells/uL. PBMCs were
loaded 18,000 cells/chip position using the 10x Chro-
mium Next GEM Single Cell 5" Kit v2. All the subsequent
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steps were performed following the standard manu-
facturer’s protocols. Purified libraries were analyzed by an
[lumina nova-seq 6000 sequencer, with 150-bp paired-
end reads.

Processing of scRNA-seq data and quality control

Cell Ranger (version 5.0) was applied to filter low-
quality reads, align reads to human reference genome
(GRCh38), assign cell barcodes, and generate the UMI
matrices. The output gene expression matrices were
analyzed by R software (version 3.6.1) with the Seurat
package (version 3.2.0). All samples were merged into
one Seurat object using the merge function in Seurat. Low
quality cells with < 200 genes detected, < 500 UMI counts
detected or > 10% mitochondrial UMI counts detected
were removed.

Dimension reduction, unsupervised clustering and cell-
type annotation

Dimension reduction and unsupervised clustering were
performed according to the standard workflow in Seurat.
SCTransform function was applied to normalize and find
highly variable genes (HVGs) within the single-cell gene
expression data. Mitochondrial genes, dissociation-
induced genes and HLA genes were removed from
HVGs for downstream analyses. Then, the effect of the
percentage of mitochondrial gene counts was regressed
out by using SCTransform function with parameter
“vars.to.regress = ‘percent.mt”. A principal component
analysis (PCA) matrix was calculated to reduce noise by
using RunPCA with default parameters. To remove batch
effects from different samples, Harmony (version 1.0) was
applied immediately after PCA with default parameters.
Then UMAP and graph-based clustering were performed
on the “harmony space” for visualization and cell clus-
tering. The main immune cell types were annotated based
on the expression pattern of DEGs and the well-known
cellular markers from the literature. In the first-round of
unsupervised clustering of all cells, we found that PTPRC
and HBB were co-expressed in some clusters, so we
removed these clusters for downstream analysis.

To identify subtypes within the B cell cluster, we per-
formed a second-round of unsupervised clustering on B
cells. The second-round clustering procedure was similar
to the first-round clustering, which started from the
expression matrix of the B cell subsets and then identified
HVGs, calculated the PCA matrix, corrected batch effects
by Harmony, detected cell clusters by Louvain algorithm
and performed dimensionality reduction for visualization.
The number of principal components was determined by
the Elbowplot function in Seurat. DEGs were detected
using the FindAllMarkers function with default para-
meters. Of note, we removed three clusters with high
expression of CD3 or PPBP from the B cell subpopulations.
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We also noticed several clusters with a high percentage of
dissociation-induced gene count in B cell subpopulations.
The high expression of dissociation-induced genes might
be artificially induced during the experiment. Therefore,
we filtered out these clusters from our analysis.

Differential expression analysis

To identify DEGs between two clusters, we used Find-
Markers function to perform differential gene expression
analysis. Genes with adjusted P<0.05 were considered
as DEGs.

BCR analysis

Cell Ranger (version 5.0) was applied to align BCR-seq
reads to the GRCh38 and to assemble BCR sequences.
The preliminary BCR sequences were filtered to keep
those characterized as high confident, full-length, pro-
ductive. These were assigned with a valid cell barcode and
an unambiguous chain type.

The Immcantation toolbox (version 4.3.0) was used for
BCR downstream analysis. Inmunoglobulin heavy chain
(IgH) sequences were annotated using AssignGenes.py and
IgBLAST. The SHazaM (version 1.1.0) package was used
to evaluate sequence similarities based on their Hamming
distance and estimate the distance threshold separating
clonally related from unrelated sequences. BCR sequences
were clustered into clonal groups using DefineClones.py,
where the distance threshold was set to 0.2. Create-
Germlines.py was then used to infer germline sequences
for each clonal family and observedMutations was used to
calculate SHM frequencies for each IgH sequence.

Calculating gene scores

Gene expression score was calculated based on the sum
of UMI counts of the genes in each gene set divide to total
UMI counts detected in each cell.

Cell-Cell interaction analysis

Cell-Cell interaction analysis was performed using
CellPhoneDB (version 3.0)*? and only Protein—Protein
interaction subsets were used. Width of the line repre-
sented the number of possibly activated protein couples
among the linked cell types.

Statistical analysis

The statistical tools, methods, and thresholds for each
analysis are explicitly described with the results or detailed
in the figure legends or the Materials and Methods section.
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