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Abstract: The influence of different irrigation regimes on olive fruit morphological parameters and on
the quantity and quality (marketable indices, phenolic content, fatty acid composition, and sensory
profile) of virgin olive oil (VOO) obtained from the Croatian cultivar Oblica, grown on an extremely
rocky and dry reclaimed karst soil, was studied over three years. Four treatments were applied:
rain-fed and three treatments calculated as 50%, 75%, and 100% of the crop’s irrigation requirement
(Irr). Principal component analysis separated growing seasons (GS) that differed in precipitation.
In the 2016 season, which had a low number of fruits per kilogram and provided a higher amount
of balanced VOO with medium to intense bitterness and pungency (rain-fed treatment), the oil
yield increased by irrigation (Irr 75 and Irr 100) up to 18%, while unchanged phenolics, bitterness,
and pungency were observed for the VOOs obtained. In the drier GS (2017), which under rain-fed
conditions had high fruit per kg, smallest fruit sizes, and lowest oil yield, and in which the VOOs
had high phenolic content and intense sensory taste attributes, fruit weight, fruit sizes, and oil yield
increased by 35% in all irrigation treatments, while phenols, bitterness, and pungency decreased,
balancing the sensory profile of the VOOs. The results obtained here led us to conclude that the
irrigation of young olives resulted in a positive effect, with the indication that an abundant water
supply is more effective in drought conditions.

Keywords: virgin olive oil; irrigation; young trees; sensory analyses; phenols; fatty acid profile

1. Introduction

Irrigation may be the single most strategically important intentional environmental
modification humans have learned to perform [1]. The driving force motivating farmers
and governments in regard to irrigation is increased production, higher incomes, direct
and indirect employment, and contribution to GDP [2]. Although olive trees are considered
to be quite drought resistant [3], olive cultivation in Southern Europe stopped relying on
rain-fed agriculture a long time ago, and the positive response of olive trees to irrigation is
well known [4,5]. In addition, our interest in irrigation is triggered by the new challenges
arising from climate change that threatens this traditional crop. The Mediterranean region
is considered a climate change “hotspot”, already facing significant warming and drying
trends and expected to do so in the future. In this context, climate change may become a
particular challenge for olive growers [4].
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Croatia followed the trend of introducing irrigation in the olive sector only a decade or
two ago. Our traditional olive groves, where mainly the local Oblica variety is grown, were
able to survive the hottest and least rainy summers and bear some fruit. The increasing
interest of our growers in olive irrigation coincides with the trend of planting olives on
reclaimed karst land, land that was brought into agricultural production for the first time.
The area under olive cultivation in the Republic of Croatia increased by 60% in the period
2000–2014, but expectations of higher olive yields have not been met. The main reason for
this is that many of the newly planted olive orchards have not yet come into full production.
We assume that the reason is a delay in the growth and development of many newly planted
olive groves because they were mostly planted on reclaimed karst. Actually, reclaimed
karst, the land where new olive orchards are mostly established, is a very marginal land
obtained from limestone by ripping, crushing and grinding. Such land is known for its high
content of rock fragments and weak physical properties. The massive planting of new olive
groves on the reclaimed karst soil has occurred rapidly and without sufficient knowledge
of the soil itself, as well as without sufficient comprehensive and specific knowledge of
olive cultivation on such soils.

Increasing productivity while maintaining the highest possible oil quality is the main
goal of all agrotechnical and technological developments. Considering that fruit quality
is important for the table olive and olive oil industries, morphological analysis can be an
effective tool for characterizing and distinguishing cultivars, forming associations between
them [6], but also between different agro-technical practices. The application of organ-level
dimensional phenotyping to describe morphological parameters is of great importance
to plant phenomics research and is usually part of phenotypic data collection as a basis
for the multiple analyses that can be subsequently performed [7]. Several studies on
olive trees grown under different water regimes have shown that fruit morphological
characteristics, such as longitudinal and equatorial diameter, volume, and pulp:stone ratio,
can improve [8–10]. Olive oil yield most closely reflects olive fruit growth and development,
which in turn depends on the optimal availability of water [4,5]. Irrigation increases the
water content of the mesocarp [11], which negatively affects the amount of oil separated [12].
It should be noted that dry matter and oil content are cultivar dependent traits [13], so
the changes that occur either agrotechnically or later during oil processing can hardly be
evaluated as a definite rule. For the VOOs obtained, the market quality parameters, e.g.,
free fatty acids, peroxide value, and spectrophotometric indices in the ultraviolet range,
most authors agree that the application of different irrigation strategies has little or no
effect [5,10]. However, in several previous studies, a negative correlation was observed
between the amount of water applied to olive trees and phenolic content, the primary
antioxidant of VOO [5,14]. Enzyme activity has been hypothesized to be higher under
stress conditions [15], although results have been found supporting the opposite effect
of irrigation on phenolic compounds [16], as cultivars have different abilities to adapt
to changing conditions of temperature and available water [16,17]. Changes in phenolic
content directly affect the oxidative stability of the oils, but also the sensory characteristics,
which are an important distinguishing feature of VOOs compared to other vegetable oils.
The response of different influencing factors, and in this case the effect of irrigation, in an
olive and consequently in a VOO in which several compounds have interactive, synergistic,
or antagonistic effects could be observed by looking for differences in these key properties
of the oil, which combine odor, taste, and retro-nasal properties.

Thus, the purpose of this study was to provide insight into the development of a
water-efficient management strategy for an olive orchard established on stony soils in an
area with low rainfall and frequent occurrence of high air temperatures during the growing
season. The specific objectives were to evaluate the impact of different irrigation regimes
based on olive water use quantification (50%, 75%, and 100% of crop evapotranspiration),
which was estimated by measuring (i) fruit and stone morphological parameters (weight,
width, length, area, aspect ratio, perimeter, shape, volume), (ii) fruit and oil yield, and (iii)
virgin olive oil quality (acidity, peroxide value, specific extinction coefficient at 232 and
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270 nm, phenolic content, fatty acid composition, and sensory profile) obtained from young
trees grown on extremely rocky and dry reclaimed Mediterranean karst soils in three years
with different duration and intensity of high temperature periods during irrigation.

2. Materials and Methods
2.1. Site Characteristics and Environmental Conditions

The study was carried out from 2015 to 2017 in the commercial olive orchard (O. euro-
pea L. cv. Oblica) located in Jadrtovac (Šibenik County, Croatia) at 90 m altitude, 5500 m
distanced from the sea, and positioned at 43◦39′54” N, 15◦58′45” E. The orchard was estab-
lished in 2010 on the reclaimed karst soil that was described in detail by Romić et al. [18].
Briefly, the olive orchard soil was obtained from a shallow rocky brown soil on limestone
by ripping it up to 60 cm in depth followed by the stone crushing and grinding the surface
layer to 25 cm depth. The obtained soil is notorious for its high proportion of rock frag-
ments, small ratio of fine soil particles, and low water holding capacity. From planting,
until the irrigation experiment was established, the trees were dry farmed. At the beginning
of the experiment, the average five-year-old tree’s height was 184.54 cm, tree width (N–S
and E–W) 207.0 cm and 209.8 and cm, trunk diameter (N–S and E–W) 72.0 cm and 72.5 cm,
respectively.

The orchard is influenced by the Mediterranean climate, defined as the Csa climate
type [19] and the Walter–Lieth climate diagram [20] is presented in Figure S1 (data obtained
from the Meteorological and Hydrological Service of Croatia). The weather is characterized
by hot dry summers and mild rainy winters. The maximum accumulated rainfall is
during November with at least three times as much precipitation in the wettest month of
winter as in the driest month of summer. The area is generally windy, with an average
annual wind speed of 3.9 m s−1. All climatic parameters, e.g., radiation, insolation, and
evapotranspiration, reach their maximum in July, except for wind speed.

Due to the significant variation in specific climatic features over short distances, data
collected from the Šibenik meteorological station were not considered completely reliable
for the study site. Therefore, during the period under study (Figure 1), an automated
weather station was installed at the study site (Pinova Meteo Weather Station http://
pinova-meteo.com/hr_HR/, accessed from 1 January 2015 till 31 December 2017) to record
the air temperature, relative air humidity, precipitation, leaf moisture, wind speed and
direction, solar radiation, and soil moisture, in 10-min intervals.

Annual precipitation values were 1015.7 mm, 757.1 mm, and 769.3 mm, respectively,
for 2015, 2016, and year 2017 (Figure S1). The total annual rainfall in 2015 was considerably
higher whilst in 2016 and 2017 was close to the average long-term precipitation average
(765.55 mm). In the period of olive pit hardening to the stage of full fruit development
(correspond to June till August), total precipitation amounted to 129.4 mm, 57.7 mm. and
19.7 mm for the years 2015, 2016, and 2017, respectively. In the same period, temperatures
were similar, except in August, in which recorded temperatures were higher in 2017
compared to the other two years (Figures 1 and S1).

The reference evapotranspiration (ET0) from Pinova Meteo Weather Station and crop
coefficient were used for irrigation management. Irrigation amounts were enough to
replace the crop evapotranspiration estimated with the crop coefficient approach [21]. The
crop coefficient values were those estimated for the olive orchard by [22].

2.2. Experimental Set-Up

In July 2014, a reconnaissance of the terrain was performed in the olive grove con-
sisting of the five-year-old autochthonous predominant Croatian cultivar Oblica. The
trees were planted at a spacing of 6 × 7 m. The irrigation experiment was set up as a
randomized complete block design with four levels of irrigation in five replicates. The
single experimental plot (replicate) consisted of three olive trees surrounded by guard trees
to avoid interferences among treatments. The four treatments started in 2014 and were
applied for four years (Table 1).

http://pinova-meteo.com/hr_HR/
http://pinova-meteo.com/hr_HR/
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Figure 1. Rainfall, air temperature and evapotranspiration during the growing seasons of (a) 2015,
(b) 2016 and (c) 2017.

Table 1. Experimental treatments and abbreviations used in the study.

Treatment Abbreviation

Rain-fed as a control C
Irrigation corresponding to 50% ETc Irr 50
Irrigation corresponding to 75% ETc Irr 75
Irrigation corresponding to 100% ETc Irr 100

Based on the daily water balance, drip irrigation was applied. Evapotranspiration
lost on rainless days was compensated by irrigation, while on rainy days irrigation was
postponed until the sum of effective precipitation had been consumed by ETc. To the
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main irrigation line placed along each tree row, a smaller pipe was attached to surround
each experimental tree separately (covering olive tree canopy), which was equipped with
drippers of appropriate capacity to ensure water delivery according to the experimental
design and irrigation treatments so that the same irrigation time is kept for all variants
of the experiment (Table 1). The web-based GALCON GSI irrigation controller (http:
//galconc.com/, accessed from 1 January 2015 till 31 December 2017) was used for remote
irrigation system management. The orchard was organically managed, with the same
management practices applied for all experimental plots. Heavy pruning was performed
in the first year of the experiment.

2.3. Olive Fruit Sampling

Olive harvest was performed in 2015, 2016, and 2017 when fruits had the ripeness
index of cca. 2.5–3 (determined based on skin color and pulp [23], precisely on 1 October
2015, 2 October 2016, and 10 October 2017. In 2015, the fruit yield was low for fruiting
per tree and the samples were averaged by harvesting and combining fruits from all trees
used in a particular treatment, after which only chemical analyzes were performed. In
the other two growing seasons (2016 and 2017), approximately 500 g of healthy olives per
tree were sampled along four transects (SE, NE, SW, and NW) and used for morphological
measurements. For olive processing and subsequent analysis, an additional 2 kg per tree
of fruits were hand-harvested. In both cases, the yield per tree was recorded, after which
the fruits from the three trees that make up each of the repetitions were merged for oil
processing and further morphologic analyses. To calculate the fruit yield per tree, all the
remaining fruits were mechanically harvested and weighted. The obtained mass per tree
was summed up with the fruit masses used for morphological measurements and the
oil production.

2.4. Olive Fruit and Stone Morphologic Analyses

Forty fruits per repetition were randomly selected from the homogenized batch con-
tained samples harvested from three trees and weighted with a precision up to 0.01 g.
On the same fruits, image analysis (quantitative morphological characterization) was per-
formed using Win FOLIA Pro software (Regent Instruments Inc., Quebec City, QC, Canada).
After the separation of the pulp from stone, the stone weight and image analysis of the
stones were performed. Quantitative morphological characterization, except for the weight,
included: area as the area inside the polygonal line-contour (A), horizontal width (Width;
HW), vertical length (Length; WL), aspect ratio (Aspect Ratio (W/L); AR), perimeter as the
total length of the polygonal line-contour (P) and shape (S). For both fruit and stones, the
shape was calculated as the relation between horizontal width and vertical length. The
volume of fruits and stones was estimated using the formula:

V =
4
3

π
vertical length

2
x
(

horizontal width
2

)2

2.5. Oil Extraction and Oil Yield

Olives were processed using laboratory oil mill Abencor (mc2, Ingenierias y Sistemas,
Sevilla, Spain), which simulates the industrial process of VOO production. Each sample
was obtained separately, and the mill parts were cleaned in between. Processing parameters
have been described in a previous paper by Jukić Špika et al. [24]. Olive fruits were milled
in the hammer crusher, and then the olive paste was kneaded for 35 min at 26 ± 2 ◦C in
the thermal beater. After the vertical centrifugation of 1370 g for 70 s, the oily must was
collected and left to decant. Oil samples were stored in darkness without headspace and
at 18 ± 2 ◦C until analysis. Oil yield was calculated as the ratio of the mass of extracted
oil and mass of olive paste used for the extraction, and expressed as a percentage of fresh
weight, considering oil density at the ambient temperature of 0.916 kg L−1.

http://galconc.com/
http://galconc.com/
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2.6. Analyses of Quality Parameters of Olive Oil and Sensory Evaluation

Determinations of free fatty acids (FFA), peroxide value (PV) and spectrophotometric
indices (K232, K270 and ∆K) were made following the analytical methods described in the
EC Regulation [25]. The sensory evaluation was conducted according to the International
Olive Council [26] methodology where odor and taste attributes were quantified using a
10-cm unstructured intensity ordinal rating scale from 0 (no perception) to 10 (the highest
intensity). The panel consisted of eight experienced and well-trained experts in VOO
tasting. Encrypted olive oil samples (15 g) were presented to the evaluators in covered blue
glass previously heated to a temperature of 28 ± 2 ◦C.

2.7. Analyses of Phenols

The content of phenols (TPC) was determined using the colorimetric method described
by Gutfinger [27]. Total phenols were isolated by liquid-liquid extraction of a solution
of oil in hexane with a water/methanol mixture (60:40, w/w), three times. The colori-
metric reaction was performed using Folin-Ciocalteu reagent (Sigma-Aldrich, St. Louis,
MO, USA), and the determination of the phenol was measured at 765 nm on a Cary 50
spectrophotometer, UV-VIS (Varian, CA, USA). Results were expressed as mg of gallic acid
per kg of oil.

2.8. Analyses of Fatty Acid Composition

Determination of fatty acid composition [28] was carried out by gas chromatog-
raphy, using an Agilent 6890N GC System (Santa Clara, CA, USA) equipped with a
flame ionization detector (FID), with the prior esterification of fatty acids that were
made according to ISO [29]. The methyl esters were separated on a DB-WAX column
(30 m × 0.25 mm × 0.25 µm). Helium was used as carrier gas with a flow rate of 1.5
mL/min. Injector temperature was set at 250 ◦C and detector temperature at 280 ◦C. The
oven temperature was programmed to rise 7 ◦C/min from 60 ◦C to a final temperature
of 220 ◦C, holding an additional 17 min. The split ratio was set to 30:1. Based on reten-
tion times of the standard mixture of fatty acids and methyl esters, the identification of
particular fatty acids was performed. Calculation of the quantitative composition of fatty
acids was carried out by means of the normalization surface method. Results for fatty
acid composition were expressed as the percentage of total fatty acids present in olive oil.
The percentage of total saturated (SFA), monounsaturated (MUFA), and polyunsaturated
(PUFA) fatty acids was calculated.

2.9. Statistical Analysis

All variables were examined separately by analysis of variance (ANOVA) and means
separations were performed by Tuckey tests at p≤ 0.05, to determine significant differences
among the applied irrigation treatments. To conclude and summarize, the multivariate
analysis of all data from 2016 and 2017 (years in which all morphological and chemical
analyses were conducted) was performed and the results are presented in the selected
two-factor PCA model. All statistical analyses were performed using Statistica 14.0.0.15
(Tibco Software Inc., Palo Alto, CA, USA, 2020)

3. Results and Discussion
3.1. Influence of Irrigation and Growing Season on Fruit Morphology, Fruit and Oil Yield

Irrigation treatments (as the main factor) affected the morphological parameters of
olive fruits (Table 2). Fruit area was highest in fully irrigated trees (Irr 100; 4.07 ± 0.74) and
showed a gradual significant decrease with the decrease in the amount of water received,
and finally fruits from non-irrigated trees had the lowest area (C; 2.55 ± 0.96). The same
pattern was observed for the average width, length, perimeter and volume of the fruits,
while the aspect ratio of the fruits (W/L) and the shape coefficient decreased with irrigation.
The fruits of the studied cultivar Oblica obtained in this study can be described as oval,
with an average width of 1.93 cm and length of 2.14 cm (Table 2). These values are similar
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to those obtained when describing the fruits of Istarska bjelica, while they are larger than
the fruits of Leccino [30]. Although these parameters have been shown to be cultivar
dependent [30], our results on the influence of irrigation on fruit size parameters are in
agreement with previously published results [8,31].

Table 2. Effect of different irrigation levels on olive fruit parameters during two experimental seasons.

Factor Area (cm2) Width
(cm)

Length
(cm)

Aspect Ratio
(W/L)

Perimeter
(cm) Shape Volume

2016

C 3.25 ± 0.85 b 1.95 ± 0.19 b 2.08 ± 0.35 b 0.95 ± 0.08 a 6.72 ± 0.89 b 0.9 ± 0.06 a 4.65 ± 2.19 b
Irr 50 3.11 ± 0.62 b 1.91 ± 0.19 bc 2.06 ± 0.25 b 0.93 ± 0.07 b 6.79 ± 0.9 b 0.86 ± 0.09 b 4.36 ± 1.35 b
Irr 75 3.07 ± 0.52 b 1.89 ± 0.17 c 2.06 ± 0.2 b 0.92 ± 0.05 b 6.89 ± 0.76 b 0.83 ± 0.13 bc 4.28 ± 1.10 b
Irr 100 3.94 ± 0.85 a 2.11 ± 0.23 a 2.36 ± 0.27 a 0.90 ± 0.1 c 7.86 ± 1.3 a 0.82 ± 0.12 c 6.33 ± 2.12 a

2017

C 1.86 ± 0.41 d 1.49 ± 0.16 d 1.58 ± 0.2 d 0.95 ± 0.05 a 4.96 ± 0.59 d 0.95 ± 0.03 a 2.01 ± 0.71 d
Irr 50 3.26 ± 0.72 c 1.96 ± 0.19 c 2.12 ± 0.27 c 0.93 ± 0.05 b 6.64 ± 0.75 c 0.93 ± 0.05 b 4.74 ± 1.67 c
Irr 75 3.88 ± 0.64 b 2.09 ± 0.17 b 2.38 ± 0.24 b 0.88 ± 0.05 c 7.29 ± 0.65 b 0.92 ± 0.05 bc 6.28 ± 1.63 b
Irr 100 4.19 ± 0.59 a 2.15 ± 0.16 a 2.50 ± 0.2 a 0.87 ± 0.05 d 7.64 ± 0.62 a 0.91 ± 0.06 c 7.13 ± 1.52 a

IRR C 2.55 ± 0.96 d 1.72 ± 0.29 d 1.83 ± 0.38 d 0.95 ± 0.07 a 5.84 ± 1.16 d 0.92 ± 0.05 a 3.33 ± 2.1 d
Irr 50 3.19 ± 0.67 c 1.93 ± 0.19 c 2.09 ± 0.26 c 0.93 ± 0.06 b 6.71 ± 0.83 c 0.89 ± 0.08 b 4.55 ± 1.53 c
Irr 75 3.49 ± 0.71 b 1.99 ± 0.19 b 2.22 ± 0.27 b 0.9 ± 0.06 c 7.1 ± 0.73 b 0.87 ± 0.11 c 5.31 ± 1.72 b
Irr 100 4.07 ± 0.74 a 2.13 ± 0.2 a 2.43 ± 0.25 a 0.88 ± 0.05 d 7.75 ± 1.02 a 0.86 ± 0.1 c 6.74 ± 1.88 a

F 268.76 274.60 307.43 92.10 275.70 35.90 234.39
p *** *** *** *** *** *** ***

GS 2016 3.34 ± 0.8 1.97 ± 0.21 a 2.14 ± 0.3 0.93 ± 0.07 a 7.06 ± 1.08 a 0.85 ± 0.11 b 4.9 ± 1.94
2017 3.3 ± 1.08 1.92 ± 0.31 b 2.15 ± 0.42 0.91 ± 0.06 b 6.63 ± 1.22 b 0.92 ± 0.05 a 5.04 ± 2.42

F 1.44 18.1 0.07 38.8 80.20 278.9 2.16
p ns *** ns *** *** *** ns

IRR × GS F 149.62 191.1 152.44 12.1 93.11 5.2 113.53
p *** *** *** ** *** ** ***

Means marked by different lowercase letters (a–c) in column (for each growing season) and for each main
factor (irrigation treatment and growing season) are significantly different (Tukey’s test, p ≤ 0.05). Significance:
** p ≤ 0.01; *** p ≤ 0.001, ns—not significant. Identification of main factors; IRR—irrigation treatment, GS—
growing season. Irrigation treatments: C—Control—rain fed treatment, Irr 50—irrigation corresponding to
50% ETc, Irr 75—irrigation corresponding to 75% ETc, Irr 100—irrigation corresponding to 100% ETc, (see also
Section 2.2).

In addition, the growing season showed a significant influence on some of the olive
fruit characteristics measured (width, W/L, perimeter and shape), while an interaction
between irrigation treatment and season was found for all parameters (Table 2). From
the observation diagram of principal component analysis (Figure 2), it can be seen that
irrigation treatments in two analyzed growing seasons influenced the measured parameters
to different degrees. It can be seen that irrigation had a greater impact in 2017 (the year with
less rainfall during pit hardening and the intense growth phase of the fruit compared to
2016) (Figure 1), where even with the lowest amount of water applied, 50% ET, significant
differences were observed. An increase in the width, length and volume of the fruit was
obtained. In 2016, the increase compared to rain-fed olives was achieved only with full
irrigation (Ir 100).

As for the diameters and shapes of the stones (Table 3), the maximum longitudinal
and equatorial diameters of the stones corresponded to those obtained with the highest
amount of water applied (Irr 100; 1.4 ± 0.18). The same changes due to irrigation were
observed for stone area, width, perimeter, and volume (Table 3). Morales-Sillero et al. [31],
in their localized irrigation experiment conducted in pots and in the field over two years,
found changes that were greater in the irrigation treatment than in the rain-fed treatment
only in the second year of the study. The growing season also had a significant effect for all
variables measured for the stones (Table 2), and the stones from 2017 were larger and more
elliptical (lower shape coefficient) than those from the 2016 season. An interaction between
irrigation treatment and season was found for all parameters, and the effect of irrigation on
the morphological characteristics of the stones was less evident in 2016, where only the Irr
100 treatment resulted in a significant increase in the measurements (Table 2, Figure 2).
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1 
 

 

Figure 2. Observation plot of the principal component analysis (PC1 vs. PC2) showing the dispersion
of samples on the measured morphological, chemical and sensorial parameters; and the diagram of
the loadings for the analyzed parameters.

Fruit yield per tree was influenced by irrigation regimes, but variability was observed
that was not clearly related to the amount of water applied between irrigation treatments
(Table 4). The growing season and the interactive effect of the main factors were also
recorded. The year 2016 had a higher fruit yield, but after analyzing the data, it is obvious
that there were no differences between treatments. In 2017, the lowest yield was recorded
in the control treatment (rain-fed), and it differed only compared to Irr 75, which had the
highest yield (Table 4). It is well known that olive is well adapted to drought and semi-arid
conditions, but increasing productivity is a very important commercial objective. The
results of irrigation treatments were variable, in cv. Picual no significant differences were
found between different irrigation treatments [32], in Leccino trees receiving 50% of their
water requirement the yield was 19% lower than in fully irrigated trees [11], in rain-fed
Leccino trees the fruit yield was 35% lower than in fully irrigated trees [33]. The differences
result from the different cultivars studied, the characteristics of irrigation (constant or in
specific periods), alternative bearing, vegetative growth, reproductive growth, and orchard
density [32,34–37], but also from the type of soil. The present study was conducted on low-
growing trees (184.54 cm, 207.00 cm, and 72.03 cm; tree height, width, and trunk diameter,
respectively) that were heavily pruned in 2014 and grew on soils with low water retention
capacity and low available soil moisture. Part of the yield difference can be attributed to
smaller fruit size (Table 2), but trees likely need more time for more vigorous growth and a
resulting increase in yield, with or without applied irrigation.
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Table 3. Effect of different irrigation levels on olive stone parameters during two experimental
seasons.

Factor Area (cm2) Width
(cm)

Length
(cm)

Aspect Ratio
(W/L)

Perimeter
(cm) Shape Volume

2016

C 0.74 ± 0.18 b 0.87 ± 0.1 b 1.14 ± 0.16 b 0.77 ± 0.08 ab 3.14 ± 0.42 b 0.93 ± 0.04 b 0.62 ± 0.22 b
Irr 50 0.74 ± 0.19 b 0.87 ± 0.11 b 1.13 ± 0.16 b 0.78 ± 0.07 a 3.11 ± 0.45 b 0.95 ± 0.05 a 0.61 ± 0.23 b
Irr 75 0.76 ± 0.18 b 0.88 ± 0.1 b 1.15 ± 0.15 b 0.77 ± 0.07 a 3.19 ± 0.42 b 0.93 ± 0.05 bc 0.63 ± 0.22 b
Irr 100 0.88 ± 0.12 a 0.94 ± 0.07 a 1.26 ± 0.11 a 0.75 ± 0.06 b 3.47 ± 0.27 a 0.92 ± 0.04 c 0.79 ± 0.16 a

2017

C 0.55 ± 0.12 d 0.74 ± 0.07 d 1.01 ± 0.14 c 0.75 ± 0.07 a 2.9 ± 0.44 c 0.84 ± 0.13 a 0.41 ± 0.13 d
Irr 50 0.88 ± 0.17 c 0.9 ± 0.08 c 1.34 ± 0.17 b 0.68 ± 0.07 b 3.69 ± 0.46 b 0.81 ± 0.09 a 0.87 ± 0.09 c
Irr 75 1.04 ± 0.12 b 0.96 ± 0.06 b 1.49 ± 0.11 a 0.65 ± 0.05 c 4.3 ± 0.63 a 0.73 ± 0.13 b 1.12 ± 0.13 b
Irr 100 1.09 ± 0.13 a 0.98 ± 0.06 a 1.53 ± 0.13 a 0.65 ± 0.05 c 4.3 ± 0.54 a 0.76 ± 0.11 b 1.21 ± 0.11 a

IRR C 0.65 ± 0.18 d 0.81 ± 0.11 d 1.08 ± 0.17 d 0.76 ± 0.07 a 3.02 ± 0.45 d 0.89 ± 0.11 a 0.51 ± 0.11 d
Irr 50 0.81 ± 0.19 c 0.88 ± 0.1 c 1.24 ± 0.2 c 0.73 ± 0.08 b 3.4 ± 0.54 c 0.88 ± 0.1 a 0.74 ± 0.1 c
Irr 75 0.9 ± 0.21 b 0.92 ± 0.09 b 1.32 ± 0.22 b 0.71 ± 0.09 c 3.74 ± 0.77 b 0.83 ± 0.14 b 0.87 ± 0.14 b
Irr 100 0.99 ± 0.17 a 0.96 ± 0.07 a 1.4 ± 0.18 a 0.7 ± 0.08 c 3.89 ± 0.6 a 0.84 ± 0.12 b 1 ± 0.12 a

F 278.28 200.4 290.64 54.5 207.81 33.5 289.08
p *** *** *** *** *** *** ***

GS 2016 0.78 ± 0.18 b 0.89 ± 0.1 1.17 ± 0.16 b 0.77 ± 0.07 a 3.23 ± 0.42 b 0.93 ± 0.05 a 0.66 ± 0.05 b
2017 0.89 ± 0.25 a 0.9 ± 0.12 1.34 ± 0.25 a 0.68 ± 0.07 b 3.8 ± 0.78 a 0.79 ± 0.12 b 0.90 ± 0.12 a

F 167.71 2.7 448.33 623.6 450.85 868.1 388.44
p *** ns *** *** *** *** ***

IRR × GS F 144.27 93.4 171.02 42.3 117.93 17.8 164.93
p *** *** *** *** *** *** ***

Means marked by different lowercase letters (a–c) in column (for each growing season) and for each main
factor (irrigation treatment and growing season) are significantly different (Tukey’s test, p ≤ 0.05). Significance:
*** p ≤ 0.001, ns—not significant. Identification of main factors; IRR—irrigation treatment, GS—growing season.
Irrigation treatments: C —Control—rain fed treatment, Irr 50—irrigation corresponding to 50% ETc, Irr 75—
irrigation corresponding to 75% ETc, Irr 100—irrigation corresponding to 100% ETc, (see also Section 2.2).

The number of fruits per kilogram was highest in the non-irrigated treatment, and no
significant differences were observed compared to the treatment with the least irrigation
(Irr 50) (Table 4). As irrigation increased, the number of fruit per kilogram decreased, and
the treatment with the most accessible water (Irr 100) had the lowest number per kilogram
but also the highest fruit weight. The variations in fruit weight per treatment are interesting.
The differences in fruit weight were not proportional, and the largest difference was found
between the control treatment (C) and the treatment with the lowest irrigation (Irr 50)
(difference = 0.93 g). There were no significant differences between the two years, although
there was an interactive effect for irrigation × season, and in 2016 higher fruit mass was
obtained only with Irr 100, while in 2017 significant changes were already obtained by the
Irr 50 treatment. Although pulp to pit ratio was generally not affected by the treatments
applied, when we consider the effects of the main factor, individual effects were observed in
each year (Table 4). Since Oblica is a dual-purpose cultivar, its weight and size parameters,
apart from oil production, are also of particular importance for the table olive industry.
Even considering fruit quality from this point of view, our results show positive effects of
irrigation (especially in Irr 75 and Irr 100 treatments) on obtaining adequate fruit weight
and suitable size parameters (pulp to stone ratio, volume, width and length) (Tables 2–4).
The improvement of these morphological parameters by irrigation treatments is consistent
with previous results [11,31,38].

Irrigation as the main factor affected oil accumulation in fruits (F = 12.413, p ≤ 0.0001).
By Irr 50 (12.76%), oil yield was about 20% higher than in the control treatment (C; rain-
fed; 10.25%). At the same time, oil yield of Irr 50 was more than 90% (93.5%) that of
fully irrigated trees (Irr 100) among which there was no statistically significant difference
(Table 4). Thus, irrigation even at Irr 50 allowed us to maintain the oil yield of fully irrigated
trees, thus saving water. An increase in oil content was reported by Dabbou et al. [39], who
also set a linear irrigation experiment on cv. Arbequina in which trees received a fixed
percentage of their evapotranspiration requirement during the irrigation period. Morales-
Sillero et al. [40], who studied the cultivar ‘Manzanilla de Sevilla’ under localized irrigation
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and non-limiting soil water conditions, reported the opposite, a decrease in oil yield with
irrigation compared to the rain-fed treatment. In most cases, irrigation had no effect on oil
content expressed as fresh or dry weight [41,42]. The type of soil, but also the resistance
of the cultivar to drought, most likely contribute to the differences in the results of the
different studies on the effects of irrigation on oil yield. In our previous study on rain-fed
Oblica grown on clay loam soils with alkaline reaction and low to medium skeleton content,
oil yield ranged from 10.3% to 17.7% with an average fruit mass of 5.72 g (3.16–7.98 g) and
extractability of 67.3% (41.2 to 87.3%) [43]. A negative role of irrigation has been frequently
reported for physical oil extraction [44–46], as an inverse relationship between fruit water
content and oil extractability [12] has also been reported for Oblica [43]. Oblica is usually
considered a drought-resistant cultivar. However, in the present study, the fruits of the
control treatment were small and had significantly lower weight. Thus, irrigation allowed
normal growth and flesh development, resulting in a weight close to the usual values for
Oblica in treatments Irr 75 and Irr 100, and finally, a higher oil yield was obtained in these
treatments compared to rain-fed (control) (Table 4).

Table 4. Effect of different irrigation levels on fruit yield, number of fruits per kilogram, fruit and
stone weight, pulp to pit ration and oil yield in two experimental seasons.

Factor Fruit Yield
(kg tree−1) No Fruit kg−1 Fruit Weight

(g)
Pulp Weight

(g)
Stone Weight

(g)
Pulp to Pit

Ratio Oil Yield %

2016

C 2.12 ± 1.43 356.60 ± 66.1 2.63 ± 0.53 b 2.41 ± 0.49 b 0.22 ± 0.09 b 10.02 ± 2.33 a 14.09 ± 1.17 b
Irr 50 1.53 ± 0.98 369.52 ± 79.1 2.76 ± 0.52 b 2.50 ± 0.4 b 0.26 ± 0.11 b 8.68 ± 1.9 ab 14.91 ± 1.62 ab
Irr 75 2.25 ± 1.39 373.26 ± 84.9 2.85 ± 0.54 b 2.58 ± 0.48 b 0.28 ± 0.11 b 8.17 ± 1.5 ab 17.11 ± 1.13 a

Irr 100 2.3 ± 1.70 267.11 ± 25.8 3.79 ± 0.38 a 3.41 ± 0.38 a 0.38 ± 0.07 a 8.11 ± 0.8 b 16.97 ± 1.88 a

2017

C 0.62 ± 0.42 b 617.42 ± 83.69 a 1.38 ± 0.34 c 1.15 ± 0.31 c 0.24 ± 0.06 d 4.94 ± 1.1 b 6.40 ± 0.1 b
Irr 50 1.86 ± 0.92 ab 362.91 ± 97.21 b 2.95 ± 0.87 b 2.54 ± 0.77 b 0.41 ± 0.11 c 6.17 ± 0.6 a 10.61 ± 1.49 a
Irr 75 2.81 ± 2.42 a 243.7 ± 22.6 c 3.94 ± 0.66 a 3.42 ± 0.57 a 0.53 ± 0.1 b 6.59 ± 0.5 a 10.32 ± 1.94 a

Irr 100 0.84 ± 0.72 b 229.64 ± 28.99 c 4.41 ± 0.53 a 3.78 ± 0.48 a 0.64 ± 0.06 a 5.98 ± 0.4 a 9.48 ± 0.2 a

IRR C 1.37 ± 1.29 b 431.12 ± 142.41 a 1.92 ± 0.76 d 1.69 ± 0.75 d 0.23 ± 0.07 d 7.12 ± 3.0 10.25 ± 4.13 b
Irr 50 1.69 ± 0.95 ab 366.21 ± 83.66 ab 2.85 ± 0.71 c 2.52 ± 0.62 c 0.34 ± 0.13 c 7.42 ± 1.9 12.76 ± 2.7 a
Irr 75 2.53 ± 1.96 a 308.48 ± 89.98 bc 3.40 ± 0.8 b 3.00 ± 0.67 b 0.40 ± 0.1 b 7.38 ± 1.3 13.72 ± 3.88 a

Irr 100 1.57 ± 1.48 b 248.37 ± 32.55 c 4.10 ± 0.5 a 3.60 ± 0.4 a 0.51 ± 0.15 a 7.04 ± 1.2 13.64 ± 4.17 a
F 4.1365 17.4060 60.078 56.443 45.380 0.670 12.413
p *** *** *** *** *** ns ***

GS 2016 2.05 ± 1.40 a 341.62 ± 76.73 3.05 ± 0.67 2.76 ± 0.6 0.29 ± 0.11 b 8.6 ± 1.7 a 15.77 ± 1.91 a
2017 1.53 ± 1.59 b 318.59 ± 138.35 3.27 ± 1.29 2.81 ± 1.13 0.47 ± 0.17 a 5.97 ± 0.9 b 9.19 ± 2.1 b

F 4.1825 0.9335 2.358 0.000 101.844 133.863 219.620
p ** ns ns ns *** *** ***

IRR × GS F 4.9211 11.0714 18.338 18.384 9.332 8.545 3.152
p *** *** *** *** *** *** **

Means marked by different lowercase letters (a–c) in column (for each growing season) and for each main
factor (irrigation treatment and growing season) are significantly different (Tukey’s test, p ≤ 0.05). Significance:
** p ≤ 0.01; *** p ≤ 0.001, ns—not significant. Identification of main factors; IRR—irrigation treatment, GS—
growing season. Irrigation treatments: C—Control—rain fed treatment, Irr 50—irrigation corresponding to
50% ETc, Irr 75—irrigation corresponding to 75% ETc, Irr 100—irrigation corresponding to 100% ETc, (see also
Section 2.2).

The growing season, as the main factor, also had a strong Influence on oil yield. In
2016, the yield was significantly higher than in 2017, and in the case of the control, the
difference was more than twice as large (Table 4). In each season, irrigation resulted in a
positive effect; in 2016, which generally (as an average of all treatments) had a low number
of fruits per kilogram and smaller fruits with lower weight, oil yield increased by up to 18%
due to irrigation (Irr 75 and Irr 100). Calculating the yield per tree, the total oil yield was
37 and 47% higher for Irr 75 and Irr 100, respectively, compared to the control treatment.
On the other hand, 2017 had a higher number of fruits per kg, and as an average of all
treatments the fruits were larger and had a higher weight. In this year, the irrigation
treatment resulted in a higher oil yield of about 35% (40–38–33%; Irr 50–Irr 75–Irr 100).
More accessible water did not significantly increase oil yield. One possible reason for the
significantly lower oil yield in 2017 was a very dry period that year during the pit hardening
and intense fruit growth (Figure 1; corresponding to June, July, and August), which resulted
in slower fruit growth. Although overall oil yield was lower in 2017 (as an average of all
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treatments), this year, as mentioned earlier, a greater shift was achieved compared to 2016
(a 35% increase compared to 18%; 2017 and 2016) (Table 4). This is consistent with the
hypothesis of Caruso et al. [10] that abundant water supply is more effective in dry/warm
years. Several irrigation studies have reported that differences between growing seasons
may also be due to differences in fruit yield, i.e., alternative bearing [11,31], to which Oblica
is extremely prone. However, in this experiment, young trees were used in which this trait
should be less pronounced. The fruit yield data obtained also do not support this theory
(Table 2), which is consistent with Ben-Gal et al. [47], who studied the influence of storage
cycles on olive oil production in response to irrigation.

3.2. Influence of Irrigation and Growing Season on Quality, Phenols and Sensory Characteristics

All olive oil samples obtained (Table 5) were classified as “extra virgin olive oil”
according to EU Regulation 2568/91 [25], indicating good fruit quality and the absence of
higher hydrolytic and oxidative oil alterations. Free fatty acids ranged from 0.30% to 0.50%
oleic acid, with the lowest free fatty acids found in oils from olives receiving most water
(100% ET). The peroxide value (3.86 to 6.86 meq O2 kg−1) was not affected by irrigation. The
specific absorbances in the UV part of the spectrum (K232, K270) were significantly lower
in oils from irrigated trees (Table 5). However, the effects of the main factors interacted
significantly, and lower K numbers were observed between treatments in 2017, while no
specific response of K numbers to irrigation was visible in 2015, and irrigation treatment
did not cause significant changes in 2016 (Table 5). Although significant changes in quality
parameters are visible due to irrigation and growing season, the changes are small and
no clear trend can be shown. Different results were also obtained for the physicochemical
parameters evaluated in other irrigation studies [31,38,48–50].

The results of the two-way analysis ANOVA show significant differences in phenolic
content between irrigation treatments and between growing seasons (Table 5). The con-
centration of phenols decreases with irrigation, which is consistent with previous findings
suggesting that water deficit can lead to increased synthesis of phenolic compounds in
olives and associated VOOs [51]. The increased synthesis was likely due to changes in en-
zyme activity involved in synthesis of secoiridoid compounds as main phenolic compounds
in olive fruit and VOO. The key enzyme for the hydrolysis of fruit phenolic glycosides
during olive oil extraction is endogenous β-glucosidase, and changes in its activity di-
rectly affect the final phenolic content and phenolic profile in VOO [52,53]. Consequently,
trees that received a higher amount of water probably yielded oils with lower phenolic
concentrations (Table 5).

However, in the present study, the main effect of growing season shows higher phenol
variability (F-statistic value) than irrigation, which was highest on average in 2017 (Table 5).
The results are consistent with the literature, namely in that the variability of oil phenols
within crops is influenced by the growing season [54,55] as well as other agronomic and
technological factors [56].

There was a significant interaction between the main factors (irrigation × growing
season) (F = 13.69, p ≤ 0.0001) (Table 5). Irrigation resulted in significant differences in
2015 and 2017, while no differences were observed between treatments in 2016. In 2015,
the TPC was lowest at 75% ET, but still 80% of the TPC of the oils from the non-irrigated
treatment (control). Irrigation had a significant effect in 2017 when TPC decreased linearly
(y =−225.78x + 1373.3; R2 = 0.9287), and finally, phenolics were 65% lower in oils from fully
irrigated trees (100% ET) than in the control treatment (Table 5). In contrast to the results
of Servili et al. [38], the VOOs of non-irrigated trees differed strongly between harvest
periods, with particularly high phenolic concentrations in 2017 (C in 2015—641.93 ± 10.24;
C in 2016—569.23 ± 148.44; C in 2017; 1099.94 ± 152.23 mg kg−1) (Table 5). The data on
olive fruit parameters from the 2017 control treatment (Tables 2 and 4) show that the fruits
were quite small, had the lowest pulp to pit ratio and yield only 6.4 ± 0.09% oil. Although
irrigation in this year also reduced phenol concentration, it allowed us to have normal
fruit growth and development (Tables 2 and 3) and lipogenesis (Table 4). Importantly, the
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treatment with the lowest water addition (Irr 50; 940.38 ± 124.91 mg kg−1) did not differ
from the control treatment in terms of phenolics (Table 5) and can be considered as VOOs
with high phenolic content [57]. The VOOs of Irr 75 (801.34 ± 109.82 mg kg−1) fell into the
same category. This is important for the classification of olive oil as a “health-promoting
food” [58], since oils containing more than 500 mg kg−1 should be able to safely comply
with the health claim limit for at least 12 months after bottling [57].

Table 5. Effect of different irrigation levels on quality paremetrs, phenols and sensory properties in
virgin olive oils in three experimental seasons.

Factor FFA (%)
PV

(meq O2
kg−1)

K232 K270
Phenols

(mg kg−1) Fruitiness Bitterness Pungency

2015

C 0.50 ± 0.01 a 4.06 ± 0.16 bc 2.40 ± 0.01 a 0.22 ± 0.01 a 641.9 ± 10.2 a 6.17 ± 0.3 a 5.91 ± 0.8 6.47 ± 0.5
Irr 50 0.46 ± 0.01 b 3.89 ± 0.19 c 2.34 ± 0.05 a 0.22 ± 0.01 a 610.1 ± 12.5 b 4.50 ± 0.2 c 6.84 ± 0.3 6.50 ± 0.5
Irr 75 0.47 ± 0.01 b 4.53 ± 0.29 b 2.22 ± 0.01 b 0.19 ± 0.01 b 515.5 ± 12.8 d 5.67 ± 0.3 ab 6.00 ± 0.5 5.67 ± 0.3

Irr 100 0.43 ± 0.02 c 5.26 ± 0.09 a 2.35 ± 0.01 a 0.21 ± 0.01 a 580.9 ± 7.5 c 4.84 ± 0.8 bc 5.50 ± 0.5 5.67 ± 0.6

2016

C 0.30 ± 0.07 5.79 ± 1.72 2.17 ± 0.21 0.20 ± 0.02 569.2 ± 148.4 4.94 ± 0.3 6.10 ± 0.9 6.54 ± 0.3
Irr 50 0.33 ± 0.05 6.17 ± 2.01 2.14 ± 0.24 0.18 ± 0.03 578.0 ± 122.4 4.72 ± 0.8 6.04 ± 1.5 6.62 ± 0.8
Irr 75 0.34 ± 0.05 6.16 ± 1.76 2.16 ± 0.15 0.20 ± 0.03 578.20 ± 113.2 4.56 ± 0.9 6.28 ± 0.9 6.58 ± 0.9

Irr 100 0.35 ± 0.06 6.24 ± 1.39 2.06 ± 0.16 0.19 ± 0.03 570.8 ± 74.8 4.78 ± 0.7 6.68 ± 1.7 6.92 ± 0.5

2017

C 0.34 ± 0.02 a 6.75 ± 0.5 a 2.59 ± 0.07 a 0.29 ± 0.03 a 1099.9 ± 152.2 a 5.45 ± 0.6 a 8.49 ± 0.6 a 7.4 ± 0.4 a
Irr 50 0.31 ± 0.04 a 3.86 ± 1.14 b 2.38 ± 0.10 b 0.22 ± 0.04 b 940.4 ± 124.9 ab 4.70 ± 0.5 a 8.15 ± 0.6 a 7.7 ± 0.6 a
Irr 75 0.31 ± 0.04 a 5.48 ± 1.49 ab 2.20 ± 0.16 c 0.20 ± 0.04 b 801.3 ± 109.8 b 4.90 ± 0.7 a 6.02 ± 0.5 b 6.58 ± 0.8 ab

Irr 100 0.23 ± 0.02 b 6.86 ± 2.37 a 2.35 ± 0.16 bc 0.21 ± 0.02 b 393.7 ± 114.9 c 4.33 ± 0.9 b 4.07 ± 0.5 c 5.57 ± 0.7 b

IRR C 0.36 ± 0.09 a 5.99 ± 1.38 a 2.43 ± 0.22 a 0.25 ± 0.05 a 779.5 ± 276.1 a 5.45 ± 0.6 a 6.81 ± 1.3 a 6.76 ± 0.5 ab
Irr 50 0.35 ± 0.07 ab 4.59 ± 1.70 b 2.30 ± 0.18 b 0.21 ± 0.04 b 731.5 ± 203.0 ab 4.70 ± 0.5 b 7.04 ± 1.4 a 7.01 ± 0.8 a
Irr 75 0.35 ± 0.07 ab 5.51 ± 1.49 ab 2.19 ± 0.14 b 0.20 ± 0.03 b 675.8 ± 160.9 b 4.84 ± 0.8 ab 6.13 ± 0.7 ab 6.35 ± 0.8 ab

Irr 100 0.32 ± 0.09 b 6.3 ± 1.78 a 2.25 ± 0.20 b 0.20 ± 0.03 b 502.6 ± 121.7 c 4.33 ± 0.9 b 5.52 ± 1.6 b 6.16 ± 0.9 b
F 3.944 2.459 4.740 7.111 15.630 9.622 7.684 5.408
p ** ns *** *** *** *** *** **

GS 2015 0.47 ± 0.03 a 4.44 ± 0.58 b 2.33 ± 0.08 a 0.21 ± 0.01 b 587.1 ± 49.1 b 5.3 ± 0.8 a 6.18 ± 0.7 6.08 ± 0.5 b
2016 0.33 ± 0.06 b 6.09 ± 1.60 a 2.13 ± 0.18 b 0.19 ± 0.03 b 574.1 ± 108.1 b 4.75 ± 0.6 b 6.03 ± 1.2 6.67 ± 0.6 a
2017 0.31 ± 0.05 b 5.69 ± 1.82 a 2.38 ± 0.19 a 0.23 ± 0.05 a 796.7 ± 275.08 a 4.58 ± 0.8 b 6.66 ± 1.9 6.83 ± 1.1 a

F 98.235 5.3684 20.790 19.514 34.686 5.310 0.991 5.217
p *** *** *** *** *** *** ns **

IRR × GS F 5.768 1.9371 2.290 5.097 13.695 4.044 6.416 3.687
p *** ns * *** *** *** *** **

Means marked by different lowercase letters (a–c) in column (for each growing season) and for each main
factor (irrigation treatment and growing season) are significantly different (Tukey’s test, p ≤ 0.05). Significance:
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001, ns—not significant. Identification of main factors; IRR—irrigation treatment,
GS—growing season. Irrigation treatments: C—Control—rain fed treatment, Irr 50—irrigation corresponding to
50% ETc, Irr 75—irrigation corresponding to 75% ETc, Irr 100—irrigation corresponding to 100% ETc, (see also
Section 2.2). FFA—free fatty acids, PV—peroxide value, K232 and K270—spectrophotometric indices. Delta—K
values for all analyzed samples were ≤0.01.

Phenolic components, which are thought to be largely responsible for the beneficial
effects of VOOs on human health [59,60], are positively related to the extension of the shelf
life of the oils and are also closely related to the organoleptic properties of VOOs [61,62].
They give VOOs their unique flavor in the form of bitterness and the chemical-esthetic
sensitivities of pungency and astringency. Considering this, it is understandable that
irrigation very often affects the sensory properties as it does the phenolic compounds, or at
least shows the same pattern of changes. No defects were found in the olive oil samples
obtained for this study, and according to the sensory evaluation rules [63], all oils were
classified as “extra virgin olive oil” (Table 5). The results discussed in this paper indicate
significantly different sensory profiles of the VOOs with respect to the applied irrigation
treatments (main factor). In general, these oils were of medium fruitiness, with bitter and
pungent attributes of high intensity. Although the differences were statistically confirmed,
the direction of change with respect to the fruity and pungent taste attributes is not clear.
Bitterness differed between the control and Irr 100 (the treatment with the highest amount
of water), where the least bitter oils were evaluated (Table 5). Oblica oils are described as
having a harmonious medium fruitiness and flavor with medium bitterness and medium
to intense pungency [24,64], although Oblica oils were found to have intense bitterness and
pungency and slight astringency at the beginning of the harvest season (green olives) or
were from the colder growing area at higher altitudes [24].
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A significant interaction for monitored sensory traits was observed between the
main factors (irrigation × growing season) (Table 5). In 2015 and 2016, the intensities
of taste sensory traits were similar for all applied treatments. This can be considered an
encouraging result, since it was possible to improve fruit morphological parameters and
oil yield without negatively affecting sensory quality. The year 2015 was significantly
rainier compared to the long-term precipitation mean (Figure 1 and Figure S1) and to two
other years studied, so irrigation was probably not as significant, i.e., the differences in
the amount of water supplied between treatments were sufficient to reflect the changes in
the sensory characteristics observed. Comparing 2016 and 2017, they had similar rainfall
values on an annual basis, but they differed significantly in rainfall during the period of
olive pit hardening and full fruit development. 2017 was a year of extremely low rainfall
(577 mm and 197 mm for 2016 and 2017, respectively; Figure 1). Thus, 2017 proved to
be the year with the greatest significant differences in sensory characteristics (Table 5).
PCA analyses confirm these, where it can be seen that the control sample in 2017 (rain-fed
treatment) was particularly disjointed, where high negative correlation of Factor 1 was
recorded with the frutiness, bitterness, and pungency (Figure 2). Fruitiness and pungency
differed significantly, with lower values in the Irr100 treatment. A decrease in fruitiness
with irrigation was also observed for the cultivar cv. Coratina grown on karst soils, which
was associated with a decrease in E-2 hexenal and C6 volatiles [65]. In the cultivars
Arbequina, Coratina, Koroneiki, and Cobrançosa, the oils from rain-fed, less irrigated,
or deficit irrigated (30% ETc) were more pronounced than the oils from fully irrigated
trees [66–68]. The different responses of the same cultivar to the same irrigation treatment
but applied in different growing seasons were reported by Fragepane et al. [5]. In the
present study, the intensity of the pungency of the control treatments between years is
interesting because it was one unit of measurement higher in 2017 (Table 5). Moreover,
the differences in bitterness were even greater (6.50 ± 0.87, 6.20 ± 0.91, and 8.49 ± 0.63 in
2015, 2016, and 2017, respectively). According to the regulation, VOO is imbalanced when
the median of bitter and/or pungent is higher than the median of fruity by two or more
units of measurement [63], which was the case here (Table 5). Irr 75 significantly reduced
the bitterness intensity, and with the increase of water addition (Irr 100), the bitterness
further decreased. The recorded results can be interpreted in two directions. First, as
negative, since producers with robust and intense bitter and pungent VOOs achieve the
best results in many competitions. Moreover, more intense oils/higher TCP mean that the
VOOs are more stable. However, the second approach faces consumers as most of them
want a balanced oil with medium intensity for daily consumption. The pungent taste and
highly bitter oils are perceived negatively by consumers and represent a barrier, especially
for those less familiar with VOOs [69]. Extra virgin olive oils from irrigated treatment (Irr
75, Irr 100) can be defined sensorially as balanced, harmonious oils with medium fruitiness,
medium bitterness, and medium to intense pungency (Table 5).

3.3. Influence of Irrigation and Growing Season on Fatty Acid Profile

GC analysis of fatty acids obtained from the VOOs with different irrigation strategies
showed the same profile of each fatty acid, but in different proportions (Table 6). As
expected, the fatty acid profile was dominated by oleic acid (C18:1), with a mean content of
69.6%, followed by palmitic acid (12.8%) and linoleic acid with 12.53%. Data analysis (two-
way ANOVA) showed that irrigation treatments significantly affected only the percentage
of oleic acid and linoleic acid. Lower levels of oleic acid were found in oils from trees that
received more water (Irr 75 and Irr 100). Conversely, linoleic acid content was significantly
higher in oils from irrigated trees than in oils from control trees (rain-fed treatment) (Table 6).
Such fatty acid changes have been observed in previous studies [5,8]. Cano-Lamadrid
et al. [8] recorded an additional effect on palmitoleic fatty acid, which decreased with
irrigation. A decrease in oleic fatty acid with irrigation was also observed in olive oils of
Baladi and Edlbi varieties, where irrigation caused changes in six other fatty acids [70],
although opposite effects of irrigation on oleic acid were also reported [65].
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Table 6. Effect of different irrigation levels on fatty acid composition in virgin olive oils in three
experimental seasons.

Factor Palmitic
(C 16:0)

Palmitoleic
(C 16:1)

Stearic
(C 18:0)

Oleic
(C 18:1)

Linoleic
(C 18:2)

Linolenic
(C 18:3)

Gadoleic
(C 20:1)

2015

C 14.86 ± 0.37 1.13 ± 0.26 2.29 ± 0.04 67.37 ± 0.21 b 12.44 ± 0.07 b 0.81 ± 0.01 0.30 ± 0.01
Irr 50 14.45 ± 0.35 1.01 ± 0.22 2.3 ± 0.05 68.53 ± 0.23 a 11.82 ± 0.09 c 0.81 ± 0.01 0.31 ± 0.01
Irr 75 14.41 ± 0.39 1.01 ± 0.23 2.23 ± 0.05 66.60 ± 0.21 c 13.82 ± 0.08 a 0.81 ± 0.01 0.31 ± 0.01

Irr
100 14.27 ± 0.38 1.02 ± 0.23 2.22 ± 0.05 68.46 ± 0.21 a 12.30 ± 0.06 b 0.81 ± 0.01 0.31 ± 0.01

2016

C 11.56 ± 0.55 b 0.74 ± 0.09 2.64 ± 0.34 71.54 ± 1.85 a 11.80 ± 0.81 b 0.64 ± 0.09 0.32 ± 0.05
Irr 50 11.76 ± 0.38 ab 0.70 ± 0.08 2.30 ± 0.08 70.26 ± 1.06 ab 13.32 ± 0.78 ab 0.66 ± 0.06 0.32 ± 0.05
Irr 75 12.24 ± 0.24 a 0.72 ± 0.05 2.52 ± 0.32 68.64 ± 1.35 b 14.24 ± 1.00 a 0.66 ± 0.06 0.34 ± 0.06

Irr
100 12.10 ± 0.20 ab 0.70 ± 0.08 2.26 ± 0.22 69.38 ± 1.16 ab 13.84 ± 1.20 a 0.66 ± 0.06 0.32 ± 0.05

2017

C 12.25 ± 0.22 1.00 ± 0.00 a 2.10 ± 0.00 b 73.80 ± 0.99 a 8.90 ± 0.71 b 0.80 ± 0.00 a 0.30 ± 0.00
Irr 50 13.00 ± 0.25 0.94 ± 0.12 a 2.22 ± 0.05 ab 70.64 ± 0.46 b 11.44 ± 0.49 a 0.68 ± 0.05 b 0.30 ± 0.00
Irr 75 12.76 ± 0.27 0.80 ± 0.00 b 2.26 ± 0.06 a 70.22 ± 0.71 b 12.16 ± 0.58 a 0.70 ± 0.00 b 0.34 ± 0.06

Irr
100 12.37 ± 0.47 0.77 ± 0.06 b 2.30 ± 0.10 a 70.64 ± 0.87 b 12.07 ± 0.52 a 0.70 ± 0.00 b 0.34 ± 0.06

IRR C 12.69 ± 1.58 0.91 ± 0.23 2.43 ± 0.33 70.74 ± 2.81 a 11.42 ± 1.48 c 0.73 ± 0.11 0.31 ± 0.04
Irr 50 12.86 ± 1.11 0.87 ± 0.19 2.27 ± 0.07 70.01 ± 1.09 ab 12.25 ± 1.04 b 0.71 ± 0.08 0.31 ± 0.03
Irr 75 12.94 ± 0.91 0.82 ± 0.15 2.36 ± 0.24 68.78 ± 1.69 c 13.35 ± 1.19 a 0.71 ± 0.07 0.34 ± 0.05

Irr
100 12.77 ± 1.02 0.81 ± 0.18 2.26 ± 0.16 69.48 ± 1.19 bc 12.94 ± 1.18 ab 0.72 ± 0.08 0.32 ± 0.05

F 1.280 1.983 0.607 9.910 19.410 0.950 0.770
p ns ns ns *** *** ns ns

GS 2015 14.50 ± 0.39 a 1.05 ± 0.21 a 2.26 ± 0.06 b 67.74 ± 0.87 c 12.60 ± 0.78 b 0.81 ± 0.01 a 0.31 ± 0.01
2016 11.92 ± 0.44 c 0.72 ± 0.07 c 2.43 ± 0.29 a 69.96 ± 1.69 b 13.30 ± 1.30 a 0.66 ± 0.07 c 0.33 ± 0.05
2017 12.70 ± 0.40 b 0.87 ± 0.12 b 2.24 ± 0.09 b 70.92 ± 1.34 a 11.47 ± 1.20 c 0.71 ± 0.05 b 0.32 ± 0.05

F 211.231 25.281 6.618 39.301 35.761 38.220 1.391
p *** *** *** *** *** *** ns

IRR × GS F 3.730 0.765 2.014 3.211 3.390 1.580 0.271
p ** ns ns * ** ns ns

Means marked by different lowercase letters (a–c) in column (for each growing season) and for each main
factor (irrigation treatment and growing season) are significantly different (Tukey’s test, p ≤ 0.05). Significance:
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001, ns—not significant. Identification of main factors; IRR—irrigation treatment,
GS—growing season. Irrigation treatments: C—Control—rain fed treatment, Irr 50—irrigation corresponding to
50% ETc, Irr 75—irrigation corresponding to 75% Etc, Irr 100—irrigation corresponding to 100% Etc, (see also
Section 2.2).

Growing season as a factor had a significant effect on the content of most of the
analyzed fatty acids (the exception being gadoleic acid). The highest variability (F value)
was found for palmitic acid. A significant interaction between the main factors (irrigation
treatment × growing season) was observed for palmitic acid, oleic acid, and linoleic acid
(Table 6). In 2016 and 2017, palmitic acid differed between treatments but without a
consistent pattern of change. For the other two fatty acids mentioned, a slight, although
not significant, reduction in oleic acid with irrigation was observed in 2016 (the third year
of irrigation treatments). With the extension of the experiment (2017), irrigated VOOs had
statistically lower levels of oleic acid (Table 6), while the opposite was true for linoleic acid.
This year was also the drier year in which the fatty acid profile was most affected compared
to the other two years (Figure 1). The changes visible and measurable after a few years of
irrigation were also observed in the study of oils from Arbequina olive trees [71]. However,
in previous work, different effects of irrigation on fatty acid composition were observed in
the years studied, such as a decrease in oleic acid and an increase in palmitic and linoleic
acid in one year studied and no effect or irregular changes in the second year [31,33]. In
other experiments conducted over several years, the growing season proved to be a more
influential factor than irrigation [10,71]. The changes in fatty acid synthesis are associated
with the activity of the condensing enzyme β-ketoacyl-ACP synthase II (KAS), which
catalyzes the elongation of palmitoyl-ACP to stearoyl-ACP [72]. As suggested by Beltran
et al. [73], the reduced oleic acid content may be due in part to lower KAS activity in the
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presence of higher water availability during fruit growth and intense oil synthesis. Other
environmental factors, such as light and temperature, may also influence activity [74].

In addition to the numbered fatty acids in Table 6, lauric acid (C 12:0, 0.02 ± 0.05),
myristic acid (C 14:0, 0.02 ± 0.05), behenic acid (C 22:0, 0.10 ± 0.01), lignoceric acid (C 24:0,
0.10 ± 0.01), heptadecenoic acid (C 17:1, 0.10 ± 0.01), arachidonic acid (C 20:0, 0.40 ± 0.03),
and heptadecanoic acid (C 17:0, 0.04 ± 0.01), with no differences as a function of irrigation
or within growing seasons were determined. All VOOs obtained in the present study were
within the regulatory limits [63]. Oblica was characterized by a medium content of oleic
acid, high content of palmitic acid, and medium content of linoleic fatty acid [24]. The
VOOs of Oblica cultivar obtained in the present study differed by a detected significant
increase in linoleic acid (effect of growing season, and effect of irrigation), so the other
listed fatty acid oils remained in the same categories, while the difference is that these oils
can be called oils with high linoleic acid content.

Table 7 contains the fatty acids of the oils studied, grouped according to the degree of
unsaturation. Monounsaturated and polyunsaturated fatty acids were significantly affected
by the irrigation regime. Monounsaturated fatty acids were higher and polyunsaturated
fatty acids lower in trees with medium and full irrigation (75% and 100% ET) than in
oils from non-irrigated trees, although the increases and decreases were not linear with
irrigation increase. In both groups, Irr 50 did not differ from the control treatment. The
irrigation regime showed significant differences in the ratios of oleic acid/linolenic acid and
monounsaturated/polyunsaturated fatty acids (MUFA/PUFA), both of which gradually
decreased with increasing water supply.

Table 7. Effect of different irrigation levels on fatty acids grouped upon unsaturation degree and
their ratios in virgin olive oils in three experimental seasons.

Factor ΣSFA ΣPUFA ΣMUFA Oleic/Linoleic
Ratio MUFA/SFA MUFA/PUFA

2015

C 17.75 ± 0.43 13.25 ± 0.08 b 68.90 ± 0.47 ab 5.42 ± 0.02 c 3.89 ± 0.07 5.21 ± 0.02 c
Irr 50 17.34 ± 0.28 12.62 ± 0.09 c 69.95 ± 0.46 a 5.81 ± 0.03 a 4.04 ± 0.09 5.55 ± 0.01 a
Irr 75 17.23 ± 0.32 14.62 ± 0.07 a 68.01 ± 0.44 b 4.83 ± 0.02 d 3.95 ± 0.10 4.66 ± 0.02 d
Irr 100 17.08 ± 0.32 13.11 ± 0.07 b 69.88 ± 0.43 a 5.57 ± 0.02 b 4.10 ± 0.10 5.34 ± 0.01 b

2016

C 14.82 ± 0.94 12.44 ± 0.79 b 72.70 ± 1.80 a 6.10 ± 0.56 a 4.93 ± 0.42 5.87 ± 0.51
Irr 50 14.68 ± 0.41 13.98 ± 0.74 ab 71.38 ± 1.11 ab 5.30 ± 0.40 ab 4.87 ± 0.21 5.13 ± 0.36
Irr 75 15.38 ± 0.55 14.90 ± 1.04 a 69.80 ± 1.33 b 4.85 ± 0.43 b 4.55 ± 0.23 4.71 ± 0.41
Irr 100 14.98 ± 0.39 14.50 ± 1.26 a 70.50 ± 1.11 ab 5.05 ± 0.54 b 4.71 ± 0.14 4.90 ± 0.52

2017

C 15.05 ± 0.22 b 9.70 ± 0.71 b 75.20 ± 0.99 a 8.33 ± 0.78 a 5.00 ± 0.14 a 7.78 ± 0.67 a
Irr 50 15.84 ± 0.28 a 12.12 ± 0.47 a 71.98 ± 0.47 b 6.19 ± 0.29 b 4.55 ± 0.09 b 5.95 ± 0.26 b
Irr 75 15.64 ± 0.33 ab 12.86 ± 0.58 a 71.46 ± 0.71 b 5.79 ± 0.35 b 4.58 ± 0.13 b 5.57 ± 0.32 b
Irr 100 15.27 ± 0.38 ab 12.77 ± 0.52 a 71.84 ± 0.77 b 5.87 ± 0.33 b 4.71 ± 0.17 ab 5.64 ± 0.29 b

IRR C 15.75 ± 1.54 12.14 ± 1.46 c 72.06 ± 2.72 a 6.34 ± 1.19 a 4.63 ± 0.59 6.06 ± 1.05 a
Irr 50 15.74 ± 1.10 12.95 ± 1.01 bc 71.28 ± 1.09 ab 5.76 ± 0.50 b 4.56 ± 0.36 5.54 ± 0.46 b
Irr 75 15.91 ± 0.86 14.06 ± 1.20 a 70.03 ± 1.64 c 5.21 ± 0.58 c 4.42 ± 0.31 5.03 ± 0.54 c
Irr 100 15.63 ± 1.00 13.65 ± 1.17 ab 70.70 ± 1.12 bc 5.42 ± 0.52 bc 4.55 ± 0.32 5.22 ± 0.48 bc

F 0.850 18.631 10.600 25.014 2.780 23.670
p ns *** *** *** ns ***

GS 2015 17.35 ± 0.39 a 13.40 ± 0.78 a 69.19 ± 0.92 c 5.41 ± 0.38 b 4.00 ± 0.12 b 5.19 ± 0.35 b
2016 14.97 ± 0.63 c 13.96 ± 1.31 a 71.10 ± 1.68 b 5.32 ± 0.66 b 4.77 ± 0.29 a 5.15 ± 0.62 b
2017 15.56 ± 0.40 b 12.18 ± 1.17 b 72.21 ± 1.38 a 6.28 ± 0.92 a 4.65 ± 0.19 a 6.01 ± 0.80 a

F 97.630 33.360 35.600 43.092 63.140 41.020
p *** *** *** *** *** ***

IRR × GS F 1.990 3.180 3.100 6.464 2.140 5.720
p ns * * *** ns ***

Means marked by different lowercase letters (a–c) in column (for each growing season) and for each main
factor (irrigation treatment and growing season) are significantly different (Tukey’s test, p ≤ 0.05). Significance:
* p ≤ 0.05; *** p≤ 0.001, ns—not significant. Identification of main factors; IRR—irrigation treatment, GS—growing
season. Irrigation treatments: C—Control—rain fed treatment, Irr 50—irrigation corresponding to 50% ETc, Irr
75—irrigation corresponding to 75% ETc, Irr 100—irrigation corresponding to 100% ETc, (see also Section 2.2).
ΣSFA—saturated fatty acid; ΣPUFA—polyunsaturated fatty acid; ΣMUFA—monounsaturated fatty acid.
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The growing season affects all groups and ratios of fatty acids. MUFA and the ratio
of oleic acid to linoleic acid were higher in 2017 than in 2016 or 2015, and a significant
interaction between irrigation and growing season was found for PUFA, MUFA, the ratio
of oleic acid to linoleic acid, and MUFA/PUFA. Irrigation treatments did not show the
same response across years, with 2015 being quite erratic, while 2016 and 2017 followed
the same trend. The greater decrease in the oleic/linolenic acid ratio with irrigation was
observed in the year with the highest ratio (25% in 2016: 31% in 2017) (Table 7).

The ratios are positively correlated with the oxidative stability of the oil, and the
average oleic acid/linolenic acid ratio determined in the present study was 5.6 (with a
range of 4.3 to 8.3). A medium to low ratio is indicative of the importance of suitable
storage conditions for Oblica oils, regardless of irrigation treatment (Table 7).

4. Conclusions

This study investigated a series of morphological characteristics, chemical properties,
and sensory attributes of Oblica cultivar VOOs under the influence of four treatments:
irrigation corresponding to 50%, 75%, and 100% ETc, and the control treatment as rain-fed.

Irrigation treatments in two analyzed growing seasons influenced the measured
parameters to different degrees. Thus, in conclusion, we provide descriptions of fruits and
VOOs by listing the most prominent characteristics noted in each growing season and the
changes observed with irrigation treatments:

- Year 2016 had 356.60 ± 66.14 fruits per kg, oil yield of 14.09 ± 1.17%, balanced VOO
of medium to intense bitterness and pungency; by irrigation→ increased fruit size
characteristics by Irr 100→ increased fruit weight by Irr 100→ increased oil yield for
18%→ irregular changes in oleic fatty acid→ unchanged phenolics, bitterness and
pungency.

- Year 2017 had 617.42± 83.69 fruits per kg, the smallest fruit proportions, the lowest oil
yield (6.4 ± 0.09%), high phenolic content, unbalanced VOO with intense bitterness
and pungency; due to irrigation→ increased fruit size characteristics for all irrigation
treatments→ increased fruit weight for all irrigation treatments→ increased oil yield
for 35%→ decreased oleic fatty acid→ decreased phenols→ decreased bitterness
and pungency→ balanced VOO achieved.

According to our results, the irrigation of olives grown on reclaimed karst soil can
improve the main morphometric parameters of fruit and stone, as well as oil yield.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11182923/s1, Figure S1: Monthly mean temperature, pre-
cipitation sum and evapotranspiration during the (a) 2015, (b) 2016, (c) 2017 and (d) Walter-Lieth
climate diagram.
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