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INTRODUCTION
The wide range in presentation, treatment response and outcome of
diffuse large B-cell lymphoma (DLBCL) reflects a large underlying
biological heterogeneity [1]. Various molecular DNA-, RNA- and
protein-based subtyping approaches have been proposed over time,
but failed to sufficiently capture its biological heterogeneity in a
clinically sufficient manner, precluding major clinical consequences
[2–5]. The most recent DNA-based subtyping studies as indepen-
dently proposed by the Dana Farber Cancer Institute (DFCI) and the
National Cancer Institute (NCI) are a major step forward [6, 7]. These
subtypes are based on DNA-mutation, genome-wide copy number
aberration (CNAs), and translocation information. Despite different
bioinformatic approaches, the resulting 5- to 7 subtypes largely
recognize similar DLCBL pathogenicities and starts to offer a clinically
impactful refinement at a level sufficient to serve as a basis for
exploration of personalized and targeted treatment in the coming
years. Its clinical potential already paid off with the recent finding
that benefit from the BTK inhibitor ibrutinib plus R-CHOP is highly
specifically associated with two of the genetic subtypes [8]. To enable
consistent trial designs and meaningful comparisons between
studies, we consider it pivotal to harmonize the currently available
DNA-subtyping knowledge into a single classification, preferably
widely applicable in diagnostic routine. In this perspective we
investigate harmonization opportunities and suggest potential
avenues from a bioinformatics point of view.

BIOINFORMATICS APPROACHES FOR THE CURRENT DNA-
BASED DLBCL SUBTYPING
The DFCI and NCI DLBCL subtyping studies are both based on whole
exome sequencing data but differ essentially in a priori concepts and
bioinformatic strategies. In brief, the DFCI group used unsupervised
clustering combined with alteration-centric features. Driver altera-
tions were discriminated from passengers, reducing the genetic
dataset to 158 features. Next, unsupervised clustering by means of
non-negative matrix factorization (NMF) identified patterns of co-
occurring features to define clusters and assign each included patient
sample. The NMF algorithm uncovered the optimal stability of
subtype clusters to be represented by five groups of similar sizes,
which the authors labeled as C1 to C5. The NCI group used semi-
supervised clustering combined with gene-centered features. Prior

knowledge was used to define four classes with 1 or 2 DNA “seed”
features, the a priori assumption. The algorithm subsequently
selected additional features with the strongest association to those
seeds unsupervised by iteration. All patient samples were included
for this 4-class algorithm, but only 46% of cases could be assigned
[9]. Recurrent alterations in unassigned cases prompted an extension
with two classes. The “seed” features for one of these additional
classes were “TP53 inactivation” and “high CNA load”, in analogy with
DFCIs C2 subtype with p53 mutation and deletion (17p) as its top
features and a multiplicity of CNAs. This was a first step toward
harmonization. The resulting Bayesian-based probability score,
named Lymphgen classifier, assigned 63% of cases [7]. Despite the
very different designs, most subtypes are remarkably similar with
similar underlying biology [1, 7], though some are more similar than
others and some are only recognized by one of the algorithms.

CRITICAL EVALUATION OF THE CURRENT SUBTYPING
SYSTEMS
Prior to applying their subtyping algorithms, the DFCI and NCI groups
used different ways to convert the detected DNA-alterations into
features. DFCIs alteration-centric approach regards each DNA
alteration type separately be it mutation, translocation, or CNA.
Hence, a point-mutation of CDKN2A, a deletion at the CDKN2A-locus
9p.21 or the entire chromosome 9 arm would each be regarded as
separate features. NCIs gene-centric approach combines any DNA-
alterations that impact the same gene into a single feature. Hence,
any alteration detected that affects CDKN2A, would be reduced into a
single feature. These two different ways of handling biological
features leads to discrepancy in their contribution to subtype
assignment that determine biological deregulation and clinical
impact. For harmonization we argue that focal chromosomal CNAs
which encompass only one or few genes [10] can be readily
combined with point-mutations in a gene-centric fashion as these can
be assumed to lead to the same overall biological effect [11]. The
choice is less obvious for large-scale chromosomal CNAs since these
harbor hundreds of genes such that biological insights remain elusive
[12] and may be resolved mathematically by calculating an optimal
biological characterization of the classes with either feature choice.
Supervised- and unsupervised (machine learning) algorithms may

be chosen for subtyping [13]. A supervised approach uses predefined
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classes to construct a classification rule from the features, while in an
unsupervised approach, the algorithm identifies patterns and distinct
feature characteristics in unlabeled data. A supervised approach
precludes recognition of unknown subtypes. Unsupervised clustering
is an elegant data-driven approach that can identify unknown
subtypes in high-dimensional data [14–16]. Yet, due to the high
number of features unsupervised clustering requires sufficiently large
sample sets to recognize rarer subtypes. Rare subtypes are pivotal to
recognize since targeted treatment may be available exemplified by
3–4% of ALK translocated lung cancers or ERBB2 positive colon
cancers that can be targeted with respectively trastuzumab/neratinib
or crizotinib [17, 18]. Likewise, potential specific sensitivity to Ibrutinib
of a small fraction of DLBCL patients (<2%) which carry NOTCH1
mutations justifies inclusion as a seed by NCI Lymphgen [8].
Not specifically captured by either of the algorithms are the high-

grade B-cell lymphomas (HGBLs) characterized by prognostic
features MYC- combined with BCL2 and/or BCL6 rearrangement
[19]. As a solution, NCI Lymphgen introduced a previously published
RNA expression-based signature (DHITSig) as a surrogate for MYC
status as an add-on to the EZB subtype [20]. From a diagnostics point
of view this would be suboptimal as it requires two separate assays.
Also about 35% of all DLBCLs are assigned as DHITSig-pos whereas
genuine MYC double- or triple-hits only occur in about 5% of all
DLBCL patients [20], indicating that DHITSig is not specific. To resolve
the actual relation between DNA-subtyping and HGBL, we argue that
unsupervised clustering is the method of choice, whereby the NMF
algorithm is attractive given its robustness against the high number
of features. However, to enable NMF to recognize a HGBL cluster the
number of patient samples should be enlarged with sufficient MYC
positive cases and BCL2 and BCL6 as features.
Unsupervised NMF clustering assigns each sample to a cluster,

whereas the Lymphgen algorithm assigns samples based on
probability, and recognizes that not every DLBCL sample contains
sufficient subtype characteristics. A simple exercise of 1000 NMF

clustering iterations with each time 80% resampling to determine
consensus clustering [21] shows that only about 70% of the DFCI
patients are consistently assigned to the same cluster (Fig. 1). The
other 30% do not have (sufficient) specific characteristics to be
consistently assigned to one or any subtype, like with the Lymphgen
algorithm. We believe that this reflects the heterogeneous and
continuous nature of DLBCL, supported by recent studies that
included mechanistically different mutation-types and thereby
further dissect molecular DLBCL classes [22].
While unsupervised clustering is suitable for class identification,

ultimately a classifier trained by a supervised algorithm, like the one
used in LymphGen, will be required for diagnosis of individual
patients, which dictates another step towards harmonization. For
training and validation of such parsimonious classification algorithm it
will be pivotal to only include consistently assigned samples to
eventually provide a classification that is applicable for any DLBCL
sample.

CONCLUDING REMARKS
Classification for a biologically heterogeneous disease like DLBCL is
required for clinical trial inclusion to come to bespoke treatment. To
achieve any meaningful classification, there may be well-defined
quantitative criteria by which classification schemas can be objectively
assessed, but these are inevitably balanced by more subjective
choices. We describe here that consensus classification depends on
choices concerning the incentive to recognize rare DLBCL subtypes or
recognition that not all DLBCLs may have sufficiently specific DNA
characteristics to be classified at all. Also, technical choices are to be
made such as on the nature and weight of DNA-features, and on
mathematics with their pros and cons. Most important is the choice if
a consensus classification and a common classifier algorithm is timely
and needed. Thereby, we feel that the added value of the
achievements of the DFCI and NCI classifications should be exploited

Fig. 1 Cluster adherence of DLBCL samples. Cluster adherence was determined using NMF clustering with the 304 DLBCL samples from the
DFCI cohort, recapitulating the results from the original study, including five subtypes (C1, C2, C3, C4 and C5) and identical subtype assignment for
all samples (left panel). Consensus clustering by resampling [21] illustrates the unstable character of NMF clustering, core patients (solid color,
middle panel) and non-core patients (dashed color, right panel). To make this distinction, a stability score was determined by examining co-
occurring sample pairs in the same subtype through 1000 iterations of NMF clustering. The heatmaps show patients by column and genomic
features by row. Genomic feature colors in the heatmap indicate mutations (green), copy number losses (blue), copy number gains (red) and
translocations (purple). DLBCL samples are clustered by subtype. The subtype bars on top indicate core DLBCL samples (colored bars) and non-core
DLBCL samples (gray and dashed bars). Lymphgen annotation of the DFCI samples were taken from Wright et al. [7]. Left panel: heatmap of all 304
DLBCL samples from the DFCI cohort. Middle panel: heatmap of the 70% core samples with a high stability score and robust molecular subtypes.
Right panel: heatmap of the 30% non-core samples with inconsistent subtype assignment throughout the clustering iterations.
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by a consensus approach. Arguably, this would be preferred over first
evaluating their clinical impact in clinical trials separately or just
starting from scratch on yet another classification.
Other translational research groups in the solid tumor arena have

met with similar challenges. Probably breast cancer is one of the most
successful early examples of an RNA-based classification that found its
way into the WHO Classification [23]. Here, international groups
converged their biological and bioinformatical approaches through
collaboration. Once consensus cell-of-origin classification was
achieved and reproducible assays were developed, personalized
and targeted treatment could be explored systematically, amongst
others in the multiple-armed I-SPY clinical trials [24]. Similarly, a
consortium was formed to integrate six independently published
RNA-based classifications for colorectal cancer by means of a
predefined mathematical approach. The resulting four consensus
molecular subtypes are now the basis for various international clinical
trials [25].
In our opinion, decisive evaluations of new treatment modalities

based on genetics in the heterogeneous disease DLBCL is now
largely impeded by a discordancy between the main molecular
subtyping approaches. Progress towards personalized treatment
of DLBCL would require an international consensus approach for
which we have suggested various avenues.
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