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ABSTRACT

With the advent of single-cell RNA sequencing
(scRNA-seq), one major challenging is the so-called
‘dropout’ events that distort gene expression and re-
markably influence downstream analysis in single-
cell transcriptome. To address this issue, much
effort has been done and several scRNA-seq im-
putation methods were developed with two cate-
gories: model-based and deep learning-based. How-
ever, comprehensively and systematically compar-
ing existing methods are still lacking. In this work, we
use six simulated and two real scRNA-seq datasets
to comprehensively evaluate and compare a total of
12 available imputation methods from the following
four aspects: (i) gene expression recovering, (ii) cell
clustering, (iii) gene differential expression, and (iv)
cellular trajectory reconstruction. We demonstrate
that deep learning-based approaches generally ex-
hibit better overall performance than model-based
approaches under major benchmarking comparison,
indicating the power of deep learning for imputa-
tion. Importantly, we built scIMC (single-cell Impu-
tation Methods Comparison platform), the first on-
line platform that integrates all available state-of-the-
art imputation methods for benchmarking compar-
ison and visualization analysis, which is expected
to be a convenient and useful tool for researchers
of interest. It is now freely accessible via https:
//server.wei-group.net/scIMC/.

INTRODUCTION

It is estimated that there is a total of 4 × 1013 cells in hu-
man body, which exhibit different forms and functions (1).
The analysis of cell transcriptome plays an important role in
characterizing the state of cell biology, which represents the
complete cellular RNA transcriptome and its specificity to
specific physiological conditions or specific developmental
stages (2). Traditional bulk RNA sequencing (bulk RNA-
seq) technique can detect the average gene expression level
of a cell population. However, genes show differential ex-
pression levels in different cells. As a result, this technique
is unable to quantify cell-to-cell heterogeneity. The recent
development of scRNA-seq (single-cell RNA sequencing)
technology enables researchers to study cell-to-cell hetero-
geneity of gene expression between different cells, discover
novel cell types, and further improve understanding of hu-
man diseases at single-cell resolution level (3–8).

More insights into cell heterogeneity and transcriptional
stochasticity can now be obtained. However, it also brings
new computational challenges. The major challenge is that
current technical defects, such as the low RNA capturing
and sequencing efficiency, lead to failure of detection of
an expressed gene, resulting in a large proportion of ex-
pressed genes with zeros or low read counts. The observed
zero values do not reflect real gene expression, which is de-
fined as ‘dropout’ events (9–11). The ‘dropout’ events intro-
duce technical variability and high noise, making it difficult
to analyze scRNA-seq data (3,12). However, not all zeros
in scRNA-seq data can be considered as ‘dropout’ events.
There exist true zero events, representing low-level gene ex-
pression in a specific cell type. Accordingly, it is quite chal-
lenging to distinguish ‘false’ (dropout) from ‘true’ (biolog-
ical gene silencing) zero counts in scRNA-seq data. There-
fore, it is an urgent need to handle the ‘dropout’ events, since

*To whom correspondence should be addressed. Tel: +86 531 8839 1516 Email: weileyi@sdu.edu.cn
Correspondence may also be addressed to Kenta Nakai. Tel: +81 3 5449 5131; Email: knakai@ims.u-tokyo.ac.jp

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0001-5922-0364
https://orcid.org/0000-0003-1081-7658
https://orcid.org/0000-0001-6406-1142
https://orcid.org/0000-0002-8721-8883
https://orcid.org/0000-0003-1444-190X
https://server.wei-group.net/scIMC/


4878 Nucleic Acids Research, 2022, Vol. 50, No. 9

it severely influences the downstream analysis, particularly
with the increasing amount of scRNA-seq data.

Imputation is a common approach to recover ‘dropout’
events. Several scRNA-seq data imputation methods have
been proposed in recent studies. In this study, we roughly
divide existing imputation approaches into two categories:
(i) model-based approaches and (ii) deep learning-based ap-
proaches. Model-based imputation methods that borrow
prior knowledge and information across cells to predict
the missing values, including cell-cell interaction network,
gene-gene interaction network, and the integration of both
of them for imputation. These methods restore the expres-
sion of the target gene in terms of similar cell informa-
tion, similar gene information, and mathematical computa-
tion using prior knowledge. For example, SAVER (Single-
cell Analysis Via Expression Recovery) is a method that
optimizes the whole gene expression counts, using infor-
mation across genes and cells to impute zeros as well as
to improve the expression values for all genes (13). Simi-
larly, MAGIC (Markov Affinity-based Graph Imputation
of Cells) applies data diffusion to share information be-
tween similar cells to optimize the gene expression matrix
as well as impute the missing values (14). Both MAGIC and
SAVER optimize all gene expressions including those unaf-
fected by ‘dropout’ events, meanwhile increasing the prob-
ability of introducing new noise into the rest data. To ad-
dress this problem, Li et al. proposed a novel method named
scImpute which automatically identifies possible ‘dropout’
events first, and then perform imputation to avoid introduc-
ing new noise to the rest data (15). Gong et al. (16) pro-
posed DrImpute, a method using clustering results to iden-
tify multiple groups of similar cells, and perform imputation
by averaging the expression values of similar cells. In ad-
dition, VIPER (Variability-Preserving Imputation for Ex-
pression Recovery) uses a sparse non-generative regression
model to select a subset of the neighborhood that is most
effective in predicting missing values, and then borrows in-
formation from cells in this subset that have similar expres-
sion patterns to the target cell for imputation (17). Differ-
ent from the above methods using the information from
scRNA-seq data only, SCRABBLE leverages bulk data as
a constraint together with scRNA-seq data to impute the
‘dropout’ events (18). Combining the advantages of the
popular methods (SAVER, scImpute, and MAGIC), scRe-
cover estimates the dropout probability of each gene in each
cell, and the number of expressed genes in each cell (Miao,
Z., et al., BioRxiv, 2019, https://doi.org/10.1101/665323).
With the growing complexity of interaction network, us-
ing a priori network appropriately has become a key ele-
ment of the imputation methods. scNPF shares informa-
tion between similar cells, and uses the prior knowledge
of the interaction network to determine gene expressions
for a given cell (19). The advantage of scNPF is that it
cannot only use the rich structure stored in the biologi-
cal network, but also capture context-specific information
to enhance the relationship between genes (19). In addi-
tion to scNPF, netNMF-sc decomposes the count matrix
into two low-dimensional matrices: gene matrix and cell
matrix, using network regularized non-negative matrix fac-
torization (NMF) (20). Network regularization makes the
two genes connected in the network have similar represen-

tations in the low-dimensional gene matrix, thereby restor-
ing the data structure. Another recent imputation method,
namely scTSSR (scRNA-seq using a Two-side Sparse Self-
Representation), imputes the missing values using a two-
side sparse self-representation model to capture the cell-to-
cell and gene-to-gene similarities (21). The major difference
between scTSSR and other model-based methods is that
it employs both information from similar cells and simi-
lar genes for imputation (21). A recent statistical method,
SDImpute (ScRNA-seq Dropout Imputation), proposed by
Qi et al., uses existing gene expression data not affected by
‘dropout’ events to impute the missing values, and achieves
good performance (22).

Recently, deep learning has been widely used in RNA-
seq field, such as Cox-nnet (23) for prognosis prediction,
and DeepMAPS (Ma, A., et al., BioRxiv, 2021, https://doi.
org/10.1101/2021.10.31.466658) for biological network in-
ference, etc (24–27). Deep learning-based methods are de-
signed to capture the hidden distribution of gene expres-
sion and learn the parameters of gene expression distri-
bution model to impute the missing values. For example,
AutoImpute is an imputation method based on autoen-
coder and sparse gene expression matrix. It can learn the
inherent distribution of input data, and estimate the miss-
ing values with the minimal impact on biologically low-
expressed genes (28). Lopea et al. developed single-cell Vari-
ational Inference (scVI), a method that utilizes stochastic
optimization and deep neural networks to aggregate the in-
formation between similar cells and genes, and estimates
the basic distribution of the count matrix (29). However,
the methods mentioned above cannot intentionally preserve
biological zeros and be scale to large datasets where thou-
sands of cells are analyzed. To address this problem, an ap-
proach namely Adaptively-thresholder Low-rank Approxi-
mation (ALRA) was proposed. It is capable of selectively
imputing the missing values through non-negativity and
correlation structure, and effectively maintaining biologi-
cal zeroes while imputing the ‘dropout’ events (Linderman,
G.C., et al., BioRxiv, 2018, https://doi.org/10.1101/397588).
The Deep Count Autoencoder network (DCA) captures the
non-linear gene-gene correlation by introducing the nega-
tive binomial noise model with zero-inflation, while con-
sidering the count distribution, over-dispersion and spar-
sity of the data to impute the missing values (30). Due to
the low quality of scRNA-seq data and the increasing num-
ber of the measurable cell counts, more scalable imputation
methods are developed (31,32). DeepImpute (Deep neural
network Imputation) divides genes into target genes (genes
to be imputed) and training genes (highly related to target
genes, used to train neural networks to determine data dis-
tribution) for model training (33). Zhou et al. utilized trans-
fer learning to impute the missing expression values from
DNA methylation data, and developed a method, so-called
TDimpute (34). Another method called DISC (Deep learn-
ing Imputation model with semi-supervised learning (SSL)
for Single Cell transcriptomes) integrates an autoencoder
and a recurrent neural network (RNN), and trains a semi-
supervised learning model to learn the structure of genes
and cells from a sparse matrix (35). Moreover, Xu et al.
recently developed an algorithm, namely scIGANs (gener-
ative adversarial networks (GANs) for scRNA-seq Impu-
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tation), based on generative adversarial networks (36). In
scIGANs, the gene expression matrix is divided into small
images, and the imputation process is regarded as the pro-
cess of image restoration. To utilize the similarity informa-
tion between cell-to-cell as well as gene-to-gene relation-
ships, Rao et al. (37) proposed a graph convolution net-
work called GraphSCI that uses the relationship informa-
tion between genes to construct a graph neural network,
and learns the data distribution for imputation. Most re-
cently, Wang et al. developed scGNN (single-cell Graph
Neural Network), also using graph neural network to learn
cell-cell relationships and combine three autoencoders to
impute ‘dropout’ events and cell clustering (38).

Although a large number of imputation approaches have
been proposed and most of them achieved good perfor-
mance in different scenarios, comprehensively comparing
the performance of state-of-the-art imputation methods are
still lacking (21,34–37). In addition, systematically compar-
ison needs to be improved with more comprehensive ex-
periments. In this study, we evaluate and compare a to-
tal of 12 available imputation methods on six simulated
datasets and two real scRNA-seq dataset in the following
aspects. First, we investigated the ability of existing meth-
ods to recover true gene expression distribution. Second,
we assessed the performance of cell clustering in terms of
evaluating the performance of distinguishing different cell
types. Third, we tested the ability of existing methods in de-
tecting the differential expression genes by the overlap of
the differential expression genes predicted by bulk RNA-
seq data and scRNA-seq data, respectively. Finally, we eval-
uated the capability of these methods in reconstructing cel-
lular trajectories by constructing a dynamic process. Most
importantly, we established scIMC (single-cell Imputation
Methods Comparison platform), the first computational
platform that allows researchers of interest to do data impu-
tation and downstream comparative analysis of the state-of-
the-art imputation methods on their customized datasets,
and provides visualization result analysis to find out which
method is most appropriate for their datasets in specific
downstream tasks. We expect this platform can be conve-
nient and useful especially for the researchers without any
computer science or programing skill background in this
field.

MATERIALS AND METHODS

Benchmarking workflow

In this work, we constructed an unbiased framework to
quantitatively evaluate and compare the ability of available
state-of-the-art imputation methods for scRNA-seq data.
Based on this framework, we surveyed the performance of
the imputation methods in terms of multiple widely used
metrics on six simulated and two real datasets. The general
overview of our benchmarking framework is illustrated in
Figure 1. It can be seen that our framework is generally in-
volved with three main steps: (A) Data Preprocessing, (B)
Missing Value Imputation and (C) Downstream Compari-
son Analysis, which are described in details below.

• (1) 1st step––Data Preprocessing. We performed the
benchmarking on six simulated and two real datasets (re-

fer to ‘Benchmark datasets for details’). For each dataset,
a raw gene expression matrix (before imputation) is gen-
erally preprocessed in two sub-steps (see Figure 1A). First
of all, we normalized the matrix in order to limit the
data that needs to be processed (through a certain algo-
rithm) to a certain range. Normalization is for the con-
venience of subsequent data processing, as well as to en-
sure faster convergence during program operation. Ac-
cordingly, the normalized matrix was log-transformed.
The log-transformation aims to find the relationship be-
tween the data more conveniently (it can be understood
as better data visualization), so that the presentation of
the data is close to the assumptions we want, so as to bet-
ter perform the statistical inference.

• (2) 2nd step––Missing Value Imputation. Table 1 summa-
rizes a total of 21 state-of-the-art imputation methods de-
signed specifically for scRNA-seq data imputation, out
of which there are 11 model-based approaches and 10
deep learning-based approaches. As can be seen in Table
1, the model-based approaches can be further classified
into three sub-categories with regard to the information
they use, such as information across cells, information
across genes, and information across cells and genes. The
deep learning-based approaches can be further divided
based on their deep network types, including Autoen-
coder, MLP, Graph neural network, and Other networks.
We attempted to implement all the methods, but only 12
out of them were performed successfully, which are re-
spectively, SAVER, scTSSR, MAGIC, scImpute, DrIm-
pute, scNPF, AutoImpute, ALRA, DCA, DeepImpute,
scGNN and scIGANs. They were chosen for our com-
parative analysis. The algorithmic details of the 12 com-
pared imputation methods are briefly introduced in Sup-
plemental Materials.

• (3) 3rd step––Downstream Comparison Analysis. To
quantitively compare how good the imputed matrixes
generated by the compared methods are, we evaluated
the performance in recovering actual gene expression. As
seen in Figure 1C, downstream comparative analysis is to
measure their performance in real application scenarios.
We further compared the methods in the following three
downstream analysis tasks, including clustering analy-
sis, differential expression analysis, and cellular trajectory
analysis, etc.

Benchmark datasets

In this study, we used six simulated datasets and two real
datasets to evaluate the performance of different imputa-
tion methods. The six simulated datasets were generated
with different zero expression ratios. Two real datasets are
Human Embryonic Stem Cells (ESCs) dataset (39) and
Time-course scRNA-seq dataset (39). The details are de-
scribed below.

Dataset 1: six simulated datasets. Splatter (40) is a R
Bioconductor package proposed for simulating scRNA-
seq data. We employed Splatter to generate a true counts
matrix (matrix without dropouts) with 500 cells and 1000
genes. Afterwards, we set group.prob = c(0.25, 0.25, 0.25,
0.25), mean.shape = 0.3, mean.rate = 0.02, de.prob = 0.5,
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Figure 1. The benchmarking workflow of imputation methods. (A) Data Preprocessing. All datasets are filtered out by removing genes that are expressed
in less than two cells, which are called low-expressed genes. We normalize the dataset by a normalization method ‘scanpy. pp. normalize total’ from Scanpy
(1.4.4) with all parameters are default. Next the normalized matrix is log-transformed. (B) Missing value Imputation. The methods for imputation are
mainly divided into two categories: (i) model-based methods; (ii) deep learning-based methods. (C) Downstream Comparison Analysis. The imputed
matrix is used for downstream analysis, such as clustering, differential expression analysis, etc.
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Table 1. Brief description of state-of-the-art imputation methods

No. Category Methods Language Input Output Year Reference

1 Model-based
approaches

Cell and
Gene-based

SAVER R G * C G * C 2018 (13)

2 SCRABBLE R C * G C * G 2019 (18)
3 scRecover R G * C G * C 2019 (Miao, Z., et al.,

BioRxiv, 2019,
https://doi.org/10.

1101/665323)
4 netNMF-sc Python G * C and G - G G * C 2019 (20)
5 scTSSR R G * C G * C 2020 (21)
6 SDImpute R G * C G * C 2021 (22)
7 Cell-based MAGIC Python C * G C * G 2018 (14)
8 scImpute R G * C G * C 2018 (15)
9 DrImpute R G * C G * C 2018 (16)
10 VIPER R G * C / C * G G * C / C * G 2018 (17)
11 Gene-based scNPF R C * G C * G 2019 (19)
12 Deep

learning-based
approaches

Auto-based AutoImpute Python G * C G * C 2018 (28)

13 ALRA R C * G C * G 2018 (Linderman, G.C.,
et al., BioRxiv, 2018,

https://doi.org/10.
1101/397588)

14 DCA Python C * G C * G 2019 (30)
15 DISC Python G * C G * C 2020 (35)
16 MLP-based scVI Python C * G C * G 2018 (29)
17 DeepImpute Python C * G C * G 2019 (33)
18 Graph-based GraphSCI Python G * C and G - G G * C 2021 (37)
19 scGNN R G * C G * C 2021 (38)
20 Other-based TDimpute Python G * C G * C 2020 (34)
21 scIGANs Python G * C G * C 2020 (36)

* In this table, Cell and Gene-based means a method using information across cells and genes, Cell-based is a method using information across cells, and
Gene-based is a method using information across genes. Moreover, Auto-based is a method based on autoencoder, MLP-based represents a method based
on Multilayer Perceptron (MLP), Graph-based means a method based on graph network, and Other-based shows a method based on other networks.
Besides, G * C means a gene*cell gene expression matrix, C * G means a cell*gene expression matrix, G–G means a gene–gene interaction network. The
first 11 methods in this table are model-based approaches, and the other methods are deep learning-based approaches.

de.facLoc = 0.5, dropout.shape = 0.5, dropout.type = “ex-
periment”, and dropout.mid parameter ranging from 1 to 6
in step of 1, in order to simulate six datasets with zero ex-
pression rate of 0.78, 0.71, 0.63, 0.55, 0.48 and 0.42, respec-
tively. It is worth noting that scNPF failed to run on the
simulated datasets, we only compared the other 11 meth-
ods.

Dataset 2: human embryonic stem cells (ESCs) dataset.
We utilized a dataset with both bulk and scRNA-seq on
human ESCs and differentiated definitive endoderm cells
(DECs), including six samples of bulk RNA-seq (four for
H1 ESC and two for DEC) and 350 cells of scRNA-seq (212
cells for H1 ESC and 138 cells for DEC) (39). The percent-
age of zero in gene expression matrix of bulk RNA-seq data
and scRNA-seq data are 14.8% and 49.1%, respectively. We
used this dataset to evaluate the ability of imputation meth-
ods in capturing differentially expressed genes (DEGs). If a
gene with the P-value (P-value is significant index) is <0.05,
we consider it to be differentially expressed, so-called DEG.
We performed edgeR (41) on both bulk RNA-seq data and
scRNA-seq data to detect DEGs, respectively. Considering
the DEGs of bulk RNA-seq data as a golden standard, the
performance of different methods in capturing DEGs is de-
fined as the overlapping between DEGs detected by bulk
RNA-seq data and those detected by scRNA-seq data (21).
It is worth noting that amongst the 12 compared imputa-

tion methods, DCA failed to perform on this dataset due to
its intrinsic limitation.

Dataset 3: time-course scRNA-seq dataset. We employed
the time-course scRNA-seq data derived from the differen-
tiation from H1 ESC to DEC (39). This dataset consists of
758 cells, including 92 cells at 0 h, 102 cells at 12 h, 66 cells
at 24 h, 172 cells at 36 h, 138 cells at 72 h and 188 cells at
96 h after the differentiation from H1 ESCs to DECs. In or-
der to evaluate the performance of imputation methods for
reconstructing the trajectories, we performed existing im-
putation methods on this dataset, and used Monocle3 (42)
to reconstruct the trajectories. Notably, amongst the com-
pared methods, DCA and scGNN failed to perform on this
dataset due to their intrinsic limitation.

Data Preprocessing

For the scRNA-seq data imputation, the standard data pre-
processing procedure contains three steps: filtering, normal-
ization, and log-transformation. For all datasets used in this
study, we firstly filtered out those genes that are expressed
in less than two cells, which are called low-expressed genes.
Next, we normalized the dataset by a normalization method
‘scanpy. pp. normalize total’ from Scanpy (1.4.4) with be-
ing divided by library size and multiplied by the median
of library size across cells. Finally, the normalized matrix
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is log-transformed. It’s worth to point out that five out of
the 12 compared methods, including scImpute, DrImpute,
scTSSR, AutoImpute, and scGNN, have the data prepro-
cessing module in their source codes. Besides, DCA and
DeepImpute only accept the dataset without normalization
and log-transformation. Therefore, we input the raw gene
expression matrix to DrImpute, AutoImpute, and scGNN
and did only the filtering step to the raw gene expression
matrix for the four methods (scImpute, DCA, DeepImpute
and scTSSR). To keep data consistence, we followed the
above data preprocessing steps to process the data before
feeding to the rest methods (SAVER, ALRA, MAGIC, sc-
NPF and scIGANs) for imputation. The shape of imputed
matrix from different imputation methods are shown in Ta-
ble 2.

Performance evaluation

In this section, the gene expression matrix is denoted as X
(true gene expression matrix in RMSE and PCC), and X̂
is the imputed matrix. To quantitatively evaluate the per-
formance of different imputation methods in recovering
gene expression, we use two metrics, root mean square er-
ror (RMSE) and Pearson correlation coefficient (PCC). For
evaluation and comparison of clustering results and gene
differential expression results, we use five common metrics:
normalized mutual information (NMI), adjusted Rand in-
dex (ARI), silhouette coefficient (Si score), Jaccard simi-
larity coefficient (Jaccard), and Purity. As for the compari-
son of cellular trajectories, we deploy the other two metrics:
pseudo-temporal ordering score (POS) and Kendall’s rank
correlation score (KOR). The above metrics are described
in details as follows.

Root mean square error (RMSE). It is to measure the dif-
ference between the imputed matrix and the raw matrix,
which calculates the deviation between the observed values
and true values. RMSE is defined as:

RMSE
(
X, X̂

) =
√√√√1

n

n∑
i=1

(
X̂i − Xi

)2
(1)

Pearson correlation coefficient (PCC). It is to examine the
degree of correlation between the imputed matrix and the
raw matrix, which is defined as:

ρX,X̂ = E
(
XX̂

) − E (X) E
(
X̂

)
√

E
(
X2

)
E2 (X)

√
E

(
X̂2

)
E2

(
X̂

) (2)

where E(X) represents the mean of X, E2(X) is the square
of E(X).

Normalized mutual information (NMI). It refers to the de-
gree of correlation between two random variables. We de-
note label as the original cluster label set, and ̂label as the
label set obtained by clustering. The calculation formula of
NMI is as follows:

NMI = 2
I
(

label, ̂label
)

H (label) + H
(
̂label

) (3)

where I (label, ̂label) is:

I
(

label, ̂label
)

=
∑

a∈label,b∈̂label

p (a, b) log
p (a, b)

p (a) p (b)
(4)

H(label) is:

H (label) =
∑

a∈label

p (a) log p (a) (5)

where p (a),p (b), and p (a, b) represent the probability that
the sample belongs to the cluster a, the probability that the
sample belongs to the cluster b, and the probability that the
sample belongs to both a and b, respectively.

Adjusted Rand index (ARI). It measures the degree of
agreement between the two data distributions (43). We as-
sume that there are m cells which are cluster into k clusters.
{ui }m

i represents the predicted cluster label, as well as {v j }m
j

denotes the true cluster label. The calculation formula of
ARI is as follows:

ARI =

∑
i j

(
ni j

2

)
−

[∑
i

(
ai

2

)∑
j

(
b j

2

)]/(
n
2

)
1
2

[∑
i

(
ai

2

)
+ ∑

j

(
b j

2

)]
−

[∑
i

(
ai

2

)∑
j

(
b j

2

)]/ (
n
2

) (6)

where i and j enumerate the k clusters, and
ni j = ∑

k,g
I(uk = i )I(vg = j ), ai = ∑

k
I(uk = i ), and

b j = ∑
g

I(vg = j ). The indicator function I(x = y) is

defined as follows:

I (x = y) =
{

1, x = y
0, otherwi se (7)

Silhouette coefficient (Si score) (44). It is used to evaluate
the cell clustering performance of imputation methods. It
combines cohesion and separation, which can evaluate the
clustering results on the same data. The closer the Si score
is to 1, the more accurate the clustering is; the closer it is to
–1, the worse the result is. The Si score is defined as:

Si = bi − ai

max (bi , ai )
(8)

where ai represents the average distance between the i-th
sample and all other samples in the same cluster, bi repre-
sents the average distance between the ith sample and all
samples in a given cluster (clusters that does not contain
the ith sample).

Jaccard similarity coefficient (Jaccard). Moreover, we uti-
lize Jaccard similarity coefficient (Jaccard) (45) to evalu-
ate the gene differential expression performance of impu-
tation methods. Jaccard is used to compare the similarities
between samples. The larger the Jaccard coefficient value,
the higher the similarity of samples. Jaccard is defined as:

J (A, B) = |A∩ B|
|A∪ B| = |A∩ B|

|A| + |B| − |A∩ B| (9)
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Table 2. Shape of imputed matrix of different imputation methods

Methods D1 D2 D3 D4 D5 D6 D7 D8

scImpute 500*961 500*961 500*962 500*961 500*964 500*964 350*16383 758*16383
SAVER 500*961 500*961 500*962 500*961 500*964 500*964 350*16383 758*16383
MAGIC 500*961 500*961 500*962 500*961 500*964 500*964 350*16383 758*16383
DCA 500*961 500*961 500*962 500*961 500*964 500*964 – –
ALRA 500*961 500*961 500*962 500*961 500*964 500*964 350*16383 758*16383
DrImpute 500*933 500*939 500*939 500*939 500*941 500*941 350*16604 758*16842
DeepImpute 500*961 500*961 500*962 500*961 500*964 500*964 350*16383 758*16383
scTSSR 500*888 500*903 500*907 500*906 500*909 500*911 350*13711 758*13037
scNPF – – – – – – 350*16383 758*16383
AutoImpute 500*883 500*891 500*893 500*898 500*899 500*900 350*1000 758*1000
scIGANs 500*961 500*961 500*962 500*961 500*964 500*964 350*16383 758*16383
scGNN 500*938 500*945 500*943 500*945 500*945 500*946 350*2000 –

* In this table, the shape is shown as gene*cell. For example, 500*961 means a matrix with 500 cells and 961 genes. – means this imputation method did not
run on this dataset. D1–6 are simulated datasets in Dataset 1, D7 represents Dataset 2, and D8 is corresponding to Dataset 3.

where A and B are two sets. Jaccard is the ratio of the size
of the intersection of A and B to the size of the union of A
and B.

Purity. It is a commonly used evaluation metric for clus-
tering. We assume that there are m samples belonging to K
clusters, respectively. Purity is defined as:

puri ty =
K∑

i=1

mi

m
Pi (10)

where mi represents the number of samples in cluster i;
Pi = max(Pi j ), where Pi j is the probability that the sample
in cluster i, but belongs to cluster j, which is calculated as:

Pi j = mi j

mi
(11)

where mi j is the number of samples in cluster i, but belongs
to cluster j.

Pseudo-temporal ordering score (POS). It can be used to
evaluate cell order performance. The formula of POS is:

POS =
n−1∑
i=1

∑
j>i

g (i, j ) (12)

where n is the number of samples, g(i, j ) is a score that char-
acterizes how well the order of the ith and jth cells in the
ordered path matches their expected order based on the ex-
ternal information (46).

Kendall’s rank correlation score (KOR). It is often used to
measure the degree of correspondence between two rank-
ings. It is defined as:

τ = 4P
n (n − 1)

− 1 (13)

where n is the number of samples, and P is the sum of the
number of samples ranked after the given sample by both
rankings.

Downstream analysis tools

Differential expression genes (DEG) analysis. ScRNA-seq
data can provide insights into the randomness of gene ex-

pressions, which determines different types of cells. To per-
form DEG analysis, we ran edgeR (41) on scRNA-seq data,
with all parameters are default. The results include fold
change and P-value. Fold change represents the multiple of
difference, and P-value is significant index. When the P-
value of a gene is <0.05, we consider it to be differentially
expressed.

Principal component analysis (PCA). It is used to pre-
process and visualize our scRNA-seq data (47). We imple-
mented PCA with the default parameters using the sklearn
package in the Python environment to preprocess and visu-
alize the raw data and the imputed output.

T-distributed stochastic neighbor embedding (t-SNE). T-
SNE (48), a common dimension reduction and visualiza-
tion tool, is also used to preprocess and visualize our
scRNA-seq data. We implemented t-SNE with the default
parameters using the sklearn package in the Python envi-
ronment to preprocess and visualize the raw data and the
imputed output.

Uniform manifold approximation and projection (UMAP).
UMAP is the latest dimension reduction algorithm, which
was proposed in 2018 (49). In this paper, UMAP was imple-
mented by the sklearn package in the Python environment
with default parameters. The raw data and imputed data in
this study were processed and visualized by UMAP.

Monocle3. It is utilized to reconstruct cellular trajectories
of scRNA-seq data (42). We implemented Monocle3 with
the default parameters in the R (3.6.3) environment. No-
tably, UMAP (49) is the default visualization method of
Monocle3, and it is used to visualize the cellular trajecto-
ries of data.

Tools for single cell analysis (TSCAN). It is a tool devel-
oped to reconstruct pseudo-time trajectories in scRNA-seq
analysis (46). It orders cells via a cluster-based minimum
spanning tree approach. In this paper, we utilized TSCAN
with default parameters.

Method implementing details

In the process of implementing the 12 imputation methods,
there are four methods that set non-default parameters: (1)
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in MAGIC, we set the parameter “genes = all genes”, which
means that the result will return the whole smooth matrix;
(2) in ALRA, we set “k = choose k”, k represents the rank of
low-rank approximation, and choose k is the method of se-
lecting rank k of low-rank approximation based on contin-
uous singular value spacing statistics designed in advance in
ALRA; (3) Set the network type to “network = context” in
scNPF. This is because the default value read in this param-
eter is null, so we selected the default type in this method.
(4) Set “LTMG = TRUE” in scGNN, which means that the
Left Truncated Mixture Gaussian (LTMG) model (38) is
used to model the scRNA-seq data, and establish cell maps
of cell type specific regulatory signals. In addition, the num-
ber of clusters filled in all methods corresponds to the clus-
ters number of the dataset used. The other methods are im-
plemented for comparison using default parameters given
in their source codes.

RESULTS

Comparison of imputation methods for recovering gene ex-
pression

A good imputation method should recover the true gene
expression of scRNA-seq data. Due to the lack of ground
truth of expression values in the real datasets, we generated
six simulated datasets with different parameters using Splat-
ter. It was worth noting that scNPF failed to run on the sim-
ulated datasets, we only compared the other 11 methods. We
firstly visualized true counts data (data without dropouts),
raw data (data with dropouts but not imputed) and im-
puted data from 11 imputation methods, using UMAP (49),
a commonly used dimension reduction and visualization
tool (Figures 2 and 3 and Supplemental Materials Figures
S1–S4). The results of dataset with zero expression rate of
0.78 and 0.42 were illustrated in Figures 2 and 3, respec-
tively. We can observe from Figures 2 and 3 that the result
of true counts matrix (matrix without dropouts) had four
cell subpopulations with clear border, and other results were
affected by dropout noise. No matter how high zero expres-
sion rate was, DCA outperformed among other methods,
distinguishing four different clusters. Besides, it can be seen
from Figure 3 that DeepImpute and scIGANs recovered the
gene expression accurately when the zero expression rate de-
creased. To investigate if different zero expression rates can
affect the comparison results, we instead used UMAP (49)
to visualize the results of DCA, DeepImpute and scIGANs
on six simulated datasets (the results of other methods are
shown in Supplemental Materials, Figures S5–S12). In Fig-
ures 4–6, we can observe the following results: (i) When the
zero expression rate of the dataset was 0.78, data were ac-
tually distributed in four clusters without clear boundaries;
(ii) in dataset with zero expression rate of 0.42, the margins
between different clusters were more clearly separated; (iii)
we can see four distinct clusters clearly in dataset with low-
est zero expression rate, which accounted for the best per-
formance of DCA, DeepImpute and scIGANs. We also vi-
sualized the above results by PCA and t-SNE, which can
be found in Supplemental Materials (Supplementary Fig-
ures S13–S35). We found that the results by PCA and t-SNE
were similar to those by UMAP. However, the visualization
of PCA were obviously worse than those of UMAP and

t-SNE, which cannot show clear boundaries between four
different cell clusters.

To quantitively compare the ability of different imputa-
tion methods for recovering true gene expression, we fur-
ther used two metrics, RMSE and PCC, to evaluate the
performance of the methods. In order to explore the per-
formance of different methods on datasets with different
zero expression rates, we simulated six datasets with dif-
ferent zero expression rates. We performed the imputation
methods on the six simulated datasets and calculated the
RMSEs and PCCs between true count matrix (matrix with-
out dropouts) and the imputed matrix, respectively. The re-
sults are illustrated in Figures 7 and 8, where we can observe
that as zero expression rate increased, the RMSEs of all im-
putation methods increased, while their PCCs decreased.
DCA and DeepImpute showed better performance than the
other methods with lower RMSEs and higher PCCs. The
RMSE of DCA increased from 46.00 to 122.06, and the
RMSE of DeepImpute increased from 59.87 to 127.41 (Sup-
plemental Materials Table S1). From Figures 7 and 8, we
can clearly see that AutoImpute achieved the highest RMSE
ranging from 191.08 to 193.53 and lowest PCC, showing
the worst performance. Note that the detailed RMSEs and
PCCs of different methods can be found in Supplemental
Materials (Supplementary Table S1). Moreover, we visual-
ized the scatter plot for the true gene expression values and
imputed gene expression values for six simulated datasets,
which were shown in Supplemental Materials (Supplemen-
tary Figure S44–S49). In general, DCA and DeepImpute
were outstanding among all imputation methods because
the data distributions were closer to y = x curve.

Via the visualization and quantitively comparison re-
sults, it can be concluded that DCA and DeepImpute sig-
nificantly outperform other methods for maintaining true
expression distribution. Notably, both of them are deep
learning-based methods, demonstrating the power of deep
learning algorithms for recovering true gene expression.

Comparison of imputation methods for cell clustering

Recently, many clustering methods have been developed
to deal with cell clustering in single-cell sequencing data
(50,51). It proves that in downstream analysis, identifica-
tion of cell subpopulations is a key application of scRNA-
seq. However, due to the existence of ‘dropout’ events
in scRNA-seq data, clustering methods like k-means can-
not accurately identify cell subpopulations. Studies demon-
strate that a good imputation method should make a posi-
tive contribution to cell clustering (12,52). We firstly used t-
SNE to perform dimension reduction on raw count matrix
and the imputed matrices derived from imputation meth-
ods, and utilized k-means algorithm for cell clustering. It
was worth noting that scNPF failed to run on the simulated
datasets, we only compared the other 11 methods. In this
study, four metrics (NMI, ARI, Si score and Purity) were
used to access and compare the clustering performance of
imputation methods. Figures 9 and 10 illustrated the clus-
tering results of dataset with different zero expression rates
(0.78 and 0.42). From Figure 9, amongst the compared
methods, DCA achieved parentally the highest cluster-
ing performance, giving 0.1593, 0.1409, 0.0474 and 0.4900
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Figure 2. UMAP plots of gene expression distribution of 11 methods on simulated dataset with zero expression rate of 0.78. (A–M) UMAP plots on
true counts matrix (without dropouts), raw gene expression matrix (with dropouts), and imputed matrices by scImpute, SAVER, ALRA, MAGIC, DCA,
DrImpute, DeepImpute, scTSSR, AutoImpute, scIGANs and scGNN, respectively.



4886 Nucleic Acids Research, 2022, Vol. 50, No. 9

Figure 3. UMAP plots of gene expression distribution of 11 methods on simulated dataset with zero expression rate of 0.42. (A–M) UMAP plots on
true counts matrix (without dropouts), raw gene expression matrix (with dropouts), and imputed matrices by scImpute, SAVER, ALRA, MAGIC, DCA,
DrImpute, DeepImpute, scTSSR, AutoImpute, scIGANs and scGNN, respectively.
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Figure 4. UMAP plots of imputed data for DCA in six simulated datasets with different zero expression rates. (A–F) UMAP plots on simulated dataset
with zero expression rate of 0.78, 0.71, 0.63, 0.55, 0.48 and 0.42.

in terms of NMI, ARI, Si score, and Purity, respectively
(Supplemental Materials Table S2). It surpassed runner-
up methods (scTSSR) by 0.1454 (NMI), 0.1359 (ARI),
0.0495 (Si score) and 0.1760 (Purity), respectively. ALRA
showed the highest Si score than other methods, which also
improved the performance of cell clustering. In addition,
DrImpute, DeepImpute, and scIGANs achieved outstand-
ing performance when zero expression rate was 0.42 (Figure
10 and Supplemental Materials Table S3). Note that the re-
sults of different datasets were listed in Supplemental Ma-
terials (Supplementary Figure S36–S39).

Referring to the study from Wang et al. (50), we found
that different data preprocessing methods may affect the
clustering results of single-cell RNA-seq data. To further
investigate the performance of different imputation meth-
ods for cell clustering, we used UMAP for dimension reduc-
tion to carry out clustering analysis (Figures 11 and 12). We
obtained similar results as the results using t-SNE as shown
in Figures 9 and 10. We found that DCA achieved good per-
formance in both datasets with zero expression rate of 0.78
and 0.42, especially when zero expression rate was 0.42 (Fig-
ures 11 and 12 and Supplemental Materials Tables S4 and
S5). DrImpute, DeepImpute and scIGANs outperformed
among these methods in dataset with zero expression rate
of 0.42 (Figure 12 and Supplemental Materials Table S5).
The NMI, ARI, Si score and Purity of DeepImpute have
a clear increment by 0.9685, 0.9807, 0.2272 and 0.6720 as

compared with the results of datasets with zero expression
rate of 0.78 (Supplemental Materials, Tables S4 and S5).
The similar results were also observed by DrImpute and
scIGANs. Moreover, the NMI, ARI, Si score and Purity of
different methods in different datasets can be found in Sup-
plemental Materials (Supplementary Figures S40–S43).

In conclusion, DCA showed significant performance im-
provement than the other methods in cell clustering. DrIm-
pute, DeepImpute, scIGANs and ALRA also showed an
improvement when zero expression rate decreased.

Comparison of imputation methods for gene differential ex-
pression

Gene differential expression analysis, as another common
downstream analysis, refers to the analysis of genes whose
expression levels depend on certain variables. ScRNA-seq
can provide insights into the randomness of gene expres-
sions in a single cell, while these differential expression
genes impact the definition of different cell subpopulations.
Therefore, an effective imputation method should preserve
the consistency of scRNA-seq with bulk RNA-seq when
detecting known differential genes in different cell types.
Owing to the lack of golden standard of differential ex-
pression analysis, we took the differential expression genes
predicted by bulk RNA-seq data as a golden reference. We
investigated the performance of gene differential expres-
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Figure 5. UMAP plots of imputed data for DeepImpute in six simulated datasets with different zero expression rates. (A–F) UMAP plots on simulated
dataset with zero expression rate of 0.78, 0.71, 0.63, 0.55, 0.48 and 0.42.

sion on Human Embryonic Stem Cells (ESCs) dataset. It
is worth to note that DCA failed to be performed on this
dataset, as the count matrix was regarded to have been nor-
malized. A tool called edgeR (41) is commonly used to
analyze gene differential expression. We ran edgeR on the
raw and imputed count matrices from scRNA-seq data and
the matched bulk RNA-seq data, and then visualized the
results with volcano figures as illustrated in Figure 13, in
which the x-axis represents log Fold Change (log FC), and
the y-axis represents − log (PValue). Since edgeR failed
to run on the results of AutoImpute, we only compared
the performance of the rest 10 methods. The performance
of capturing DEGs is defined as the overlapping between
DEGs detected by bulk RNA-seq data and those detected
by scRNA-seq data. From Figure 13, we can see that im-
puted data from scImpute detected more differentially ex-
pressed genes compared with the raw matrix. ScImpute and
ALRA had the most similar shape compared with the re-
sults from bulk RNA-seq. For intuitive analysis, the num-
bers of differential expression genes detected by imputed
data from 10 imputation methods were presented in Table
3. The raw scRNA-seq data had a much higher zero ex-
pression rate than bulk RNA-seq data, which are respec-
tively 49.1% and 14.8%, and shared fewest DEGs with bulk
RNA-seq data. As shown, we observed that the numbers of
differential expression genes detected by the imputed data
was larger than that detected by raw scRNA-seq data, ex-

cept scGNN. This is probably due to the data preprocess-
ing step of scGNN, which only retains the top 2000 vari-
able genes. SAVER, scTSSR, scNPF and scIGANs cap-
tured fewer DEGs than other methods, and showed the
poorest agreement with other methods. The most differen-
tial expression genes were predicted by DrImpute. In addi-
tion, the number of DEGs significantly increased compared
to the number of DEGs detected by bulk RNA-seq data, es-
pecially in scImpute, ALRA, DrImpute and DeepImpute.

Besides, we extracted the top 10 genes with highest P-
value in bulk samples as reference for further research.
Heat maps of these 10 genes in different imputed data were
ploted (Supplemental Materials Figures S50–S60). Due to
the gene selection strategy of AutoImpute and scGNN, only
one gene overlapped with the standard gene respectively,
so we did not ploted the corresponding heat maps. We
found that four genes (CCDC90A, YEATS2, PPP3R1 and
PSMC4) had significant differential expression in two cell
types (H1 and DEC) in bulk data. SAVER, MAGIC and
ALRA could modify the values of the four genes with
obvious differential expression, and other methods could
only identify half of them, while all genes of scIGANs
showed high expression values in different cell types, which
was significantly different from the results of other meth-
ods. However, we cannot confirm an imputation method’s
ability to detect differentially expressed genes by the num-
ber of differentially expressed genes it inferred. It is neces-
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Figure 6. UMAP plots of imputed data for scIGANs in six simulated datasets with different zero expression rates. (A–F) UMAP plots on simulated dataset
with zero expression rate of 0.78, 0.71, 0.63, 0.55, 0.48 and 0.42.

Figure 7. RMSEs of imputed data for recovering gene expression with dif-
ferent zero expression rates. RMSE between true counts data and imputed
data on six simulated datasets.

sary to quantify how accurately the differentially expressed
genes it detects compare with the gold standard. To facili-
tate discussion, we calculated four metrics (NMI, ARI, Jac-
card and Purity) to compare the accuracy of predicting the
differential expression genes. The results were shown in Fig-
ure 14. As shown, scGNN was the best method, achieving
0.2596 in terms of NMI, 0.2098 in terms of ARI, 0.5844
in terms of Jaccard, and 0.6536 in terms of Purity, respec-
tively. Besides, DrImpute and scTSSR performed well with
higher NMI, ARI, Jaccard, and Purity. Moreover, scNPF
and scIGANs exceeded the average, significantly improv-
ing the performance of detecting differentially expressed
genes. Note that the detailed results of different methods
can be found in Supplemental Materials (Supplementary
Table S6). In conclusion, scGNN, DrImpute and scTSSR
are competitive methods for identifying the differential ex-
pression genes, which deserve to be recommended.

Comparison of imputation methods for reconstructing the cel-
lular trajectories

Reconstruction of cellular trajectories is critical to explore
the pattern of cell cycle dynamics by time course in scRNA-
seq data. Cellular trajectories analysis includes three main
steps: dimension reducing, clustering, and trajectory recon-
struction. Despite the wide use of cellular trajectories re-
construction in scRNA-seq data (53–61), it is seriously af-
fected by ‘dropout’ events. We performed the 12 imputa-
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Figure 8. PCC of imputed data for recovering gene expression on six simulated datasets with different zero expression rates. (A–F) PCC on simulated
dataset with zero expression rate of 0.42, 0.48, 0.55, 0.63, 0.71 and 0.78.

Figure 9. Performance evaluation of 11 imputation methods for cell clustering at dataset with zero expression rate of 0.78. (A–D) NMI, ARI, Si and Purity
scores of the clustering results of 11 imputation methods obtained by t-SNE and k-means on simulated dataset.
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Figure 10. Performance evaluation of 11 imputation methods for cell clustering at dataset with zero expression rate of 0.42. (A–D) NMI, ARI, Si, and
Purity scores of the clustering results of 11 imputation methods obtained by t-SNE and k-means on simulated dataset.

tion methods on the raw data from Time-course scRNA-seq
dataset, and used Monocle3 (42) and TSCAN (46) to recon-
struct cellular trajectories. It is worth noting that DCA and
scGNN failed to perform on this dataset, since the count
matrix was regarded to be normalized in DCA, and the gene
expression value after processing was so small to return null
value in scGNN. POS and KOR scores are used to measure
the correlation between the true time labels and the pseudo-
time labels. In terms of its preprocessing step, TSCAN can-
not perform on data imputed by SAVER, MAGIC, Deep-
Impute, AutoImpute, scNPF and scIGANs. As a conse-
quence, we calculated POS and KOR scores with prepro-
cessing step and without preprocessing step. The cellular
trajectories constructed by Monocle3 were shown in Fig-
ure 15, and we also plotted the dynamic differentiation pro-
cesses of two DEC signature genes (39): CER1 and HNF1B
(Supplemental Materials Figures S61 and S62). POSs and
KORs of different imputation methods were listed in Ta-
ble 4. As can be seen in Table 4, scImpute achieved the
highest correspondence between the cellular trajectory in-
ferred by imputed data and true cell order with POS of 0.928
and KOR of 0.743, and also performed well in TSCAN
without preprocessing step. Besides, DrImpute was the only
method that improved the performance of TSCAN with (or
without) preprocessing step in ordering cells along a trajec-
tory by pseudo-time with higher POS (0.473 and 0.005) and
KOR (0.370 and 0.011) than these of raw data. scTSSR per-
formed well in TSCAN with preprocessing step with POS of

0.918 and KOR of 0.734. Moreover, SAVER, ALRA and
scIGANs obtained lower POS and KOR scores, demon-
strating that they achieved worse results. The POSs and
KORs of SAVER and ALRA without preprocessing step
were even negative. The results suggest that scImpute is
most appropriate for exploring the cellular trajectory in
scRNA-seq data.

DISCUSSION

In this study, we comprehensively evaluated and com-
pared a total of 12 state-of-the-art imputation methods for
scRNA-seq analysis under different scenarios. We observed
that every imputation method has its own advantages and
disadvantages, with no outstanding method. In general,
recent deep learning-based approaches exhibit better per-
formance than model-based in most aspects. However, it’s
worth to note that some model-based methods achieved sat-
isfied performance in some experiments (i.e. reconstruction
of cellular trajectory), which might be due to their good
ability of maintaining the relationships between cells and
genes.

We firstly highlighted the advantage of imputation meth-
ods for recovering gene expression. We visualized the shape
of true counts data, raw data and imputed data obtained by
12 imputation methods on six simulated datasets, and calcu-
lated RMSEs and PCCs to evaluate the performance. The
results showed that DCA and DeepImpute outperformed
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Figure 11. Performance evaluation of 11 imputation methods for cell clustering at dataset with zero expression rate of 0.78. (A–D) NMI, ARI, Si and
Purity scores of the clustering results of 11 imputation methods obtained by UMAP and k-means on simulated dataset.

other methods. DeepImpute used highly correlated genes
of the target genes to impute the missing values, and DCA
can capture the nonlinear gene-gene correlation. Moreover,
the two methods tend to recover the missing values by deep
learning algorithms, demonstrating that using deep learn-
ing algorithms reasonably can recover gene expression more
effectively. In addition, we found scIGANs performed bet-
ter when zero expression rate became lower, accounting for
the application of GAN in scRNA-seq analysis. Generative
adversarial network consists of a generative model and a
discriminative model. Its advantage is that the parameter
update of the generative model comes from the back prop-
agation of the discriminative model. This mechanism may
have improved the ability of GANs to capture some intrin-
sic information of scRNA-seq data.

Then, we focused on evaluating the performance of im-
putation methods for improving the downstream analysis,
including cell clustering, gene differential expression analy-
sis, and reconstructing cellular trajectories.

For cell clustering, we evaluated the results obtained by
t-SNE and k-means and UMAP and k-means on six sim-
ulated datasets in terms of NMI, ARI, Si scores, and Pu-
rity. With the recovery of the missing values in terms of
autoencoder, DCA focused on the distribution of scRNA-
seq data. ALRA maintained the biological zeros in scRNA-
seq data successfully, which was beneficial to preserve the

original data distribution. Besides, while zero expression
rate decreasing, DrImpute, DeepImpute, and scIGANs also
showed a performance improvement. Based on the cluster-
ing results, DrImpute optimized the distribution pattern of
cells from the same cluster, leading to the improvement of
cell clustering. Highly correlated genes of the target genes
were indispensable to impute the missing values in Deep-
Impute. DCA, DeepImpute, scIGANs, and ALRA belong
to deep learning-based methods, demonstrating that deep
learning-based methods are beneficial to the performance
of cell clustering. In conclusion, similarity information in
genes and cells plays an important role in cell clustering.
Moreover, we also investigated the impact of different di-
mension reduction tools and found that the tools have sim-
ilar results for cell clustering analysis.

For gene differential expression analysis, we ran edgeR on
scRNA-seq data and the matched bulk RNA-seq data, and
then visualized the results by a volcano figure. In addition,
the number of differential expression genes detected by the
compared methods is listed in Table 3. We found scGNN,
a deep graph neural network based model, achieved signif-
icantly better performance than the other methods in dif-
ferential expression analysis, demonstrating the power of
graph neural network in effectively capturing gene similar-
ity information. Interestingly, scGNN deployed a gene se-
lection strategy, which retained the top 2000 variable genes



Nucleic Acids Research, 2022, Vol. 50, No. 9 4893

Figure 12. Performance evaluation of 11 imputation methods for cell clustering at dataset with zero expression rate of 0.42. (A–D) NMI, ARI, Si and
Purity scores of the clustering results of 11 imputation methods obtained by UMAP and k-means on simulated dataset.

for data imputation. It might also help to improve their
performance in differential expression analysis. With the
strength of the applicability, graph neural network is suit-
able for data that is relatively sparse and requires collabora-
tive information of neighboring nodes, such as gene expres-
sion matrix. Moreover, two model-based methods, DrIm-
pute and scTSSR, are not the best but also showed relatively
good performance. It might because the similarity informa-
tion of cells and genes in gene expression data used in the
methods are beneficial to inferring the correlation of genes
and cells, respectively.

To investigate the reconstruction of the cellular trajec-
tories, we performed Monocle3 and TSCAN on scRNA-
seq data. The results suggest that scImpute outperformed
all other imputation methods, and proved scImpute showed
better performance in imputing data with collinearity.

It is worth noting that, as for AutoImpute, in different as-
pects, its performance showed consistently worse than other
methods. That is probably due to the gene selection in Au-
toImpute for preprocessing scRNA-seq data, AutoImpute
only keeps the top 1000 high-dispersion genes for each ex-
pression data. The gene selection may significantly affect the
existing gene expression structure, causing unreasonable re-
sults for downstream analysis.

In addition, we analyzed three possible reasons why deep
learning-based imputation methods are better than model-

based imputation methods. Firstly, the size of scRNA-seq
data increased from hundreds to millions because of the
widespread use of data, which caused the problem of high
dimensionality. Based on the features of large sizes and high
dimensionality, deep learning algorithms are more adapt-
able. Next, rather than recovering missing expression values,
it is more important to recover data characteristics that are
more meaningful for further analysis in scRNA-seq data.
Therefore, deep learning-based methods are more advan-
tageous for learning the features of data than model-based
methods. Finally, deep learning algorithms are good at con-
structing gene-gene and cell-cell relationship networks in
scRNA-seq data. With these prior information, the over-
all structure of data can be recovered through continuous
optimization.

Most importantly, we built the first platform namely
scIMC for comparison and visualization analysis, which
would allow researchers of interest to perform the compari-
son analysis of all the available imputation methods on their
specific scRNA-seq datasets. In particular, our platform
can provide visualization comparison results for down-
stream analysis, and give users useful guidance to see which
imputation method is more appropriate on their specific
datasets.

Finally, it should be pointed out that the comparative
results and corresponding conclusions in this study are all
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Figure 13. Performance of gene differential expression in different imputation methods. (A–L) Volcano plots of DEGs detected by bulk data, raw data,
imputed data by scImpute, SAVER, MAGIC, ALRA, DrImpute, DeepImpute, scTSSR, scNPF, scIGANs, and scGNN. The x-axis represents log FC, and
the y-axis represents − log(PValue).

based on the datasets mentioned above, which might be not
fully applicable in all situations. Those who wish to further
explore the performance of imputation methods in different
datasets, can use our scIMC to conduct the experiments.

WEB SERVER IMPLEMENTATION

We established a web server called scIMC (single-cell Impu-
tation Methods Comparison platform) so as to help read-
ers perform different imputation methods and downstream
analysis (Figure 16). It is now freely accessible via https:

//server.wei-group.net/scIMC/, which is the first online plat-
form that integrates all available state-of-the-art imputa-
tion methods for benchmarking comparison and visualiza-
tion analysis. scIMC relies on cloud computing infrastruc-
ture by Ali Cloud, and is implemented by Python, supports
Internet Explorer, Google Chrome, and Safari. Given the
high computing costs, web servers only run up to 1GB of
data.

The main functional modules of the server include:
data preprocessing, gene expression matrix imputation and
downstream analysis experiments (Recover gene expres-

https://server.wei-group.net/scIMC/
https://server.wei-group.net/scIMC/
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Table 3. Performance evaluation of gene differential expression in 10 imputation methods

Methods Down expression NotSig expression Up expression Differential expression

Bulk 5776 5355 5252 11028
Raw 5956 7358 3069 9025
scImpute 8231 3948 4204 12435
SAVER 3038 9323 4022 7060
MAGIC 5389 6161 4833 10222
ALRA 5965 4346 6072 12037
DrImpute 8868 3846 3890 12758
DeepImpute 7830 5322 3231 11061
scTSSR 7763 4050 1898 9661
scNPF 2265 10211 3907 6172
scIGANs 912 12528 2943 3855
scGNN 503 928 569 1072

Figure 14. Performance evaluation of different imputation methods for gene differential expression analysis. (A–D) NMI, ARI, Jaccard and Purity scores
of the differential expression analysis of different imputation methods obtained by edgeR on Human ESCs dataset.

sion, Cell clustering, Gene differential expression, and Re-
construct cellular trajectory).

Imputation

Imputation is a common approach to recover gene expres-
sion affected by ‘dropout’ events. Users can employ a to-
tal of 12 state-of-the-art imputation methods in Imputa-
tion module of scIMC. The matrix is preprocessed as de-
scribed in Data Preprocessing and then is used to be im-
puted by different methods (for examples, scImpute and
SAVER). We perform the imputation methods with de-
fault parameters (Details described in section Compara-
tive analysis overview) to impute gene expression matrix,
in order to compare the performance of them impartially.

Users can select imputation methods required and perform
them on the input matrix. After submitting all the neces-
sary datasets, scIMC will provide a Job ID to query the im-
putation results. When the imputation completes, scIMC
will send an email to the user’s mailbox (which need to
be provided together with datasets), notifying to preview
and download the generated results. The results of imputed
matrix for different methods can be downloaded from Job
List page by clicking the button ‘Details’ corresponding to
Jod ID.

Downstream analysis

In this module, there are four kinds of experiment analy-
sis, including Recover gene expression, Cell clustering, Gene
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Figure 15. The cellular trajectories reconstructed by Monocle3 from the raw data and the imputed data obtained by different imputation methods. (A–
K) The cellular trajectories reconstructed by raw data, scImpute, SAVER, MAGIC, ALRA, DrImpute, DeepImpute, scTSSR, AutoImpute, scNPF and
scIGANs.

Table 4. Performance evaluation of reconstructing cellular trajectories in
existing imputation methods

Methods POS (w) KOR (w) POS KOR

Raw 0.372 0.255 0.877 0.662
scImpute 0.928 0.743 0.843 0.592
SAVER – – –0.821 –0.607
MAGIC – – 0.781 0.515
ALRA 0.786 0.629 –0.867 –0.693
DrImpute 0.845 0.625 0.882 0.673
DeepImpute – – 0.845 0.592
scTSSR 0.918 0.734 0.778 0.491
AutoImpute – – 0.856 0.621
scNPF – – 0.87 0.636
scIGANs – – 0.632 0.434

*Note that POS (w) and KOR (w) represent POS and KOR scores ob-
tained by TSCAN with preprocessing step. POS and KOR represent POS
and KOR scores obtained by TSCAN without preprocessing step. In terms
of its preprocessing step, TSCAN cannot perform on SAVER, MAGIC,
DeepImpute, AutoImpute, scNPF and scIGANs. – represents no value.

differential expression and Reconstruct cellular trajectories.
To start experiments, csv-formatted files should first be up-
loaded as prompted: true counts matrix, raw matrix, im-
puted matrices (for examples, imputed by scImpute and

SAVER) and the cell labels. We performed four experi-
ments and showed their results, respectively. To summa-
rize the performance of recovering gene expression, RMSE,
PCC and scatter plots by PCA, t-SNE and UMAP are
used. When it comes to cell clustering, its performance is
shown by scatter plots and four metrics: NMI, ARI, Si
scores and Purity. We use edgeR to detect DEGs from dif-
ferent gene expression matrix and evaluate the ability of
them across volcano figures and numbers of DEGs de-
tected. Cellular trajectories reconstructed are placed to re-
flect the performance of reconstructing the cellular trajec-
tories for different imputation methods. The same as Im-
putation module, scIMC will provide a Job ID to users.
When the experiments complete, scIMC will send an email
to the user’s mailbox (which need to be provided together
with datasets), notifying to preview and download the
generated results. The results will show on Detail page,
and can be downloaded directly on this page. To display
Detail page, click the button ‘Details’ corresponding to
Jod ID.

Please refer to the scIMC website (https://server.wei-
group.net/scIMC/) for more details. Users can find User
Guide on scIMC, and we prepared a user guide video on
how to use scIMC. It is expected to be a useful platform for
researchers in this field.

https://server.wei-group.net/scIMC/
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Figure 16. The workflow of scIMC. (A) Input Preprocess. The inputs from users are raw gene expression matrix, which will be preprocessed before impu-
tation. The standard data preprocessing procedure contains three steps: filtering, normalization, and log-transformation. (B) Imputation. The processed
gene expression matrix will be imputed by different imputation methods, which are divided into two categories: model-based and deep learning-based.
(C) Downstream Analysis. In downstream analysis module, the inputs are true counts matrix (without dropouts), raw matrix, the imputed matrix and
cell labels. There are four different analyses in this module: Recover gene expression, Cell clustering, Gene differential expression, and Reconstruct cellu-
lar trajectory. (D) Output. We provide the results of two modules: (1) imputation and (2) downstream analysis. The output of the Imputation module is
the imputed gene expression matrix, while the output of the other module is data/result visualization.
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