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ABSTRACT

Motivation: Insertions play an important role in genome evolution.

However, such variants are difficult to detect from short-read sequen-

cing data, especially when they exceed the paired-end insert size.

Many approaches have been proposed to call short insertion variants

based on paired-end mapping. However, there remains a lack of

practical methods to detect and assemble long variants.

Results: We propose here an original method, called MINDTHEGAP,

for the integrated detection and assembly of insertion variants from

re-sequencing data. Importantly, it is designed to call insertions of any

size, whether they are novel or duplicated, homozygous or heterozy-

gous in the donor genome. MINDTHEGAP uses an efficient k-mer-based

method to detect insertion sites in a reference genome, and subse-

quently assemble them from the donor reads. MINDTHEGAP showed

high recall and precision on simulated datasets of various genome

complexities. When applied to real Caenorhabditis elegans and

human NA12878 datasets, MINDTHEGAP detected and correctly

assembled insertions41 kb, using at most 14 GB of memory.
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1 INTRODUCTION

Structural variants (SVs) are large-scale structural changes in the

genome. They have been typically defined in opposition to point

mutations, which are single nucleotide polymorphisms (SNPs)

and short insertions or deletions (indels). SVs therefore include

insertions, deletions and inversions of genomic sequences. Recent

research has shown that they play an important role in evolution

and diseases (1000 Genomes Project Consortium et al., 2010;

Stewart et al., 2011). However, SVs are challenging to discover

using present-day sequencing approaches, as they generally span

genomic regions that are longer than the reads. Computational

methods have been designed to extract evidence of SVs from

sequencing data using two types of analyses: paired-end mapping

of reads to a reference genome and copy number estimation

using read depth (Alkan et al., 2011; Medvedev et al., 2009).

1.1 Definition of insertion variants

In this work, we will focus on insertion variants: sequences that

are present at one site (position) in the donor genome but are

absent from the reference genome at this site. We divide inser-

tions into three mutually exclusive types: (i) novel insertions in the

donor genome that have no match in the reference, (ii) duplicated
insertions, which are found at two or more sites in the donor and

a strict subset of those in the reference and (iii) transpositions,

which are sequences in the reference that moved to a different

site in the donor. Duplicated insertions include mobile element

insertions (MEI), for which databases of known sequences have
been created to facilitate discovery (Stewart et al., 2011).

All three types of insertions are difficult to detect using short
reads. Different techniques are used to detect insertions that are

short (shorter than the reads), medium (of size between read

length and insert size) or long (of size exceeding insert size).

In the next two sections, we review techniques used to identify

insertion sites, and techniques used to reconstruct insertion
sequences.

1.2 Identification of insertion sites

As short insertions are likely to be fully contained in several

reads, mapping donor reads to a reference genome enables sim-

ultaneous discovery of the sites and contents of insertions (Albers

et al., 2011; DePristo et al., 2011; Li et al., 2009; Ye et al., 2009).

In this context, results are sensitive to mapping parameters and
may be degraded in low-coverage or low-complexity regions of

the reference. Although the discovery of short indels has been

an extensively studied problem, a recent article has observed

considerable differences between the results of popular tools
(Pabinger et al., 2013).

Sites of medium-sized insertions can be detected by analyzing

mapping positions of paired reads. General SV calling tools call
insertions sites by clustering neighboring read pairs that have a

shorter insert size than expected, e.g. BreakDancer and GASV

(Chen et al., 2009; Sindi et al., 2009). NovelSeq (Hajirasouliha

et al., 2010) and SOAPindel (Li et al., 2013) detect sites of long,

novel insertions by clustering paired reads for which one mate is
unmapped.

Alternatively, tools based on read coverage can detect dupli-
cated insertions of any length by finding reference segments that

have higher read depth than expected. While insertion sites

cannot be determined by this method alone, the Reprever
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insertions by combining paired-end mapping with read depth
analysis. Finally, several methods detect sites of mobile element

insertions using collections of known transposable element se-
quences, by searching for read pairs where one mate is mapped

to a known element and the other to a unique part of the refer-
ence genome (Ewing and Kazazian, 2011; Hormozdiari et al.,

2010; Stewart et al., 2011).

1.3 Reconstruction of inserted sequences

While short insertions are easy to reconstruct (as seen in Section

1.2), to the best of our knowledge, only a few methods are cap-
able of handling medium or long insertions. They are based on

global or local de novo assembly of reads that are potentially
involved in an insertion.
SOAPindel (Li et al., 2013), Scalpel (Narzisi et al., 2013) and

TIGRA (Chen et al., 2014) select paired reads for which one of
the mates maps nearby an insertion site. The other mates are

used to assemble separately each inserted sequence. This ap-
proach can only reconstruct insertions that are shorter than

twice the insert size. NovelSeq (Hajirasouliha et al., 2010) recon-

structs novel insertions (of any size) by assembling all unmapped
reads, and then aligning the extremities of assembled sequences

to all predicted insertion sites. Parrish et al. (2011) proposed to
extend this approach to duplicated insertions by performing a

global assembly of all reads that are either unmapped, discord-
antly paired or mapped to high-coverage regions.
Cortex_var (Iqbal et al., 2012) builds a colored de Bruijn

graph from the reference genome and all donor reads.
Insertions appear in the graph as bubbles (sets of paths between

two nodes), where one short path corresponds to the reference
genome, and longer paths correspond to inserted sequences.

Theoretically, this approach enables the discovery of insertions
regardless of their size and type. However, because of practical

limitations, Cortex_var only finds a restricted class of bubbles:
those that (i) contain exactly two paths and (ii) all intermediate

nodes having exactly one in-neighbor and one out-neighbor.
To summarize, available tools are highly specialized and lack

the versatility to detect and assemble insertions of any size and
any type. SOAPindel, Scalpel and Cortex_var are practically

limited to short insertions, Reprever is limited to low-copy dupli-
cated sequences and Novelseq is limited to novel insertions.

1.4 Our contribution

We propose a new tool, MINDTHEGAP, for detecting and assem-
bling insertions. MINDTHEGAP has several novel features that are

not found in other tools. First, a mapping-free site detection
algorithm has been designed to detect insertions of any size.

Second, an improved method for insertion assembly enables
the reconstruction of long insertions of all three types. Third, a

memory-efficient data structure enables high scalability.
We evaluated MINDTHEGAP on simulated and real Illumina

sequencing data. Among 1kbp simulated homozygous inser-
tions, a large fraction were found and correctly assembled

(recall values between 65–98.4%, precision 497%). Simulated
heterozygous 1 kbp insertions proved to be more challenging to

assemble (60% recall for Caenorhabditis elegans, 35% for human
chromosome 22); however, precision remained high (93% and

89%, respectively). We assembled long insertions using

MINDTHEGAP on an actual whole-genome human dataset,
which required only 14GB of memory.

2 METHODS

The input of MINDTHEGAP is a set of reads and a reference genome. The

software performs three steps: (i) construction of the de Bruijn graph of

the reads, (ii) detection of insertion breakpoints on the reference genome

(find module) and (iii) local assembly of inserted sequences (fill module).

Both the detection step and the assembly step rely solely on the con-

structed graph.

The output of the second step is a set of putative insertion positions on

the reference genome, whereas the output of the last step is, for each

insertion site, one or several assembled sequences.

2.1 de Bruijn graph construction

The de Bruijn graph is a directed graph over all distinct k-mers in the

reads. An edge is present when two k-mers share an exact ðk� 1Þ-overlap.

The graph is constructed using the algorithms implemented in the Minia

assembler (Chikhi and Rizk, 2013; Salikhov et al., 2013). Minia encodes

the graph using a Bloom filter and an additional hash table to suppress

false-positive results. The data structure supports two operations: (i) mem-

bership queries for k-mers that are neighbors of existing k-mers in the

graph, and (ii) traversal of the graph from an existing k-mer. These op-

erations are respectively used in Section 2.2 (insertion site detection) and

Section 2.3 (local assembly).

2.2 Find module: detection of insertion sites

MINDTHEGAP detects insertion sites by scanning the reference genome

and testing membership of reference k-mers in the de Bruijn graph.

Homozygous and heterozygous insertions are handled using two different

methods.

2.2.1 Homozygous insertions The general case for detecting homo-

zygous insertions can be modeled as follows. Let Sr be a sequence (the

reference). For a position j in the reference, the k-mer at position

ðj� k+1Þ (resp. j+1) is called the left (resp. right) flanking k-mer. Let

Sd (the donor) be a copy of Sr where a sequence I has been inserted

between the nucleotides at position i and i+1 (the insertion site, see

Fig. 1). For each position in the reference genome, a binary character

records whether the k-mer starting at this position is present (‘1’) or

absent (‘0’) in the donor reads. Depending on the context, the reference

genome will correspond to the string of nucleotides or to the string of

binary characters. Let a gap be a substring in the reference genome equal

to 0n (formed by repeating ‘0’ n times), for n4 0, that is immediately

flanked by ‘1’ characters. In most cases, a homozygous insertion site at

position i has a gap of size k – 1 starting at position i� k+2 (all k – 1

k-mers overlapping the insertion site are absent in Sd). We refer to this

situation as a canonical insertion site (see Fig. 1A).

A gap may be shorter than k – 1, for instance, when the prefix of the

inserted sequence I exactly matches the prefix of the sequence to the right

of the insertion site (see Fig. 1B). More generally, if the longest common

prefix of I and Sr½i+1 . . .� is of size r1 and the longest common suffix of

I and Sr½. . . i� is of size r2, then the size of the gap is k� r1 � r2 � 1. It is

important to note that when r1 or r2 is greater than 0, with only sequences

Sd and Sr at hand, it is not possible to localize precisely the insertion site,

as it can be at any location in ½i� r2 . . . i+r1�. We refer to such sites as

fuzzy sites. Homozygous insertion sites are called when gaps of size in the

range ½k� 1� r; k� 1� are detected, with r being a user-defined param-

eter indicating the largest allowed repeat at the insertion.

The size of the gap is an important criterion to detect homozygous

insertion sites, as other types of variants also yield gaps. SNPs create gaps

of size exactly k and deletions of length d yield gaps of size k+d� 1.
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Variants that are separated by less than k nucleotides yield longer gaps. In

fact, only new junctions between existing sequences can yield gaps of size

5k, which is the case for insertion events, but also for inversion or

translocation sites. Finally, gaps of various sizes may also appear due

to insufficient read coverage or non-uniqueness of k-mers inside the ref-

erence genome. These effects are controlled by the value of k, which is a

parameter of our method.

2.2.2 Heterozygous insertions While heterozygous insertions sites do

not yield gaps, flanking k-mers at these sites still exhibit features that can

be detected. The left flanking k-mer of a heterozygous insertion site has at

least two out-neighbors in the de Bruijn graph: one neighbor in the ref-

erence sequence and at least one other neighbor that is a prefix of the

inserted sequence. Similarly, the right flanking k-mer has at least two in-

neighbors with similar properties (see Fig. 1C). As in the homozygous

case, small repetitions at the extremities of inserted sequences slightly

alter the pattern. The left flanking k-mer may overlap the right flanking

k-mer in the reference genome. MindTheGap detects heterozygous inser-

tion sites by scanning the reference genome and testing neighborhoods of

putative left and right flanking k-mers whose distance from one another is

comprised between k – r and k, r being the same user-defined parameter

as for homozygous insertions, indicating the largest allowed repeat at the

insertion.

Heterozygous SNPs and deletions yield similar patterns, but the left

and right flanking k-mers are further separated from each other (k+1

nucleotides apart for SNPs and 1-bp deletions, k+d� 1 nucleotides

apart for deletions of size d). However, heterozygous inversions and

translocations do exhibit identical patterns. Also, inexact repetitions in

the reference genome create branching k-mers, which may yield by chance

the same pattern as a heterozygous insertion. To reduce this effect, we

apply an additional filter: the k – 1 suffix (resp. prefix) of the right (resp.

left) flanking k-mer must have less than h occurrences in the reference

genome. When h is set to 1, this prevents the detection of patterns that

may be generated by repetitions in the reference genome alone, in absence

of any sequence variants.

2.3 Fill module: assembly of inserted sequences

The third step of MINDTHEGAP is called the fill module. Starting from a

known insertion site represented by flanking k-mers (L, R), the module

performs de novo assembly to attempt to reconstruct the inserted se-

quence between L and R. In a nutshell, a graph of contigs is constructed

by performing breadth-first traversal of k-mers, starting from L. The

traversal is halted when graph becomes too complex. Then, all the contigs

in the graph are searched for the presence of R. All paths between L and

the contigs containing R are enumerated, and one or more putative in-

sertion sequences are returned (see Fig. 2).

More specifically, insertions are assembled using the algorithm of

Minia (Chikhi and Rizk, 2013; Salikhov et al., 2013). Assembly is per-

formed by traversing the graph from a given starting k-mer in a breadth-

first fashion. A consensus sequence (contig) is generated by skipping over

certain motifs, such as bubbles (putative short variants) and tips (putative

errors). This Minia assembly procedure stops whenever a contig cannot

be unambiguously extended.

A graph of contigs is constructed for each insertion site (L, R) as

follows. First, an initial contig cL is constructed by calling the Minia

assembly procedure from the L k-mer. Given a contig c (initially

c= cL), the four putative neighbors of the last k-mer of c are examined.

If no neighbor is present, indicating that c could not be extended, then no

further action is performed for this contig. Otherwise, if two or more

neighbors are present in the data structure, new contigs will be con-

structed starting from each of these neighbors. Directed edges will be

inserted from c to these new contigs. This process goes on to construct

the contig graph in breadth-first order until a maximum number of con-

tigs (parameter n, usually set to 100) is reached, or a maximal depth

(parameter i, usually set to 10kb and computed by counting nucleotides

in contigs) is reached.

An exhaustive search is performed to find occurrences of R within all

contigs in graph, as an exact match (default behavior) or up to a constant

number of mismatches. All possible paths between L and R are exhaust-

ively enumerated (i.e. putative insertions). If all paths spell pair-wise iden-

tical sequences (minimum identity of 80%), then one of them is returned.

Otherwise, the insertion site is considered to be unsuccessfully assembled

and all paths are returned. The fill module is performed bi-directionally,

i.e. should the (L, R) insertion site yield no path, then the module attemps

to assemble the ðrcðRÞ; rcðLÞÞ insertion, where rcðÞ denotes the reverse-

complement operation.

2.4 Evaluation protocol

2.4.1 Simulated datasets To evaluate MindTheGap, we generated

artificial read datasets and reference genomes based on real genomes.

First, we simulated sequencing reads for a real genome (the donor).

Then, another genome (the reference) was obtained by simulating non-

overlapping deletions from a copy of the donor genome. Deletion

locations were sampled uniformly along the sequence. These deletions

correspond to homozygous insertions in the donor. To simulate hetero-

zygous insertions, reads were sampled in equal numbers from the donor

Fig. 1. (A) Canonical insertion site. The site is detected by its specific

signature: the (k – 1) k-mers spanning the insertion site are missing in the

sequence with the insertion (here k=6), these k-mers are represented as

red segments. (B) Fuzzy insertion site. Insertion ends with the same nu-

cleotides (TG) present on the left of the site. In dashed lines, an alterna-

tive insertion site. (C) Heterozygous insertion site. Flanking k-mers (in

black) surrounding a heterozygous site respectively have two right

branching k-mers (for the k-mer on the left of the site) and two left-

branching k-mers (for the right k-mer)
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and the reference genomes. Sequencing was simulated with Wgsim from

the Samtools package (Li et al., 2009) using the following parameters:

paired-end mode with 2� 100bp reads, an insert size of 300bp (std=50)

and a base error rate of 0.01. Coverage was set to 40� for homozygous

datasets and 60� for heterozygous datasets.

Three different genomes were used: Escherichia coli K12 (4.6Mb),

C.elegans (100.3Mb) and the human chromosome 22 (35Mb without

N bases). For each of them, simulated datasets were generated with

homozygous or heterozygous deletions of varying sizes.

2.4.2 Assessment of results Positions of found breakpoints are com-

pared with positions of introduced deletions in the genome. A breakpoint

is considered as true positive (TP) if its location is at most 10bp from a

generated deletion position. This margin is meant to take into account

fuzzy sites, for which breakpoints are not necessarily found at the exact

position of the corresponding deletions (see Section 2). For each TP

breakpoint, a global alignment between the assembled inserted sequence

and the real sequence of the deletion is then performed with needle from

the EMBOSS tool suite. We consider the filled sequence as TP if the

alignment shows490% of identity. Finally, the recall is the number of

TP filled sequences over the number of simulated insertions, and the

precision is the number of TP filled sequences over the number of filled

insertions.

2.4.3 Real sequencing data Paired-end sequencing data from

C.elegans strain N2 were downloaded from SRA (accession

SRX026594). This dataset is composed of 33.8 M Illumina 2� 100bp

read pairs (insert size of 350bp), representing roughly 70� of coverage on

the 100.3Mb reference sequence of C.elegans (downloaded from NCBI

version WBcel235). As we did not find any validated dataset of known

large insertions for this genome, we simulated insertion variants following

the protocol of simulated data: 1000 regions of a given size (here 1–100bp

or 1kb) were deleted in the reference genome, corresponding to homo-

zygous insertion variants in the N2 donor genome.

Sequencing data of human individual NA12878 from DePristo et al.,

2011, consisting of 2.8 G Illumina 2� 101bp read pairs, was down-

loaded from EBI (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/

working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam). The

human genome reference assembly (NCBI36 hg18) was downloaded from

UCSC Genome Browser. A set of predicted or validated large insertions

were obtained from Supplementary Material of Kim et al., 2013. This set

contained 30 validated insertions from the study of Kidd et al. (2010) and

44 which were predicted by Kim et al. (2013) based on the alignments of

40 kb sequenced fosmids from this individual to the hg18 reference

genome. These are long insertions (median size of 5 kb); 68 are41kb

and 4 are410kb. Among these, 61 are predicted as novel insertions, 7 as

duplicated and the remaining ones have an unknown status.

3 RESULTS

3.1 Results on simulated datasets

MINDTHEGAP was applied on several simulated datasets to pre-

cisely estimate its recall and precision. This enabled to quantify
the impact of different levels of genome complexity, to independ-

ently evaluate each module and modes (detection versus assem-

bly, homozygous versus heterozygous) and to analyze the range

of insertion sizes MINDTHEGAP is able to detect and assemble.

3.1.1 High recall and precision in homozygous mode For inser-
tions of 1 kb, MINDTHEGAP recovered between 65 and 98.4% of

the simulated insertions, depending mainly on the complexity of

the studied genome (Table 1). Almost all predicted homozygous
insertions are true-positive results, resulting in high precision

(consistently above 97%). Table 1 shows that almost all insertion

sites were detected by the find module in homozygous mode.

However, 19–35% of detected insertions could not be assembled
by the fill module.

3.1.2 Varying insertion lengths Figure 3 shows that
MINDTHEGAP can detect and assemble insertions of any size.

We observed that the performance of the find module is inde-

pendent of the size of the insertions: recall of the find module
never fell below 98.5% (data not shown), without any false posi-

tive, even for the human chromosome 22 dataset. However,

lower recalls are due to the fill module failing to assemble

longer insertions. For small insertions (5100bp), MINDTHEGAP

obtained high recall and precision for all simulated datasets.

Only 650 over 1000 insertions of 1 kb could be assembled in
the chromosome 22, and among these, 646 showed490% iden-

tity with the original deleted sequences. This was likely because

of the high repeat content of this chromosome. We observed that

the insertions MINDTHEGAP fails to assemble generally corres-
pond to complex graph of contigs, containing many exact repeats

longer than ðk� 1Þ.

3.1.3 Heterozygous mode To evaluate the heterozygous mode

of MindTheGap, we simulated datasets with only heterozygous
insertions (see Section 2.4). Our analysis in Methods showed that

heterozygous insertion sites were likely to be more difficult to

detect and distinguish from genomic repetitions than heterozy-

gous insertions sites. Table 2 shows that for the human and
C.elegans simulated datasets, both recall and precision are sig-

nificantly below those in homozygous mode. Further investiga-

tion showed that the low recall is owing to poor performance of

the find module. We found that the results in this module were
sensitive to the values of parameters k, r (maximal repeat size at

fuzzy sites) and h (maximal number of occurrences of flanking

kmers in the reference genome). Setting k to a higher value and r

and h to smaller values (here: k=51, r=2, h=1) enabled to

reach a precision �97%, at the cost of a noticeably lower recall.
However, using a high k is detrimental to the fill module, due to

read coverage being halved in heterozygous insertions. Table 2

shows that on these datasets, the fill module assembles signifi-

cantly more insertions with k=31.

3.1.4 Comparison with SOAPindel On insertions of size
1–100 bp, SOAPindel shows similar recall and precision to

MINDTHEGAP (Fig. 3). However, SOAPindel is limited in the

Fig. 2. Fill module. A graph of contig is constructed from the left flank-

ing kmer L, in a breadth-first search order. Construction stops when a

maximum number of nodes is reached, or when a branch becomes too

deep. The right flanking kmer R is searched within all nodes, finally all

paths (in blue) between L and R are outputted as putative insertions
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size of detectable insertions, depending on the insert size of the

reads: given our simulation parameters, we observed that
SOAPindel recall decreased for insertions larger than 175bp,

and the largest insertion detected was of length 189 bp.
Noticeably, the performance of SOAPindel was independent of

the genotype of insertions.

3.2 Evaluation on a real sequencing dataset of C.elegans

To evaluate the impact of real reads and a real donor genome

with some degree of polymorphism in the reference genome,
MINDTHEGAP was run on a C.elegans strain N2 read dataset

against the reference genome containing simulated deletions.
This is to simulate homozygous insertion variants in the donor

genome. Additional insertions variants are likely to exist
C.elegans strain. Thus, the number of FP could not be evaluated,

as the true set of insertions present in these reads is unknown.
For 1 kb insertion variants, 81.1% were correctly predicted

and assembled by MINDTHEGAP (Table 1). Compared with the

fully simulated dataset on the same simulated insertions, the find
module missed more insertion sites, whereas the fillmodule had a

better recall of inserted sequences. The first observation could be
explained by small polymorphism near the insertion breakpoints

that generated longer gaps (see Section 2), whereas the second by
a higher read coverage in this dataset.

Additionally, we compared MINDTHEGAP and SOAPindel on
this dataset with 1–100bp simulated insertions. Recall values

were similar for both tools: 89% and 91%, respectively.

3.3 Application on real insertions of human

individual NA12878

To evaluate the ability of MINDTHEGAP to recover real insertions

in real data, we executed it on a human individual NA12878
dataset containing 2.8 G 100bp reads. As the coverage was

high, parameter k was empirically set to 63 and t to 5 (k-mers

with less than five occurrences were discarded). Predictions were

then compared with a set of 74 large insertions predicted by
alignment of fosmid sequences to the reference hg18 genome

(see Section 2.4).
20 insertion sites were recovered by the find module. No het-

erozygous insertions were predicted. We set r=15, which

enabled to find twice more sites than with r=5. This suggests

that real insertions contain longer repeated sequences at their
breakpoints than expected in a random simulation. By analyzing

paired-end reads that mapped near each fosmid-predicted break-

point, we could infer the genotypes: only 23 breakpoints could be

confidently assigned to a homozygous genotype (i.e. with less
than five read pairs spanning the breakpoint). The find module

recovered 11 of them. Of the remaining 12 likely homozygous

sites, the breakpoints of 8 of them were included in a large gap

(�k) in the reference binary string. This suggests that these sites
were close to other form of polymorphism, which would explain

why MINDTHEGAP did not detect them.
Among the 20 detected insertions by the find module, the fill

module succeeded in reconstructing correctly two inserted

sequences of sizes 4137 bp and 6729bp, with respectively

Fig. 3. Results of MINDTHEGAP and SOAPindel for several insertion sizes and several genome complexities. SOAPindel results are shown only for

insertions of 1–100bp (first two shaded bars in of each genome section), as it could detect only insertions5189bp. Best results of SOAPindel were

obtained with k parameter set to 31 (shown here) rather than 51. MINDTHEGAP best results were obtained with k set to 31 for E.coli datasets and 51 for

C.elegans and human chromosome 22

Table 1. Precision and recall results for MINDTHEGAP in homozygous mode on simulated and real datasets

Dataset Recall (%) Precision (%) N sim. Find module Fill module

TP FP TP FP

E.coli simulated dataset 98.4 99.8 500 499 0 492 1

C.elegans simulated dataset 79.5 97.3 1000 992 0 795 22

C.elegans real reads, simulated insertions 81.1 – 1000 980 – 811 –

Human chromosme 22 simulated dataset 64.6 99.4 1000 1000 0 646 4

Note. Simulated insertions of size 1000 (homozygous). The number of deletions simulated in the reference genome appears in the column ‘N sim.’
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99.9 and 99.8% identity to the fosmid sequences. This corres-

ponds to a recall of 18%, when comparing with the 11 true

homozygous insertions that were detected by the find module.

This recall value is similar to one obtained on simulated inser-

tions of 5 kb with the same read dataset (22%, data not shown).

3.4 Time and memory performance

Figure 4 shows the total runtime and maximal memory used by

MINDTHEGAP and SOAPindel on the real C.elegans dataset. The

machine used for all tests is a 12-core Intel E5-2640 @ 2.50GHz

with 192GB of memory. For MINDTHEGAP, the breakdown of

the three steps index, find and fill shows that the major part of

running time is spent on the index step. For SOAPindel, the time

required to map the reads to the reference with bwa is included in

the total time; however, SOAPindel alone remains slower than

MINDTHEGAP as a whole. SOAPindel used eight threads and

MINDTHEGAP only one.
Importantly, even though MINDTHEGAP stores in memory the

whole de Bruijn graph of the C.elegans read dataset, its memory

peak (0.7GB) is six times lower than SOAPindel. On the

NA12878 dataset with 2.8 billion reads, MINDTHEGAP also

proved to scale efficiently: the index/find/fill steps respectively

took 32/6/7h, with peak memory usage of 6/14/6GB.

4 DISCUSSION

MINDTHEGAP is the first integrated method to detect and assem-

ble insertion variants of any size and any type, using modest

computing resources. The find module of MINDTHEGAP differs

from most other existing methods by not relying on read map-

ping. Instead, the de Bruijn graph of reads is compared against

the reference sequence, which enables fast and low-memory ana-

lysis. However, one current limitation of the find module is that it

fails to detect insertions when other polymorphism occurs near

the insertion site. Improvements to waive this limitation are

under development, based on a more detailed analysis of gaps

longer than k. Furthermore, the method could also be used to

output SNPs and other types of structural variants.
Long insertion variants are challenging to detect and assemble;

thus, there is a shortage of tools to compare MINDTHEGAP

with. We compared our results with SOAPindel, which is a popu-

lar indel detection software limited to short insertions. The

NovelSeq software (Hajirasouliha et al., 2010) is designed to

find and assemble large insertions, and therefore would have

been another candidate for comparison. However, despite several

attempts and reaching out to the author, we were unable to

run the software successfully on any of our datasets (the

novelseq_cluster step ran indefinitely). NovelSeq relies

on a complex pipeline, and we conjecture that it may be tailored

to specific data types. While most other insertion detection

methods require to run external software, MINDTHEGAP is

stand-alone and is therefore easy to use. If needed, the modular

organization of MINDTHEGAP allows users to replace the find

module with the results of a classical insertion detection based

on paired-end mapping. The fill module could also be used as a

de novo assembly finishing step, i.e. gap-filling between adjacent

contigs in scaffolds, although we did not evaluate its perform-

ance for this task.

One important design choice for the fill module is to perform

assembly with all the k-mers in the read dataset. This enables to

assemble not only novel insertions, but also duplicated insertions

and transposition events. Classification of assembled insertions

into the different event types is not done by MINDTHEGAP, but

can be done by re-mapping insertions to the reference genome.

One drawback of considering all reads during insertion assembly

is that the de Bruijn graph becomes more complex to analyze. An

important future work will be to improve the recall of the fill

module by using paired-end reads information to guide traversal

of contig graphs. As repeated regions are notoriously difficult to

assemble, we anticipate that our approach might not be effective

Table 2. Precision and recall results for MINDTHEGAP in heterozygous mode on simulated datasets, containing each 1000 simulated heterozygous

insertions of size 1000bp

Dataset Recall (%) Precision (%) N sim. Find module Fill module k=51 Fill module k=31

TP FP TP FP TP FP

C.elegans dataset 59.9 93.4 1000 807 11 310 80 599 42

Human chromosome 22 dataset 35.5 89.0 1000 816 28 226 8 355 44

Note. Parameter r was set to 2, and assembled insertions smaller than 5bp were filtered out.

Fig. 4. Time (real time in minutes reported by the unix command time)

and peak of memory used byMINDTHEGAP (with k=51) and SOAPindel

(parameter k=51) on the C.elegans real sequencing dataset

(SRX026594). Peak of memory of SOAPindel approach was reached

by the SOAPindel software itself (not bwa)
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for mobile element insertions. However, there exist methods tai-
lored to the assembly of MEI, based on local assembly with
recruitment of mate reads.
Our tests on the NA12878 dataset showed there is room for

improvement: only two long homozygous insertions were suc-
cessfully assembled out of 23 predicted ones. We postulate that
(i) polymorphism or repetitions near the insertion sites hinder

detection by the find module, and (ii) the complexity of the
human genome makes de novo assembly of large contigs difficult.
As no other tool was able to assemble long insertions, we could

not assess whether our results were owing to weaknesses in our
method, or to specificities of this particular dataset (complex
insertion sequences or mispredicted insertions).
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