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Abstract
Background: In recent years there has been increased interest in evaluating breast cancer
screening using data from before-and-after studies in multiple geographic regions. One approach,
not previously mentioned, is the paired availability design. The paired availability design was
developed to evaluate the effect of medical interventions by comparing changes in outcomes before
and after a change in the availability of an intervention in various locations. A simple potential
outcomes model yields estimates of efficacy, the effect of receiving the intervention, as opposed to
effectiveness, the effect of changing the availability of the intervention. By combining estimates of
efficacy rather than effectiveness, the paired availability design avoids confounding due to different
fractions of subjects receiving the interventions at different locations. The original formulation
involved short-term outcomes; the challenge here is accommodating long-term outcomes.

Methods: The outcome is incident breast cancer deaths in a time period, which are breast cancer
deaths that were diagnosed in the same time period. We considered the plausibility of the basic
five assumptions of the paired availability design and propose a novel analysis to accommodate likely
violations of the assumption of stable screening effects.

Results: We applied the paired availability design to data on breast cancer screening from six
counties in Sweden. The estimated yearly change in incident breast cancer deaths per 100,000
persons ages 40–69 (in most counties) due to receipt of screening (among the relevant type of
subject in the potential outcomes model) was -9 with 95% confidence interval (-14, -4) or (-14, -
5), depending on the sensitivity analysis.

Conclusion: In a realistic application, the extended paired availability design yielded reasonably
precise confidence intervals for the effect of receiving screening on the rate of incident breast
cancer death. Although the assumption of stable preferences may be questionable, its impact will
be small if there is little screening in the first time period. However, estimates may be substantially
confounded by improvements in systemic therapy over time. Therefore the results should be
interpreted with care.
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Background
The paired availability design is a study design and
method of analysis that reduces selection bias when using
data from historical controls [1-4]. With standard histori-
cal controls, one compares (i) outcomes in subjects in the
current time period who received treatment with (ii) out-
comes in subjects in an earlier time period who did not
receive treatment. Because of self selection (e.g., less
healthy subjects might be more likely to receive treatment
than more healthy subjects), results from standard histor-
ical controls may be substantially biased. In contrast, in
the paired availability design there is no self-selection bias
because a comparison is made between (i) outcomes in all
subjects in the current time period when the intervention
is more widely available and (ii) outcomes in all subjects
in the previous time period when intervention was less
widely available. To account for the change in availability
of intervention between the current and previous time
periods, Baker and Lindeman [1] proposed a potential
outcomes model based on the intervention subjects
would have received had they entered the study in a differ-
ent time period. The model makes it possible to estimate
efficacy, the effect of intervention among the type of sub-
jects who would have only received the intervention dur-
ing a period of increased availability, as opposed to
effectiveness, the effect of a change in availability. The
model requires various assumptions, best described in [4],
that are plausible in many situations.

Estimating efficacy, as opposed to estimating effective-
ness, is important when combining estimates from differ-
ent locations (hospitals or regions). If the fraction of
subjects who receive intervention differs among locations,
it is difficult to interpret the overall estimate of effective-
ness. In contrast, the overall estimate of efficacy is not
confounded by varying the fraction of subjects who
receive intervention in different locations.

Heretofore the paired availability design has only been
formulated for evaluating the effect of an intervention on
a short-term endpoint, namely the effect of epidural anal-
gesia on the probability of Caesarian section [1-4]. To
extend the paired availability design to breast cancer
screening, we need to consider the implications of long-
term endpoints.

Methods
Basic requirements
The first step in extending the paired availability design to
the evaluation of breast cancer screening is to identify var-
ious geographic regions with a change in the availability
of breast cancer screening from time period 0 to time
period 1. To simplify this discussion, we presume that
screening is more available in time period 1 than time
period 0. The methodology is also applicable in the

unlikely situation in which the reverse were true in some
or all regions. The change in availability is a change in the
fraction of the eligible population who are invited for
screening. Following Duffy et al [5], there are three basic
design requirements to which we have added a fourth.

Requirement 1
The time periods should be sufficiently long to give
screening sufficient time to maximize (or almost maxi-
mize) its impact on breast cancer mortality rates.

Requirement 2
For each geographic region, time periods 0 and 1 should
be the same length.

Requirement 3
The outcome in each time period is incident breast cancer
deaths, namely deaths from breast cancer in the specified
time period arising from diagnosis of breast cancer during
the same time period.

Requirement 4
We consider only situations in which most screening
occurs at regular intervals of the same length during each
time period.

Requirement 1 can be relaxed in the special case when the
two time periods are separated by a time interval. In that
case one need only require that non-overlapping observa-
tion times from the start of each time period past the end
of each time period be sufficiently long to maximize the
impact on breast cancer screening. However, as with ran-
domized trials, if follow-up after the last screening is too
long, there could be considerable dilution from breast
cancers that could not have benefited from screening, and
that would reduce the efficiency of the estimates [6].

The rationale for Requirement 2 is that one wants the breast
cancer mortality rates to be the same in the two time peri-
ods if screening has no effect and if there are no time-var-
ying changes that could confound the results.

The rationale for Requirement 3 is that by using incident
breast cancer deaths (instead of all breast cancer deaths)
as an outcome measure, one can avoid dilution from the
breast cancer deaths that could not have benefited from
screening [5,7-10]. However when using incident breast
cancer deaths instead of all breast cancer deaths, there will
be a preferential selection for screening evaluation of
those breast cancers that cause death soon after diagnosis
(as these deaths are more likely to occur in the same time
period as diagnosis). With time periods substantially
longer than the mean time between breast cancer diagno-
sis and death, this preferential effect is mitigated, as breast
cancers occurring in a larger fraction of the time period (as
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compared to the situation with short time periods) have a
greater potential to cause death a long time after diagnosis
in the absence of screening and still be included in the
evaluation. Nevertheless, it is worth bearing this preferen-
tial selection in mind.

The rationale for Requirement 4 is that the screening inter-
vention must be comparable in the two time periods.

Potential outcomes model
For each before-and-after geographic region, our goal is to
estimate the efficacy of breast cancer screening, which we
define as the change in average yearly probability of inci-
dent breast cancer deaths due to the receipt of screening.
(We later discuss combining estimates over all regions.)
As proposed in the paired availability design [1-4], we use
the following thought experiment to set the groundwork
for estimating efficacy. Under this thought experiment,
there are four types of subjects:

A, always-receivers, who would receive screening in either
time period,

C, consistent-receivers, who would not receive screening
in the time period with less availability and would receive
it in the time period with greater availability,

I, inconsistent-receivers, who would receive screening in
the time period with less availability and would not
receive it in the time period with greater availability,

N, never-receivers, who would not receive screening in
either time period.

For the sake of simplicity, we assume two conditions: (1)
all-or-none behavior (i.e. an individual either receives all
screens at the recommended interval or none, but does
not switch back and forth), and (2) there is a single dom-
inant screening test rather than a choice among screening
tests of varying efficacy. In our application, there was only
one screening modality.

Let πiAz, πiCz, πiIz, and πiNz denote the probabilities of sub-
ject types A, C, I, N, respectively, in region i and time
period z. Let βiAz, βiCz, βiIz and βiNz denote the probability
of incident breast cancer death in time period z and region
i, for subject types A, C, I, and N, respectively. The proba-
bility of incident breast cancer death in each time period
is a mixture of the probabilities over all subject types in
each time period,

θi0 = πiN0 βiN0 + πiC0 βiC0 + πiI0 βiI0 + πiA0 βiA0, for time period 0,

θi1 = πiN1 βiN1 + πiC1 βiC1 + πiI1 βiI1 + πiA1 βiA1, for time period
1.  (1)

As with the standard paired availability design, to ensure
identifiably we restrict the estimation of efficacy to type C
subjects. Let Ti denote the length of follow-up for time
periods 0 and 1 for region i. We define the efficacy (for
type C subjects) in region i as

The probability in (2) differs from a naive comparison of
the effect of screening between subjects who receive
screening in time period 1 and subjects who do not
receive screening in time period 1. Instead ∆i is the effect
of receiving screening among type C subjects. Related
potential outcome models were independently formu-
lated for randomized trials with all-or-none compliance
[11,12].

Assumptions
In order to estimate (2) we require the following assump-
tions adapted from the standard paired availability design
[4].

Assumption 1. (Stable population)
The characteristics of the population that affect the prob-
ability of incident breast cancer death are constant over
time.

Assumption 2. (Stable treatment)
The screening modality and therapy following diagnosis
do not change over time.

Assumption 3. (Stable evaluation)
The outcome measure, which is incident cancer breast
deaths, does not change in definition over time.

Assumption 4. (Stable preferences)
Factors affecting the decision to receive screening do not
change over time.

Assumption 5. (Stable screening effects)
The effect of screening on the probability of incident
breast cancer death rates does not change over time.

Assumption 1 is plausible if there is little immigration or
out-migration related to screening. However, substantial
immigration or out-migration of subpopulations with dif-
ferent underlying health or cancer risk can affect results
over long time periods.

Assumption 2 is problematic in evaluating some screening
modalities because the reduction in incident breast cancer
deaths could result from better systemic therapies, such as
chemotherapy and hormonal therapy [13]. It is possible
that these changes in therapy could explain the decrease in

∆ =
− ( )i

iC iC

iT

β β1 0 2.
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cancer mortality rates over time, even if screening has no
benefit. Therefore it is particularly important to consider
the plausibility of Assumption 2.

Assumption 3 is plausible, absent major changes in death
code systems.

The basic idea of Assumption 4 is that the screening inter-
vention (including any campaigns to increase public
awareness) should be the same in both time periods. If
Assumptions 1–4 hold, the probability of each subject type
does not change over time period. In other words πiAz =
πiA, πiCz = πiC, πiIz = πiI, and πiNz = πiN. In addition, by virtue
of Assumption 4, there are basically no inconsistent receiv-
ers, i.e. πiI = 0. If there is no screening in time period 0, so
πiaz = πiCz = 0, and Assumption 4 only requires πiCz = πiC and
πiNz = πiN, which is very plausible especially if one views
public awareness as part of the screening intervention.

Assumption 5 likely holds for type N subjects because the
same prior history of no screening applies to both time
periods 0 and 1. Thus we can reasonably assume that the
probability of incident breast cancer death among type N
subjects does not depend on time period, i.e., βiN0 = βiN1 ≡
βN. However, unless there is no screening in time period
0, Assumption 5 will not hold for type A subjects. The rea-
son is that (i) screening is generally more available before
time period 1 than before time period 0, and (ii) prior
screening may affect the probability of incident cancer
death if screening confers benefit.

As a consequence of the above assumptions (and not
applying Assumption 5 to type A subjects), we can write (1)
as

θi0 = πiN βiN + πiC βiC0 + πiA βiA0

θi1 = πiN βiN + πiC βiC1 + πiA βiA1.  (3)

Because θi1 - θi0 = πiC (βiC1 - βiC0) + πiA(βiA1 - βiA0), we
obtain from (3)

If Assumption 5 held for type A subjects, as in the usual
paired availability design, βiA1 = βiA0 , and we would
obtain the standard formula, averaged over the duration
of the time period, for efficacy in the paired availability
design, ∆i = (θi1 - θi0)/(πiCTi). We would also obtain the
standard formula if there were no screening in time period
0 (and thus no type A subjects).

Estimates
In order to estimate (4) we need to estimate θiz, πiC, πiA,
and βiAz. Following the standard paired availability design
we can estimate the first three parameters as follows. Let s
= 1 if screening was received during the time period and 0
otherwise. Following Requirement 4, we assume most
screening occurs at regular intervals during the time
period. Let y = 1 if incident breast cancer death, and 0
otherwise.

In the ideal scenario (Scenario I) the investigators would
report data nizsy, which is the number of subjects in region
i and time period z with indicator of receipt of screening s
and outcome y. In the typical scenario (Scenario II), the
only data in published reports are the numbers who
received or did not receive screening nizs+ and the numbers
with a given outcome y but unknown screening status
niz+y, where "+" denotes summation over the indicated
subscript. For both scenarios, we obtain the following
estimates,

iz = niz+1/niz++ = fraction of subjects in time period z with
incident cancer death  (6)

iA = ni01+/ni0++ = fraction who received screening in time
period 0,  (7)

iC = ni11+/ni1++ - ni01+/ni0++

= fraction who received screening in time period 1 (a com-
bination of types A and C) minus fraction who received
screening in time period 0 (type A).  (8)

If we had the full data nizsy, we could estimate βiA0. How-
ever because subjects in time period 1 who receive screen-
ing are a combination of types C and A, we cannot
uniquely estimate βiA1. We discuss how to circumvent this
difficulty in the two scenarios.

Scenario I: Full reporting of data
When there are full reporting of data, we can estimate θizs

= pr(Y = 1|i, z, s) by izs = nizs1/nizs+. Under the potential
outcomes model, we write

θi00 = πiN βiN + πic βiC0, θi01 = πiA βiA0,

θi10 = πiN βiN, θi11 = πiC βiC1 + πiA βiA1.  (9)

We introduce an exogenous parameter h, which is the rel-
ative risk for incident breast cancer death among type A
subjects in time period 1 versus time period 0, namely,

βiA1 = h βiA0.  (10)

∆ =
− − −( ) ( )i
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We discuss specification of h in the section below on lead-
time adjustment. Combining (9), (10) and (2) gives

The asymptotic variance is approximately

Scenario II. Limited reporting of data
With limited reporting of data we introduce a second
exogenous parameter k to essentially create the same esti-
mates as with the full reporting of data. In particular we
write

θi01 = k θi0,  (13)

where k = pr(S = 1 | Y = 1, Z = 0) = fraction of incident can-
cer deaths in time period 1 that are attributed to screening.
If the full data were available, we would have an estimate
of k and the methodology would be equivalent to that for
Scenario I. In the absence of reported data, we propose a
sensitivity analysis for k. A lower bound on k is 0 and an
upper bound, assuming screening does not cause cancer
deaths, is an estimate of the fraction screened in time
period zero, namely pr(S = 1|Z = 0). Substituting (13) into
(11) gives

where h is the same as in (10). We approximate the
asymptotic variance by

Using actual reported data from the limited data scenario,
we checked the approximate variances in (12) and (15) by
making reasonable assumptions to impute nizsy and then
also computed the asymptotic variance using the delta
method. The agreement was excellent: using the data in
the example and assuming relative risk of incident cancer
death of .7 for screened versus not screened, the approxi-
mate and exact asymptotic variance agreed to three signif-
icant digits.

Lead time adjustment related to prior screening
We specify a value for h in (10) by using the following
argument based on lead time, which is the time from
screen detection to clinical detection in the absence of
screening. Duffy et al [5] discussed a related lead time

adjustment. The type A incident cancer deaths in a time
period are composed of two subgroups: (i) subjects who
would have been screen-diagnosed in the previous time
period if there were screening in the previous time period
and (ii) subjects who would not have been screen diag-
nosed in the previous time period if there were screening
in the previous time period. Generally there is no screen-
ing prior to time period 0, so type A incident cancer deaths
in time period 0 are composed of subgroups (i) and (ii).
Because there is screening in time period 0 (as we are dis-
cussing type A subjects), type A incident cancer deaths in
time period 1 are composed of only subgroup (ii). The
parameter h in (10) is the ratio of type A incident cancer
deaths in time period 1 to type A incident cancer deaths in
time period 0. We approximate h by the number of sub-
jects in subgroup (ii) divided by the number of subjects in
the combination of subgroups (i) and (ii). Let L denote
the mean lead time, which is approximately 2 years for
breast cancer screening [14]. Subjects in subgroup (i) are,
on average, detected on screening in the last L years of the
time period. Assuming uniform detection rates, we further
approximate h by Ti, the length of time of screen-detection
in subgroup (ii), divided by Ti + L, the average length of
time of screen detection in the combination of subgroups
(i) and (ii), giving h ≈ Ti/(Ti + L). Importantly, if L is short
relative to Ti there will be little bias as h would approxi-
mately equal one.

Lead time adjustment related to age-range at diagnosis
Because incident cancer cases are defined based on age at
diagnosis, there is also a subtle bias [9] related to lead
time. Suppose the age-range at diagnosis of breast cancer
for incident breast cancer deaths is 40–69 in both time
periods. Consider type C subjects who would be clinically
diagnosed if in time period 0 and screen-detected if in
time period 1. Let L denote the average lead time. Due to
lead time, a type C subject clinically diagnosed with can-
cer in the age range (40, 40 + L - 1) in time period 0 would
(on average) be screen detected in the age range (40 - L,
39) in time period 1 and would contribute to incident
cancer deaths in time period 0 but not time period 1. Sim-
ilarly a type C subject clinically diagnosed with cancer in
the age range (70, 70 + L - 1) in time period 0 would (on
average) be screen-detected with cancer in the age range
(70 - L, 69) in time period 1 and would contribute to inci-
dent cancer deaths in time period 1 but not in time period
0. All other type C subjects would contribute to incident
cancer deaths in both time periods. To approximately cor-
rect for the bias from a mean lead time of L years, suppose
for simplicity that we divide age into three age groups 40–
49, 50–59, 60–69, and assume the same number of sub-
jects in each age group. A fraction (10 - L)/10 of type C
subjects in the 40–49 age group in time period 0 would be
counted toward incident cancer deaths in time period 0,
but would not be counted toward incident cancer deaths
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in time period 1. Also a fraction (10 + L)/10 type C sub-
jects in the 60–69 age group in time period 0 would not
be counted toward incident cancer deaths in time period
0, but would be counted toward incident cancer deaths in
time period 1. Consequently, for this adjustment, we mul-
tiply θi1 by b πiC + (1 - πiC), where

and Da is five-year cumulative mortality following breast
cancer diagnosis at age a. With L = 2 [14] and approximat-
ing D40 = .167, D50 = .131, and D60 = .124, based on US
population data [15], we obtain b = .98. In our example,
the effect of lead-time bias due to a specified age-range is
negligible and is therefore ignored.

Combining estimates over regions
To obtain a combined estimate of efficacy over all regions,
we use a simple random effects meta-analysis [4,16,17].

Let wi = 1/ var( ) and let σ2 = the larger of (Q - (r - 1)) /

(Σi wi - Σi / Σi wi) and 0, where Q = Σi wi (  - m)2, m =

Σi wi / Σiwi. The random-effects weights are

, and the summary statistic is

, with standard error

. The 95% confidence interval is (  - tr-

1 se( ),  + tk-1se( )), where tr-1 is the value of the 97 1/
2 percentile of a t-distribution with r - 1 degrees of free-
dom, where r is the number of regions. For an example of
these calculations, see Table 1.

Results
We applied the methodology to before- and after-data on
breast cancer screening in various Swedish counties [5].
The original data involved 7 counties. However, because
one-third of the population of Dalarna county enrolled in
a randomized trial, some of the assumptions might be
violated for women screened in Dalarna county. The main
difficulty with using data from Dalarna county is that sub-
jects who refused screening in the randomized trial may
not be comparable to subjects outside of the trial who did
not obtain screening due to lack of availability, and the
methodology does not allow for this difference in compa-
rability. Therefore, in our analysis, we dropped data from
Dalarna county. The age ranges were 40–74 for three
counties, 40–69 for two counties, and 50–59 for one
county.

The data in [5] were reported in terms of person years of
receiving screening. Dividing person years by the length of
the time period we obtained the approximate number of
persons eligible for screening in each region and group,
niz++. Using these data, we estimated the change in the
average yearly death rate of incident breast cancer among
type C subjects ages 40–69 due to receipt of breast cancer
screening as -9 per 100,000 with 95% confidence interval
of (-14, -4) per 100,000 for k = 0 and similarly -9 per
100,000 with 95% confidence interval of (-14, -5) per
100,000 when k equaled the fraction screened. See Table
1 and Figure 1. The estimates were similar for the two val-
ues of k because only in Vastmanland County was there
substantial screening in time period 0, and that was only
14%. We caution that Assumption 2 may not hold due to
improvements in available systemic therapy over the peri-
ods of interest [14]. Therefore the results must be inter-
preted with caution, as they may overestimate the benefit
of screening.

b
L D D D L

D D D
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−( ) + + + +( )
+ +

( )10 10 10 10
540 50 60

40 50 60

/ /
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Table 1: Data and calculations

time period 0 time period 1 yearly change in incident breast 
cancer deaths per 100,000

county number 
eligible

incident breast 
cancer deaths

fraction 
screened

number 
eligible

incident breast 
cancer deaths

fraction 
screened

estimate standard error

Varmland 39946 36 .03 40853 37 .73 .16 7.55
Sodermanland 49526 98 .007 53760 79 .77 -7.89 4.28
Uppsala 43340 110 .03 52426 112 .82 -5.73 4.43
Vastamanland 49827 112 .14 52329 85 .92 -8.88 3.93
Orebro 52936 133 .04 54366 108 .64 -9.74 5.36
Gavleborg 56794 311 .00 56145 219 .84 -13.40 3.64

Fraction screened is from Table 1 of [5]. Incident breast cancer deaths are from Table 3 of [5]. Number eligible is person years from Table 3 of [5] 
divided by years in time period from Table 2 of [5]. Calculations assume k = 0 for sensitivity analysis. Above yields Q = 3.72, σ2 = 0, and overall 
estimate of -9 with 95% confidence (-14, -4) per 100,000.
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Discussion
Our methodology complements that of Duffy et al. [5],
who obtained qualitatively similar results (i.e. a statisti-
cally significant reduction in breast cancer mortality rates
in time period 1 versus time period 0) based on data from
seven Swedish counties. Unlike our paper, Duffy et al.
estimated relative risks instead of risk differences. Duffy et
al. [5] fit a Poisson regression model to data from all sub-
jects in both time periods as well as data on those screened
and not screened in the current time period. To adjust for

self-selection bias, Duffy et al. [5] fit a separate model to
data from refusers and participants in a randomized trial
in Dalarna County. An implicit assumption is that the
self-selection adjustment based on refusers in the rand-
omized trial would apply to women who did not receive
screening outside the trial. This assumption is not used in
the paired availability design, which does not use data
from a randomized trial. However the paired availability
design is subject to bias from changes in therapy over

Estimated change (and 95% confidence intervals) in average yearly probability of incident cancer death due to receipt of screen-ing per 100,000 type C subjects ages 40–69Figure 1
Estimated change (and 95% confidence intervals) in average yearly probability of incident cancer death due to receipt of screen-
ing per 100,000 type C subjects ages 40–69
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time, as in any analysis comparing outcome in one period
versus another.

Another approach to the analysis of before- and after- can-
cer screening data is to regress the change in cancer mor-
tality rate over time for each region on the change in
screening rates over time in each region. Sometimes the
change in cancer incidence rates is used as a proxy for the
change in screening rates [18]. This approach is an
attempt to extract more information from the data,
because larger changes in cancer screening rates should
ideally correspond to larger changes in cancer mortality
rates. However this type of regression based on popula-
tion-level data can give different results than a regression
based on individual-level data, a phenomenon known as
the ecologic fallacy [19].

With additional data, it may be possible to adjust for the
effect of changes in therapy over time, if an additional
assumption is reasonable. Suppose we had additional
data on incident cancer deaths in time periods 0 and 1 in
regions in which there was no screening in either time
period. If (i) the therapies in these regions are representa-
tive of the therapies in the regions with screening and (ii)
the population characteristics are similar to the popula-
tion characteristics in regions with screening, one could
reasonably estimate the effect of changes in therapy on the
probability of incident cancer death.

Although data were reported on person-years of eligibility
for screening, we did not use a survival analysis. A survival
analysis can be incorporated into the potential outcomes
model for all-or-none compliance [20]. However such an
analysis requires more data than were reported. Also, in
this framework, even a constant hazard model would
involve a complicated likelihood calculation.

Besides this methodology based on the paired availability
design, one could also analyze observational screening
data using the method of periodic screening evaluation
[21]. However this method requires regular screenings,
data on the number of cancers detected on screening and
in the intervals between screenings, and follow-up of sub-
jects detected with cancer. The definitive method to eval-
uate cancer screening is a randomized trial [6].
Observational approaches have a role because such trials
are very expensive and difficult to implement. Thus this
extension of the paired availability design to the evalua-
tion of cancer screening could play an important role in
cancer screening evaluation, but only if there were no
change in therapy over time or if one could adequately
adjust for any effect of a change in therapy over time.

Conclusion
The paired availability design can be extended to the eval-
uation of breast cancer screening by using incident breast
cancer deaths as the outcome and requiring sufficiently
long equal-length time periods before and after a change
in availability of periodic screening. However the assump-
tions should be examined carefully. The assumption of
stable preferences may be violated by a campaign to
encourage screening, although the impact would be
greatly mitigated if there were little screening in time
period 0. Also the assumptions regarding changes in ther-
apy over time may also be violated.
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