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Background: There is accumulating evidence that autophagic activity is crucial to the development of 
hepatocellular carcinoma (HCC). Thus, we sought to develop a predictive model based on autophagy-related 
genes (ARGs) to forecast the prognosis of HCC patients.
Methods: Based on expression data from The Cancer Genome Atlas (TCGA) and ARGs from Human 
Autophagy Database (HADb), the differentially expressed ARGs were screened. The prognosis-related 
ARGs were identified using a univariate Cox regression analysis. Using multivariate Cox regression 
analysis, a prognostic model was developed. To assess the predictive value of the model, receiver operating 
characteristic (ROC) curve, Kaplan-Meier curve, and multivariable Cox regression analyses were conducted. 
A data cohort gathered independently from the International Cancer Genome Consortium (ICGC) database 
further verified the model’s predictive accuracy. The immune landscape was generated using the TIMER and 
CIBERSORT algorithms. Finally, the correlation between the prognostic signature and gene mutation status 
was analyzed by employing “maftools” package.
Results: We identified a novel prediction model based on the ARGs of PLD1 and SLC36A1 with significant 
prognostic values for HCC in both univariate and multivariate Cox regression analysis, and patients were 
classified into high- or low-risk groups based on their risk scores. High-risk patients had significantly 
shorter overall survival (OS) times than low-risk patients (P=5e-4). According to the ROC curve analysis, 
the risk score had a higher predictive value than the other clinical characteristics. Prognostic nomograms 
were also performed to visualize the relationship between individual predictors and survival rates in patients 
with HCC. Further, an external independent cohort of ICGC patients provided additional confirmation 
of the predictive efficacy of the model. We subsequently analyzed the differential immune densities of the 
two groups and discovered that various immune cells, including naïve B cells, resting memory cluster of 
differentiation (CD)4 T cells, regulatory T cells, M2 macrophages, and neutrophils, had considerably larger 
infiltrating densities in the high-risk group than the low-risk group.
Conclusions: We established a robust autophagy-related risk model having a certain prediction accuracy 
for predicting the prognosis of HCC patients. Our findings will contribute to the definition of prognosis and 
establishment of personalized treatment interventions for HCC patients.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most 
prevalent cancers in the world, and carries heavy clinical, 
financial, and psychological costs (1). Early-stage HCC 
patients may benefit from liver resection, ablation, and 
transplantation; however, the majority of HCC patients are 
diagnosed at intermediate and advanced stages and thus 
have only a few treatment options (2,3). Systemic therapy, 
coupled with targeted sellers and immune checkpoint 
inhibitors, continues to be essential for advanced stage 
HCC (4). However, patients with HCC frequently have a 
very poor prognosis due to recurrence and chemoresistance. 
Following advances in multi-omics profiling, research has 
produced prognostic candidates for clinical software (5,6). 
To predict the prognosis of HCC patients, strong molecular 
indicators need to be identified.

The prognosis of HCC patients is very unpredictable and 
influenced by a number of risk factors, including hepatitis 
B virus (HBV), cigarette smoking and alcohol. Due to the 
complicated pathogenic features of HCC, there is an urgent 
need to explore valuable prognostic models to increase 
the possibility of precise prediction and seize therapeutic 
opportunities for HCC. The European Association for the 
Study of the Liver (EASL) recommendations recommend 

alpha-fetoprotein (AFP), vascular endothelial growth 
factor (VEGF), and Angiopoietin-2 as HCC prognostic  
indicators (7). Besides, Keratin 19 (K19) and epithelial 
cellular adhesion molecule (EpCAM) are candidate 
biomarkers of poor prognosis and invasion in HCC (8). 
However, the accuracy of prognostic indicators for HCC 
has proven to be a challenge.

Autophagy, also known as type II programmed cell 
death, is a well conserved mechanism of self-digestion 
that employs lysosomes to maintain the equilibrium of 
cells (9,10). The stability of cellular renewal, homeostasis, 
and physiological status is crucially dependent on 
autophagy. The aberrant autophagic level is linked to 
the pathophysiology of numerous illnesses, including  
cancer (11). However, the precise function of autophagy 
in malignancies is unclear and complicated. Various cancer 
types, tumor microenvironments, and tumor stages have 
different autophagy pathways (12,13). Given the intricate 
role that autophagy plays in cancer, more research needs 
to be conducted into the connections between autophagy 
and tumors and the underlying biological mechanisms, and 
the research findings then need to be applied to a well-
designed therapeutic strategy to develop a novel approach 
to cancer therapy. At present, it is too soon to declare with 
absolute certainty whether autophagy is a friend or foe of 
cancer (14). Several preclinical studies have recently given 
evidence on the prognostic roles of autophagy-related 
gene (ARG) signatures in cancer prognosis (15,16). Based 
on the promising research results, autophagy modulation, 
including autophagy inhibitors and autophagy inducers, has 
been shown to be a potential targeted HCC therapy. Thus, 
prognostic factors and promising therapies for HCC need 
to be explored and established.

In this study, we constructed a predictive model for 
overall survival (OS) prognosis of patients based on ARGs 
and evaluated the relationship between the expression 
profiles of the ARGs and clinical outcomes in liver 
hepatocellular carcinoma (LIHC) patients from The Cancer 
Genome Atlas (TCGA). Our risk-score approach requires 
further validation based on additional databases. Our results 
may lead to a multi-dimensional biomarker technique that 
is useful at tracking autophagy and gauging the prognosis 
of LIHC patients. We present the following article in 
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Highlight box

Key findings 
• An autophagy-related gene (ARG) prognostic model of two key 

genes for predicting survival in hepatocellular carcinoma (HCC) 
patients.  

What is known and what is new? 
• Studies on multi-gene prognostic markers for HCC have been 

reported.
• The two ARGs included in the prognostic models had not been 

reported previously, and the differentially expressed ARGs may 
provide a new perspective for the study of HCC molecular 
mechanisms.

What is the implication, and what should change now?
• Relying solely on ARGs for prediction is not very accurate, 

and ARGs need to be combined with other factors to ensure 
comprehensive prediction.
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accordance with the TRIPOD reporting checklist (available 
at https://jgo.amegroups.com/article/view/10.21037/jgo-
22-1130/rc).

Methods

Patient data acquisition

The LIHC training set, which included transcriptome 
profiling data and corresponding clinical information, was 
downloaded from TCGA Data Portal (https://tcga-data.nci.

nih.gov/tcga/) (17). The validation data set of LIHC patients 
was downloaded from the International Cancer Genome 
Consortium (ICGC) database (https://icgc.org/) (18). Table 1 
sets out the basic clinical characteristics of the LIHC patients 
in TCGA database. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of differentially expressed ARGs and 
enrichment analysis

Differently expressed genes (DEGs) in the LIHC tissue 
samples and normal solid tissue samples were screened 
using the “lima” package of R software. The threshold for 
the DEGs was set as a |log2fold change (FC)| value >1 and 
a P value <0.05. A total of 1,287 ARGs were acquired from 
the Human Autophagy Database (HADb; http://autophagy.
lu/clustering/index.html) and Autophagy database (http://
autophagy.info/). Subsequently, the extracted differentially 
expressed ARGs underwent further analyses to determine 
the enriched Gene Ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
using the R package “ClusterProfiler” (19).

Construction and validation of the ARG-based prognostic 
model

To confirm the potential prognostic-related ARGs (P<0.05), 
a univariate Cox regression analysis was conducted to 
investigate the association between the expression levels 
of the ARGs and OS using the “survival” package in R. 
Subsequently, a multivariable Cox regression analysis was 
conducted to construct a prognostic model for patient 
survival and calculate the risk score. The risk score 
was calculated using the following formula: β × ARG1 
expression + β × ARG2 expression + ... + β × ARGn 
expression (20).

Verification of the ARG-based prognostic signature

We conducted internal validations (in TCGA database) 
and external validations (in the ICGC database) to assess 
the predictive performance of the ARG-based prognostic 
model. All the patients were classified into high- and low-
risk groups using the median risk score as the cut-off point. 
A Kaplan-Meier survival curve analysis was conducted to 
compare the OS of the patients in the two groups. The 
accuracy of the ARG-based model was estimated using 
receiver operating characteristic (ROC) curve and the area 

Table 1 Clinical characteristics of LIHC patients in TCGA 
database

Characteristics Tumor Normal

Gender, n

Male 236 22

Female 110 19

Age (years), n

Mean 59 61

Median 61 68

Pathologic stage, n

Stage I 171 18

Stage II 85 10

Stage III 85 12

Stage IV 5 1

Pathologic M, n

M0 263 32

M1 4 1

MX 79 8

Pathologic N, n

N0 253 31

N1 4 1

NX 89 9

Pathologic T, n

T1 173 19

T2 87 10

T3 76 12

T4 10 0

LIHC, liver hepatocellular carcinoma; TCGA, The Cancer 
Genome Atlas; M, metastasis; N, node; T, tumor.

https://jgo.amegroups.com/article/view/10.21037/jgo-22-1130/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-1130/rc
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://autophagy.lu/clustering/index.html
http://autophagy.lu/clustering/index.html
http://autophagy.info/
http://autophagy.info/
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under the curve (AUC) values (21). AUC value is lower than 
0.5, the identification power of the model is poor. AUC 
is 0.5–0.7, the model has a low-level identification power. 
AUC is 0.7–0.9, the model has a certain identification 
power. AUC is above 0.9, the model has a high-level 
identification power.

Establishment and validation of nomogram

To assist in clinical procedures, we constructed a prognostic 
nomogram to assess the probable 1-, 2-, and 3-year OS 
of LIHC patients (22). The clinicopathological variables 
included age, gender, and pathological tumor-node-
metastasis (TNM) stage. The nomogram and calibration 
plot were constructed using the “rms” and “survival” 
package in R software.

Immune infiltration by CIBERSORT analysis

Using 547 different barcode gene expression levels, the 
CIBERSORT method was used in order to describe the 
proportion of 22 different immune cells present in tissues. 
In order to ascertain the percentage of 22 different immune 
cells present in the LIHC samples, the CIBERSORT 
algorithm was applied to use. Correlation coefficients of the 
22 immune cell were calculated using Pearson correlation 
analysis (23).

The TIMER database (https://cistrome.shinyapps.io/
timer/) was used to estimate the correlations between the 
gene signatures and tumor-infiltrating immune cells [i.e., B 
cells, cluster of differentiation (CD)8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells] in TCGA 
LIHC data set to reveal the immune infiltration of the 
gene signatures in the cancer. Along with the Spearman’s 
correlation coefficients and the statistically significant 
estimates, the correlation module was used to create the 
expression scatter plots between the gene signatures in 
LIHC (24).

Statistical analysis

All the statistical analyses were performed using SPSS 
24.0 (Chicago, IL, USA) and R software (version 3.5.1). A 
risk score and two ARG-based nomograms were created 
using Cox regression coefficients. To evaluate the model’s 
prediction ability, a time-dependent ROC curve analysis is 
performed. The log-rank test was used to compare survival 
curves constructed using the Kaplan-Meier method. The 

OS was defined as the period between surgery and death or 
the final follow-up (in days). P value <0.05 was considered 
statistically significant.

Results

Identification of the differentially expressed ARGs in the 
LIHC patient tissue samples

We obtained the transcriptome profiling and clinical 
prognostic data of the patients in the LIHC cohort from 
TCGA database (n=346), and we then retrieved 1,287 ARGs  
from the HADb and Autophagy database (Figure 1A and 
available oneline: https://cdn.amegroups.cn/static/public/
jgo-22-1130-1.xlsx). In total, 114 significant differentially 
expressed ARGs (46 downregulated and 68 upregulated) 
were found (Figure 1B and Table S1). We then conducted 
functional enrichment analyses to further understand the 
functions and mechanisms of these differentially expressed 
ARGs. The findings indicated that the 114 ARGs were 
mostly enriched in protein autophosphorylation, DNA-
binding transcription factor activity regulation, and 
peptidyl-tyrosine phosphorylation. Additionally, the KEGG 
pathway enrichment analysis revealed that these genes 
were strongly linked to a number of pathways, including 
the ascorbate and aldarate metabolism, pentose and 
glucuronate interconversions, the ErbB signaling system, 
and the mitogen activated protein kinases signaling network 
pathway (Figure 1C,1D and Tables S2,S3).

Construction of a prognostic model based on the ARGs

To further isolate the possible prognostic gene from the 
cohort of ARGs, a univariate Cox regression analysis 
was conducted. The results revealed that 23 genes were 
substantially associated with the OS of LIHC patients 
(P<0.05, Figure 2A). The two ARGs in the training 
cohort (i.e., PLD1 and SLC36A1) were then identified as 
independent prognostic markers using multivariate Cox 
regression (Table S4 and Figure 2B,2C). SLC36A1 was 
shown to be a risk factor [hazard ratio (HR) >1], while 
PLD1 was shown to be a protective factor (HR <1). The risk 
score was calculated as follows: risk score = (−0.441 × PLD1 
expression) + (0.522 × SLC36A1 expression).

Next, we assessed the levels of PLD1 and SLC36A1 
protein expression in the LICH patients. When we examined 
the immunohistochemistry data from the Human Protein 
Atlas (https://www.proteinatlas.org/; Figure 2D,2E) (25),  

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://cdn.amegroups.cn/static/public/jgo-22-1130-1.xlsx
https://cdn.amegroups.cn/static/public/jgo-22-1130-1.xlsx
https://cdn.amegroups.cn/static/public/JGO-22-1130-supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-22-1130-supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-22-1130-supplementary.pdf
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we discovered that the expression levels of PLD1 and 
SLC36A1 in the tumor tissues differed significantly.

Evaluation of the two ARG-based prognostic models

Subsequently, we computed the prognostic risk score for 
each LIHC patient in the training set and the validation 
set. Using the median risk score as the cut-off threshold, 
we divided the patients into two groups; that is, the high-
risk group and the low-risk group. The performance of the 

prognostic model was confirmed using the Kaplan-Meier 
survival curve and AUC analysis with effective prognosis 
prediction. Notably, fewer patients in the high-risk group 
survived than the low-risk group (Figure 3A).

Next, we assessed this model in TCGA cohort using 
the survival curve and ROC curve results, and a heatmap 
of gene expression. According to the survival distributions, 
patients with lower risk scores generally had better survival 
than those with higher risk scores (Figure 3B,3C). The 
predictive capability of the two ARG model’s was then 
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Figure 1 Identification of ARGs. (A) Volcano plot of the DEGs in the LIHC samples and normal samples from TCGA database. (B) 
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Figure 2 The process used to construct the prognostic model based on the ARGs. (A) Univariate Cox regression analysis of the differentially 
expressed ARGs. (B,C) Survival curve showing the differential PLD1 and SLC36A1 expression in LIHC. (D,E) The Human Protein Atlas 
project showing representative immunohistochemical images of PLD1 and SLC36A1 in LIHC tissues compared to normal tissues. (D) 
https://www.proteinatlas.org/ENSG00000075651-PLD1/pathology/liver+cancer and https://www.proteinatlas.org/ENSG00000075651-
PLD1/tissue/liver; (E) https://www.proteinatlas.org/ENSG00000123643-SLC36A1/pathology/liver+cancer and https://www.proteinatlas.
org/ENSG00000123643-SLC36A1/tissue/liver. The scale bars are 200 µm and 20 µm, respectively. HR, hazard ratio; CI, confidence 
interval; ARGs, autophagy-related genes; LIHC, liver hepatocellular carcinoma.
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Figure 3 Autophagy-related prognostic index of liver cancer patients in TCGA LIHC cohort (training set). (A) Kaplan-Meier plot showing 
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assessed using time-dependent ROC curves. The AUCs 
at 1-, 2-, and 3-year survival were 0.67, 0.59, and 0.57, 
respectively (Figure 3D). The expression of the two ARGs 
in the two groups is depicted in a heatmap. In the low-risk 
group, PLD1 was strongly expressed, while in the high-risk 
group, SLC36A1 was significantly expressed (Figure 3E).

To verify whether the model was reliable, we also used 

it to examine the external cohort from the ICGC database. 
Similarly, a Kaplan-Meier curve based on the ROC curve 
and the log-rank test was generated to show the prognostic 
value (Figure 4A-4E). The AUCs at 1-, 2-, and 3-year 
survival were 0.57, 0.66, and 0.7, respectively (Figure 4D). 
The accuracy of the model in predicting the survival of 
LIHC patients was supported by both internal and external 
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validations (training set: P=5e-04; validation set: P=0.0043).

Nomogram development for the prediction of prognostic 
risk

Based on the training set of the LIHC patients, we created 
a prognostic nomogram to predict OS probability at 1-, 
2-, and 3-year using the two ARG classifiers and 6 clinical 

pathological risk factors. This prognostic model included 
the following 7 significant independent parameters: 
risk score, age, gender, M stage, N stage, T stage, and 
pathologic stage (Figure 5A). The application of the time-
dependent ROC curve demonstrated that the nomogram 
had the highest prognostic accuracy by a sizable margin, 
indicating that the nomogram prediction model had 
highly valuable efficacy in predicting early relapse. A time-
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dependent ROC analysis was done for the 1-year OS to 
evaluate the prognostic implications of the risk score with 
other clinical parameters. According to the findings, the risk 
score had the most predictive impact at this time point, with 
an AUC value of 0.67 (Figure 5B), which was higher than 
the AUC values for age (AUC =0.54), gender (AUC =0.48), 
M stage (AUC =0.5), N stage (AUC =0.47), T stage (AUC 
=0.64) and pathologic stage (AUC =0.64). No variations 
from the reference line were observed in the calibration 
curves of the nomogram, indicating that there was no need 
for re-calibration [Figure 5C (1-year), Figure 5D (2-year),  
and Figure 5E (3-year)]. Although the AUC value depicted 
by the ROC curve did not exceed 0.7, indicating that 
the prediction impact was relatively inadequate, our 
findings show that the prognostic signature of ARGs is an 
independent prognostic factor for HCC patients.

Somatic mutations in different subgroups based on the 
ARG signature

In addition, typical somatic mutations in individuals in 
the high- and low-risk groups were investigated using the 
somatic mutation profiles of the 346 LIHC patients. The 
“maftools” approach was used to analyze and display the 
mutation data (26). We observed that the top 5 mutated 
genes in the high- and low-risk groups were TTN, TP53, 
CTNNB1, MUC16, and ALB. Waterfall plots were used to 
indicate mutation data for both high- and low-risk samples 
of each gene (Figure 6A,6B). Missense mutations constituted 
the vast majority of mutations in both groups after further 
categorization based on the numerous comprehensive 
classifications (Figure 6C). Single nucleotide polymorphism 
was the most frequent mutation type in both groups  
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(Figure 6D), and the most frequent single nucleotide variant 
was the C > T transversion (Figure 6E).

Infiltrating immune cells analyses

We assessed the component proportion of the 22 immune 
cell subtypes in the LIHC samples using the CIBERSORT 

algorithm (Figure 7A,7B). The proportions of plasma 
cells, resting natural killer cells, activated mast cells, and 
M0 macrophages were relatively lower in the high-risk 
group than the low-risk group (Wilcoxon test, all P<0.05); 
however, the high-risk group typically contained higher 
proportions of naive B cells, resting CD4 memory T cells, 
regulatory T cells, M2 macrophages, and neutrophils. The 
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associated coefficients between the immune infiltration 
levels in LIHC patients from TIMER and the two ARGs 
was then determined using a Pearson correlation analysis. 
The results revealed that both PLD1 and SLC36A1 
expression were significantly correlated with the infiltration 
levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils, and dendritic cells (Figure 7C).

Discussion

HCC is a serious health concern around the world, 
particularly in China (27,28). Patients with HCC continue 
to have poor long-term outcomes even after aggressive 
resection. The outcomes of HCC patients are closely 
correlated to the expression of a few genes in the tumor 
tissue, tumor stage, tumor size, serum indicators, and liver 
function. To predict the prognosis of HCC patients, several 
studies have concentrated on the possible relevance of gene 
signatures based on aberrant messenger ribonucleic acid 
(29-31). Using data from TCGA as the training set and data 
from ICGC as the validation set, we combined the gene 
expression data for HCC in this study.

In recent years, studies on multi-gene prognostic 
markers for HCC have been reported, such as lncRNAs 
signature, metabolic-related gene signature, m6A-related 
gene signature, immune-related gene signature, etc. (32-34).  
These studies remind researchers that multi-gene 
combinations may become more reliable prognostic 
markers for HCC, despite the fact that they have not yet 
been utilized to guide clinical treatment. Previous research 
has shown that the development and spread of malignant 
tumors, inflammatory response, and medication resistance 
are all highly correlated with autophagy (11). Consequently, 
the identification of ARG biomarkers could create novel 
perspectives on the diagnosis of or therapy for different 
malignancies (35). We sought to examine the predictive 
value of ARGs that could be used to predict the prognosis 
of HCC patients. Qin et al. constructed a prognostic model 
of ARGs for LIHC with partial data sets from TCGA  
(n=235) (36). However, to build the model in this study, 
we used the whole TCGA data set (n=346). The two 
investigations vary in terms of both the differentially 
expressed ARGs and the models built for them. In addition 
to developing a predictive model for LIHC, we also 
examined the function of the ARGs in LIHC in this study.

In this study, we built an ARG prognostic model 
using high-throughput expression profile data from 
TCGA and validated this model using data from TCGA 

and ICGC. First, we identified 114 ARGs that were 
differentially expressed in the tumor tissues. According to 
the GO enrichment analysis, these genes were primarily 
enriched in protein autophosphorylation, DNA-binding 
transcription factor activity regulation, and peptidyl-
tyrosine phosphorylation, which suggests that these DEGs 
primarily influence autophagy and thus the progression of 
liver cancer. Ascorbate and aldarate metabolism, pentose 
and glucuronate interconversions, and the ErbB signaling 
pathway were the most enriched KEGG pathways. Our 
findings are in line with those of earlier research that 
showed dysregulated apoptosis is a prevalent characteristic 
of liver cancer.

Next, a univariate Cox regression analysis was conducted, 
and 23 genes were found to be strongly associated with 
the survival of HCC patients, and two significant genes 
(i.e., PLD1 and SLC36A1) were ultimately chosen using 
a multivariate Cox regression analysis for inclusion in the 
prognostic model (37,38). Based on data from TCGA and 
the ICGC databases, we divided the patients into high- 
and low-risk groups and observed that those in the high-
risk group had a lower survival rate. After controlling for 
other clinical factors, we then verified that the risk score 
generated by the model formula was an independent 
predictor of survival. Our ROC curve analysis showed 
that the risk score had a higher predictive value than other 
clinical criteria.

Evidence of the somatic mutations that drive tumor 
growth provides a crucial basis for prognostication, 
therapeutic intervention, and diagnostic practice. In our 
investigation, we showed that the low-risk score subtype 
had significantly higher frequencies of TP53 and CTNNB1 
mutations than the high-risk score subtype. Previous 
research has shown that the TP53 mutation leads to the 
downregulation of the immunotherapeutic response in 
HCC, and TP53 is one of the most frequently mutated 
genes in multiple cancer types (39). According to previous 
reports, the mutation of CTNNB1, which characterizes 
the immune-excluded phenotype, could serve as a novel 
indicator for the prediction of immunotherapeutic 
resistance in HCC (40).

We compared the abundance of the immune cells using 
the TIMER database and the CIBERSORT algorithm, 
taking into account the risk signature derived from 
autophagy, which was significantly correlated with anti-
tumor immunity. We discovered that the risk score was 
positively related to activated immune cells (e.g., naïve B 
cells, resting memory CD4 T cells, regulatory T cells, M2 
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macrophages, and neutrophils). These results suggested 
that immunotherapy could be clinically beneficial for tumor 
patients with high-risk scores (23,24,41).

In summary, we constructed and validated a prognostic 
model based on two ARGs. This model could serve as a 
useful tool in predicting the survival of HCC patients. 
To our knowledge, the two ARGs included in the 
prognostic models had not been reported previously, and 
the differentially expressed ARGs may provide a new 
perspective for the study of HCC molecular mechanisms. 
However, it should be noted that our research had some 
limitations. The AUC value plotted by ROC curve did 
not exceed 0.7, suggesting that the prediction effect had a 
low-level identification. Notably, many factors affect liver 
cancer, among which autophagy genes are only one. Thus, 
relying solely on ARGs for prediction is not very accurate, 
and ARGs need to be combined with other factors to ensure 
comprehensive prediction.

Conclusions

In summary, our study has constructed a robust autophagy-
related risk model with two genes (PLD1 and SLC36A1) for 
OS prediction of HCC. The molecular state of HCC may 
be reflected in patients’ risk scores. Our study expands the 
scope of preclinical medicine research and provides new 
possibilities for predicting patient outcomes and developing 
individualized treatments for HCC in the future.
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