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ABSTRACT
Exosomes, as the main group of extracellular vesicles, 
are biologically active lipid- bilayer vesicles that are 
naturally released from different types of normal or 
tumor cells. These vesicles play an important role in 
intercellular communication and influence the extracellular 
environment and the immune system. Emerging 
evidence demonstrates that cancer- derived exosomes 
are enriched in immunosuppressive proteins, such as 
the programmed death- ligand 1 (PD- L1). PD- L1 and its 
receptor programmed cell death protein 1 (PD- 1) are the 
key immune checkpoint molecules that promote tumor 
progression via negative regulation of immune responses. 
PDL- 1 is highly expressed on the surface of tumor cells 
and binds to PD- 1 on the surface of activated T cells, 
leading to suppression of T cells, which consequently 
enables cancer cells to escape antitumor immunity. 
Currently, there are several Food and Drug Administration- 
approved monoclonal antibodies blocking PD- 1/PD- L1 
interaction, which are clinically used for cancer treatment. 
However, despite impressive treatment outcomes, some 
patients show poor response to PD- 1/PD- L1 blockade. 
Of note, tumor- derived exosomes containing PD- L1 can 
recapitulate the effect of cell- surface PD- L1. There is 
evidence that reveals a significant association between 
levels of circulating exosomal PD- L1 and rate of response 
to anti- PD- 1/PD- L1 antibody therapy. The present article 
reviews the role of exosomal PDL- 1 in the therapeutic 
resistance to anti- PD- 1/PD- L1 treatment. Importantly, it 
is suggested that the removal of exosomal PDL- 1 could 
serve as a therapeutic adjuvant for enhancing the efficacy 
of anti- PD- 1/PD- L1 therapy in patients with cancer.

PD-1/PD-L1 IMMUNE CHECKPOINT PATHWAY AS A 
DOUBLE-EDGED SWORD
Immune checkpoints are cell surface regula-
tory receptors, located mainly, but not exclu-
sively, on T lymphocytes. After recognizing 
cognate ligands on the antigen- presenting 
cells or the target cells, these receptors act as 
T cell receptor (TCR) cosignaling partners 
that deliver either stimulatory or inhibitory 
signals to regulate the lymphocyte activation.1

Programmed cell death protein 1 (PD- 1) is 
a key immune checkpoint molecule known 
as one of the major inhibitory coreceptors 
expressed in the activated T cells.2 Under 
normal physiology, immune checkpoints, 
such as PD- 1, are critical for maintaining 
self- tolerance, preventing autoimmunity, and 
controlling T- cell responses within a desired 
physiological range to protect tissues from 
excessive inflammatory reactions. However, 
in cancerous conditions, these regulatory 
proteins can allow tumor cells to protect them-
selves from the antitumor T- cell responses, 
causing the so- called tumor immune evasion.1

PD- 1 acts through interaction with PD- L1 
that is a highly expressed ligand in non- 
lymphoid tissues in response to inflammatory 
cytokines such as interferon- gamma (IFN-γ) 
produced by cytotoxic T Cells.2 3 On engage-
ment with PD- L1, PD- 1 transmits a nega-
tive costimulatory signal in T cells through 
the recruitment of Src homology 2 domain 
containing phosphatases 1/2 (SHP1/2) 
that dephosphorylates downstream TCR- 
mediated signaling elements and thereby 
inhibits T cell proliferation, cytokine produc-
tion and release, and cytotoxicity.4 Therefore, 
the PD- 1/PD- L1 regulatory system is induced 
by immune responses and then through 
a negative feedback loop attenuates T- cell 
responses and minimizes tissue damage.

On tumor antigen recognition by T cells, 
the released IFN-γ triggers tumor cells 
to express PD- L1 that binds coinhibitory 
receptor molecule PD- 1 on cytotoxic T cells 
within the tumor microenvironment (TME). 
This allows the specific inhibition of tumor 
recognition by T cells, resulting in attenuating 
antitumor immune responses and promoting 
tumor growth. IFN-γ induces the expression 
of PD- L1 through activating signaling path-
ways downstream of the type II interferon 
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receptor, including Janus kinase and signal transducer 
and activators of transcription, leading to binding of the 
IRF1 transcription factor to the PD- L1 gene promoter.5 
Moreover, oncogenic pathways, including MAPK (RAS/
RAF/MEK/ERK) and PI3K/Akt/mTOR, are also known 
to mediate the induction of PD- L1 expression through 
activating c- JUN that, as the component of AP- 1 transcrip-
tion factor, binds to the enhancer element on PD- L1 gene 
and augments the transcription signal in tumor cells.6

THERAPEUTIC EFFECTS OF PD-1/PD-L1 BLOCKING ANTIBODIES
Immune checkpoint blockade therapies are now 
approved by US Food and Drug Administration (US- 
FDA) for the treatment of a wide range of cancer types, 
with approval likely for additional indications in the near 
future. Among negative immune checkpoint molecules, 
the blockade of PD- 1 and its major ligand, PD- L1, provides 
one of the most successful immunotherapies by intensi-
fying T cell immunity against cancer cells. Since the 2011 
FDA approval of the first immune checkpoint inhibitor, 
ipilimumab (anti- CTLA4), for the treatment of meta-
static melanoma, six monoclonal antibodies targeting the 
PD- 1 (pembrolizumab, nivolumab, and cemiplimab) and 
PD- L1 (atezolizumab, durvalumab, and avelumab), have 
been approved for the treatment of various cancer types 
(table 1).1

An important rationale respecting the development 
of anti- PD- 1/PD- L1 drugs for cancer treatment emerged 
from the key findings that showed PD- 1 is over- expressed 
on tumor- infiltrating lymphocytes (TILs),7 8 while PD- 1 
ligand is highly upregulated in most of the human cancer 
cells.9 This was validated through many preclinical studies 
that indicated mAbs blockade of PD- 1 or PD- L1 signifi-
cantly improved antitumor immunity.9–11 Anti- PD- 1/
PD- L1 blocking mAbs have heightened tumor selectivity 

and decreased toxicity as well as a much broader spec-
trum of antitumor activity when compared with anti- 
CTLA- 4 mAbs. There is evidence that clinical responses 
to immune checkpoint inhibitors might be correlated 
with immune- related adverse events (irAEs). Overall, 
drug- induced irAEs are more likely to be experienced in 
patients treated with anti- CTLA- 4 (60%–85%) than anti- 
PD- 1 (16%–37%) or anti- PD- L1 (12%–24%).12–14

Pembrolizumab, the first mAbs against PD- 1, achieved 
its first global approval for patients with unresectable or 
metastatic melanoma by US- FDA.15 Afterward, its use was 
extended to non- small cell lung cancer (NSCLC),16 head 
and neck squamous cell carcinoma (HNSCC),17 cervical 
carcinoma,18 and metastatic urothelial carcinoma18 
among others in a list that continues to grow. Anti- PD- 1 
antibodies can block the PD- 1 signaling pathway, thus 
preventing PD- 1- mediated attenuation of TCR signaling, 
which promotes reinvigoration of exhausted PD- 1+ CD8+ T 
cells, resulting in immune tumor rejection.19–22 Although 
the precise molecular and cellular events mediating 
enhancement of antitumor immunity by PD- 1 blockade 
are not fully understood, tumor neoantigen- specific CD8+ 
T cells appear to be the major T- cell population medi-
ating anti- PD- 1 responses.23 Apart from restoring T- cell 
activity through modulation of TCR signaling, blockade 
of the PD- 1 signaling axis is also able to reverse the associ-
ated metabolic reprogramming to an extent which in part 
mediates the reinvigoration of tumor antigen- specific T 
cells.24 25

Alongside direct inhibition of PD- 1, antibodies 
targeting PD- L1 are also sufficient to reverse the negative 
immune regulation and, thereby, reinvigorate the host 
antitumor immunity. The current FDA- approved mAbs 
targeting PD- L1 are known to be efficient for treating 
several cancer types, including NSCLC, small cell lung 

Table 1 FDA- approved monoclonal antibodies blocking immune checkpoints in human cancer

Target Therapeutic antibody Tumor type FDA approval year

CTLA4 Ipilimumab Melanoma, renal cell carcinoma, metastatic colorectal cancer 2011

PD- 1 Pembrolizumab Melanoma, non- small cell lung cancer, renal cell carcinoma, urothelial 
bladder cancer, Hodgkin’s lymphoma, head and neck cancer, Merkel 
cell carcinoma, microsatellite instability- high cancer, gastric cancer, 
hepatocellular carcinoma, cervical cancer, primary mediastinal large 
B- cell lymphoma

2014

Nivolumab Melanoma, non- small cell lung cancer, renal cell carcinoma, urothelial 
bladder cancer, Hodgkin’s lymphoma, head and neck cancer, 
colorectal cancer, hepatocellular carcinoma, small cell lung cancer

2014

Cemiplimab Cutaneous squamous- cell carcinoma 2018

PD- L1 Atezolizumab Non- small cell lung cancer, urothelial bladder cancer, small cell lung 
cancer, breast cancer

2016

Avelumab Merkel cell carcinoma, urothelial bladder cancer 2017

Durvalumab Non- small cell lung cancer, urothelial bladder cancer 2017

Data have been acquired from “Timeline of Anti- PD- 1/L1 Antibody Approvals by the FDA.” Available in online (https://www.cancerresearch.
org/scientists/immuno-oncology-landscape/pd-1-pd-l1-landscape).
IFN-γ, interferon- gamma; PD- 1, programmed cell death protein 1; PD- L1, programmed death- ligand 1.

https://www.cancerresearch.org/scientists/immuno-oncology-landscape/pd-1-pd-l1-landscape
https://www.cancerresearch.org/scientists/immuno-oncology-landscape/pd-1-pd-l1-landscape
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cancer, urothelial bladder cancer, breast cancer, and 
Merkel cell carcinoma.1 In the light of the dominance in 
PD- L1 expression, blockade of PD- L1 can reiterate the 
impact of PD- 1 blockade. PD- L1 expression is primarily 
triggered by Th1 cytokines, such as IFN-γ. This can in part 
describe the effectiveness of PD- L1 blockade since Th1- 
skewed responses would be more desirable for inducing 
antitumor immunity.26 By contrast with PD- 1 blockade, 
anti- PD- L1 antibodies may also achieve part of their 
efficacy from antibody- dependent cellular cytotoxicity. 
This claim emerged from an in vivo study that shows Fc 
receptor binding is crucial for the effectiveness of anti- 
PD- L1, but not anti- PD- 1, antibody therapy- promoted 
tumor regression in mice bearing tumor.27 Notably, these 
findings suggest that anti- PD- 1 and anti- PD- L1 antibodies 
have distinct biological activities and act, at least in part, 
through different mechanisms.

FACTORS MODULATING RESPONSE TO PD-1/PD-L1 INHIBITORS
Despite the above- mentioned advancements in clinical 
practice, some patients and cancer types show thera-
peutic resistance or relatively low- response rate to PD- 1/
PD- L1 inhibitors.28–30 The basis of differential therapeutic 
success between patients and between cancers is not 
completely understood. However, several factors, such as 
the TME, the tumor genomics, and systemic factors such 
as exosomes have been suggested for explaining poten-
tial mechanisms of the response and resistance to PD- 1/
PD- L1 inhibitors.

Of TME- related factors, PD- L1 expression status and 
pre- existing TILs have been widely studied.20 31 Although 
the conclusions from various clinical trials are not consis-
tent, a significant positive but not absolute correlation 
between PD- L1 expression in the TME and responsive-
ness to anti- PD- 1/anti- PD- L1 therapy has been generally 
found.32 33 Across all tumor types, patients with PD- L1- 
negative tumors respond to anti- PD- 1/PD- L1 therapy in 
0%–17%, while those with PD- L1- positive tumors exhibit 
a response rate ranging from 44% to 100%.34 Besides, 
TILs are the other cell types affecting the tumor immune 
microenvironment. The density and phenotype of pre- 
existing TILs within a TME can impact the efficacy of anti- 
PD- 1/PDL1 therapy.35 The results from a model of tumor 
immune microenvironment that consists of TILs and 
PD- L1 expression status indicate that patients with cancer 
with PD- L1+ TIL+ tumors possess an effective immune 
response to PD- 1/PD- L1 blockade therapy.36 In patients 
with NSCLC, pretherapy levels of the intratumoral popu-
lation of CD8+ cytotoxic T cells with the highest PD- 1 
expression have shown a positive correlation with anti- 
PD- 1 response.37 Moreover, the ratio of memory- like to 
exhausted TILs, as two major intratumoral CD8+ T cell 
phenotypes, has been indicated to be strongly correlated 
with increased survival and response in a cohort of 
patients with melanoma treated with anti- PD- 1.38

Another studied factor is the tumor mutation burden 
(TMB). The primary targets of many tumor immune 

responses are tumor- specific neoantigen peptides that 
arise from somatic mutations in tumor genomes. The 
number of non- synonymous single nucleotide variants 
in a tumor, referred to as TMB, can affect the odds of 
generating immunogenic peptides and thereby influ-
ence response to immune checkpoint blockade in 
patients.25 39–44 Of note, a higher TMB favors positive 
response to PD- 1/PD- L1 blockade in a variety of tumor 
types including NSCLC,23 45–48 small cell lung cancer,48 
urothelial carcinoma,49 metastatic melanoma,50 and 
HNSCC.51–53 Moreover, data from a meta- analysis across 
27 tumor types show a positive correlation between 
average response rate and TMB.54 These findings make 
clear that there is a significant pan- cancer association 
between TMB and response to PD- 1/PD- L1 blockade 
by the tumor type. Further supporting the relation-
ship between TMB and high sensitivity to PD- 1/PD- L1 
blockade is the observation that microsatellite instability 
(MSI)- high/mismatch repair deficiency (MMRd) asso-
ciates with satisfactory treatment effects in patients with 
multiple cancer receiving anti- PD- 1/PD- L1 therapy.55 
Tumors with high MSI generate many neopeptides owing 
to the hypermutated phenotype. MSI- positive tumors are 
a specific type of high TMB tumors, with MMRd gener-
ating a high mutational load. Notably, MMRd derives 
several insertion and deletion mutations resulting in 
frameshifts producing neoantigens that may be more 
immunogenic due to their higher sequence divergence 
from self- peptides.55–57 Taken together, these findings 
reveal that MMRd is correlated with enhanced response 
to PD- 1/PD- L1 blockade because of increased TMB.

Besides, systemic factors are also found to influence the 
therapeutic efficacy of PD- 1/PD- L1 inhibitors. Among 
them, peripheral blood parameters including neutro-
phil/lymphocyte ratio, total lymphocyte and monocyte 
count, relative eosinophil count, T cell clonality, PD- L1high 
circulating tumor cells, and circulating PD- L1 have been 
reported to be significantly correlated with PD- 1/PD- L1 
blockade response in multiple studies of anti- PD- 1/PD- L1 
therapy across a wide range of cancer types.58 Exosomal 
PD- L1 is another systemic factor that has recently 
attracted extensive attention. Tumor cells release PDL1- 
containing exosomes that have been known to be in part 
responsible for resistance to anti- PD- 1/PDL- 1 therapy. A 
growing body of evidence indicated that exosomal PDL- 1 
affects the TME and antitumor immunity. In the present 
review article, we seek impacts of exosomal PD- L1 on clin-
ical outcomes with PD- 1/PDL- 1 blockade therapy and 
suggest potential combination therapies to overcome the 
resistance.

ACTIVITY OF EXOSOMAL PD-L1
Exosomes, as the main group of secreted small extra-
cellular vesicles, are biologically active lipid- bilayer vesi-
cles with a size around 30–100 nm that are naturally 
produced and released by different types of normal and 
tumor cells.59 60 These vesicles play an important role in 
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intercellular communication and influence the extracel-
lular environment and the immune system responses.59 61 
Exosomes are secreted into extracellular space through 
endosomal pathways and transport various bioactive 
molecules (cargo) to the target cells. The composition of 
exosomal cargo is very diverse and includes a wide range 
of immunosuppressive and immunostimulatory proteins, 
chemokines, cytokines, cellular receptors, lipids, as well 
as different nucleic acids such as micro- RNAs and circular 
RNAs.62–64

Tumor cells can actively produce large levels of 
exosomes enriched in cancer- promoting cellular contents, 
such as immunosuppressive proteins like PD- L1, mRNAs, 
and micro- RNAs, that participate in cancer develop-
ment and metastasis, through dysregulating antitumor 
or protumor immunity responses and promoting drug 
resistance.65–67 Of note, tumor- secreted exosomes contain 
PD- L1 presented both on the surface and within exosome 
particles. ESCRTs (endosomal sorting complex required 
for transport) are involved in the packaging of biomole-
cules into exosome, and nSMase2 (neutral sphingomye-
linase 2) and Rab proteins regulate exosome secretion.68 
ESCRT, Rab27a, and nSMase2 have been identified to 
participate in the packaging and secretion of exosomal 
PD- L1.69 Exosomes can transport PD- L1 to other cells 
with low or no PD- L1 expression, with the potential to 
bind to PD- 1.70

The plasma/serum levels of PD- L1 expressed on 
exosomes, but not soluble PD- L1, are found to associate 
with disease progression and clinicopathological features 
in patients with cancer, such as HNSCC71 and NSCLC.72 
Of note, major histocompatibility complex (MHC) mole-
cules expressed on exosomes can play an essential role 
in exosomal PD- L1- mediated tumor promotion. Indeed, 
molecular interaction of exosomal MHC I with TCR 
enhances the inhibitory effect of exosomal PD- L1 to T 
cells. These might be perfectly justifiable reasons for the 

higher immunosuppressive impact of exosomal PD- L1 
than the soluble form.71 72

Exosomal PD- L1 can recapitulate the effect of cell- 
surface PD- L1; it similarly provokes tumor progres-
sion mainly through enabling cancer cells to escape 
antitumor immunity via  inhibiting T cell activation 
(figure 1). Generally, B cell presentation of antigen to 
T cells will activate T cells. An in vitro setting of PD- L1 
negative Raji B cell and PD- 1 expressing Jurkat T cell 
revealed that exosomal PD- L1 can suppress T cell activa-
tion.73 The immunosuppressive effect of tumor- derived 
exosomal PD- L1 has been widely confirmed by other 
investigations. Malignant glioma cells have been found 
to generate exosomes containing PD- L1 that involves in 
tumor progression. Exosomal PD- L1 secreted by glioblas-
toma stem- like cells were identified to participate in T 
cell immunosuppression by inhibition of CD4+ and CD8+ 
T cell activation.74 PD- L1- containing exosomes isolated 
from NSCLC patients could inhibit the activity of CD8+ 
T cells by reducing the production of interleukin 2 
(IL- 2) and IFN-γ in a dose- dependent manner. Of note, 
exosomes with high levels of PD- L1 (PD- L1high exosomes) 
showed a strong potency to suppress the production 
of IL- 2 and IFN-γ, whereas exosomes with lower levels 
of PD- L1 (PD- L1low exosomes) exerted no significant 
effect. PD- L1high exosomes could also significantly induce 
apoptosis in CD8+ T cells through PD- 1/PD- L1 interac-
tion.75 Furthermore, in patients with HNSCC, exosomal 
PD- L1 were able to suppress the proliferation of CD4+ T 
cells, induce apoptosis in CD8+ T cells, and enhance the 
suppressor activity of Treg cells, depending on the level 
of PD- L1 in exosomes. PD- L1high exosomes were found to 
be more effective in the suppression of T cells, compared 
with PD- L1low exosomes.71 An in vivo study revealed that 
exosomal PD- L1 isolated from murine (SCCVII) and 
human (SCC90) HNSCC cell lines could enhance tumor 
progression in a mouse model of human oral- oesophageal 

Figure 1 The role of exosomal PD- L1 in cancer progression. Tumor cells secrete exosomes containing PD- L1 leading to 
suppression of immunity by reducing T- cell activity and inhibition of interferon- gamma and interleukin 2 production as well 
as reducing total number of CD8+ T cells by inducing apoptosis through PD- 1/PD- L1 pathway. PD- 1, programmed cell death 
protein 1; PD- L1, programmed death- ligand 1.
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cancer through reducing migration of CD4+ and CD8+ T 
cells toward the tumor site.76 Further studies on a mouse 
model of prostate cancer exhibits that tumor- secreted 
exosomal PD- L1 can travel to the tumor’s draining lymph 
nodes where it inhibits T cell activation and eventually 
leads to T cell exhaustion and reducing spleen size.73 
In sum, such experimental and clinical studies strongly 
emphasis that exosomal PD- L1 through reprinting func-
tion of cell- surface PD- L1 can inhibit T cell immunity 
and enhance tumor growth in different tumor types, 
including prostate, head and neck, oral- oesophageal, and 
colorectal cancer.

PD-L1 IN EXOSOMES AND THE ACQUIRED RESISTANCE TO 
ANTI-PD-1/PD-L1 THERAPY
There is convincing preclinical and clinical evidence 
that shows the effective role of exosomal PD- L1 in the 
relatively low response rate of anti- PD- L1/PD- 1 therapy. 
Clinical significance of plasma circulating exosomal 
PD- L1 has been indicated in patients with head and 
neck cancer,71 77 gastric cancer,78 79 NSCLC,72 pancreatic 
cancer,80 and melanoma.69 Among melanoma patients, 
the pretreatment levels of circulating exosomal PD- L1 
were found to be negatively correlated with disease 
response to pembrolizumab. Importantly, a higher level 
of circulating exosomal PD- L1 before the treatment was 
associated with poorer clinical outcomes.69

There are also preclinical studies that indicate the 
removal of exosomal PD- L1 can increase the response rate 
of the anti- PD- L1 blockade, supporting the critical impact 
of exosomal PD- L1 in therapeutic resistance to anti- PD- L1 
antibody treatment. In the mouse 4T1 breast tumor 
model, it was shown that the elimination of exosomal 
PD- L1 by inhibiting exosome secretion using knockdown 
of Rab27a in tumor cells considerably improved the effi-
ciency of anti- PD- 1 therapy and suppressed the tumor 
growth.70 The TRAMP- C2 model is a syngeneic model 
of prostate cancer81 that, like human prostate cancer, 
is resistant to anti- PD- L1 blockade.82 Removal of tumor 
exosomal PD- L1 from TRAMP- C2 cells using genetic 
mutations could efficiently enhance the effect of PD- L1 
blockade, which included inhibition of tumor growth, 
elevated cellularity of the spleen, and the activation of a 
T cell response in lymph nodes with similar effects on the 
various activation, exhaustion, and proliferation markers. 
Interestingly, the injection of in vitro collected exosomes 
carrying PD- L1 was found to reverse all these outcomes in 
the TRAMP- C2 model, whereas, in the absence of PD- L1, 
the effect of the exogenously introduced exosomes was 
very low.82 Similarly, the removal of exosomal PD- L1 in 
the colorectal MC38 model inhibited tumor growth and 
extended survival through PD- L1 blockade treatment.73 
Mechanistically, it was suggested that high levels of 
exosomal PD- L1 might reflect the “exhaustion” of T cells 
to a stage at which they can no longer be reinvigorated by 
anti- PD- 1 therapy.73

These findings are all consistent with exosomal 
PD- L1- mediated resistance to current anti- PD- L1/PD- 1 
therapies. However, the mechanism underlying the thera-
peutic resistance of exosomal PD- L1 is still unknown. One 
possible mechanism is that the delivered anti- PD- L1 anti-
bodies can directly bind to exosomal PD- L1, and thereby 
few antibodies remain to inhibit PD- L1 on the surface of 
tumor cells. In addition, high levels of exosomal PD- L1 
can compete with the administered anti- PD- L1/PD- 1 anti-
bodies (figure 2). Likewise, exosomes may reach targets 
that are sequestered from the antibody’s effect. There-
fore, combination therapy using anti- exosomal treatment 
may synergize the therapeutic efficiency of anti- PD- 1/
PD- L1 blockade.

EXOSOME ELIMINATION AS AN ADD-ON THERAPY ENHANCING 
POTENCY OF ANTI-PD-1/PD-L1 ANTIBODIES
There is preclinical evidence that shows loss of PD- L1 
expression from primary tumors along with the elimi-
nation of exosome secretion via pharmacological inter-
vention or genetic manipulation mitigate the metastatic 
burden and elevate overall survival in a variety of tumor- 
bearing mice.69 70 73 Combination treatment with GW4869, 
an inhibitor of exosome secretion, and anti- PD- L1 mAb 
demonstrated the highest reduction in primary tumor 
burden in mice bearing 4T- 1 tumor, showing a syner-
gistic association between immune checkpoint inhibitors 
and exosome elimination.70 Supporting this, anti- PD- L1 
efficacy was markedly enhanced in mice harboring 
tetracycline- inducible Rab27 knockdown 4T1 cells.70 Of 
equal relevance, an Rab27−/− MC38 cell line dramatically 
enlarged overall survival in mice receiving anti- PD- L1 
mAb compared with either monotherapy alone.73 Similar 
results were also observed by an independent group in 
other tumor models.69 Altogether, these findings suggest 
that exosome elimination may act as an effective add- on 
therapy to improve the therapeutic efficiency of anti- 
PD- 1/PD- L1 blockade in patients with cancer. Exosomes 
can be eliminated through suppressing their generation 
and secretion from tumor cells or removal of circulating 
exosomes from the bloodstream using haemofiltration.

Pharmacological approaches for suppressing exosome 
generation and secretion
Elimination of circulating exosomes has emerged as a 
novel and potentially useful therapeutic strategy for the 
development of anticancer drugs.83 Many reports have 
already shown that the reduction of exosome secretion 
or secreted exosomes, achieved by using a chemical 
inhibitor,84 85 genetic manipulation,86 or antibody,87 can 
suppress cancer metastasis and improve the efficiency 
of cancer chemotherapy. The effective strategies for 
exosome suppression are the use of pharmacological 
agents that reduce the level of exosomes by targeting 
different molecules involving in the generation, pack-
aging, and release of them. However, since exosomes 
are implicated in intercellular communications and 
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maintaining normal cellular physiology, this represents 
the most important limitations to be used as a thera-
peutic strategy, due to the potential toxicity and other 
side- effects caused by any partial or temporary inhibition 
of exosome secretion from normal cells when a drug 
candidate inhibits the secretion of exosomes from cancer 
cells. Using exosome inhibitors developed by drug repur-
posing strategy, a process of finding new indications for 
existing FDA- approved drugs, can reduce concerns about 
safety/toxicity, because these agents have already passed 
toxicity and safety tests in humans.85 88 For example, FDA- 
approved drugs, dimethyl amiloride (DMA) and omepra-
zole reduce exosome secretion through targeting H+/
Na+ and Na+/Ca2+ channels89 that are known to involve 
in exosome release.90 DMA has been found to reduce 
the production of exosomes and eliminate their immune 
suppressive effects in tumor- bearing hosts and enhance 
the antitumor efficacy of the cyclophosphamide as a 
chemotherapeutic drug.89 Another possible option for 
inhibiting exosome secretion is the use of proton pump 
inhibitors (PPIs), which are widely prescribed for miti-
gating gastric acid.91 Vacuolar H+- ATPases can regulate 
pH of extracellular microenvironments and involve in 
tumor progression. PPIs through inhibiting vacuolar H+- 
ATPase- driven efflux pumps impair the release of acidic 
vesicles and vesicle- like structures by tumor cells and 
enhance the efficacy of chemotherapeutic agents.91 92 In 
addition, ceramide is known to involve in biogenesis and 
release of exosomes, and sphingomyelinases, enzymes 
promoting ceramide synthesis, participate in sorting the 

cargo as well. Notably, cell treatment with sphingomyeli-
nase inhibitors was found to markedly reduce the release 
of exosomes.93 Moreover, sulfisoxazole, an FDA- approved 
oral antibiotic, was also identified as an inhibitor of 
exosome secretion from breast cancer cells through 
interference with endothelin receptor A, a member of 
G protein- coupled receptor (GPCR) family that plays a 
critical role in the biogenesis and secretion of exosome 
in breast cancer cells.88 Of note, sulfisoxazole exhibited 
significant antitumor and anti- metastatic impacts in 
mouse models of breast cancer xenografts, the decreased 
expression of proteins participated in exosome biogen-
esis and secretion, and induced lysosomal degradation of 
multivesicular endosomes.88 Interestingly, a quantitative 
high throughput screen assay of many pharmacologi-
cally active compounds approved for clinical application 
uncovers the lead compounds tipifarnib, neticonazole, 
climbazole, ketoconazole, and triademenol that inhibit 
exosome biogenesis and/or release by aggressive pros-
tate cancer calls.85 Hence, utility of drug- repurposing 
for preventing exosome secretion may provide a useful 
and safe approach for unmasking the inhibitory effects 
of exosomal PD- L1 on immune function and therapeutic 
responses in cancer.

Exosome removal using extracorporeal haemofiltration
Another alternative promising approach is exosome 
removal from the blood circulation by extracorporeal 
haemofiltration, which would not represent the possible 
drug toxicity or interactions, thereby suggesting an 

Figure 2 Exosomal PD- L1 induces acquired resistance to anti- PD- 1/PD- L1 therapy. Exosomes carrying PD- L1 limit 
effectiveness of anti- PD- 1/PD- L1 therapy through binding to antibodies and suppression of T- cell activity. However, elimination 
of PD- L1 exosomes can improve anti- PD- 1/PD- L1 therapy. IFN-γ, interferon- gamma; PD- 1, programmed cell death protein 1; 
PD- L1, programmed death- ligand 1.
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advantage over pharmacological strategies. Aethlon 
ADAPT (adaptive dialysis- like affinity platform tech-
nology) therapy is a therapeutic haemofiltration approach 
with a mechanism of action similar to kidney dialysis 
or continuous renal replacement therapy method. In 
this approach, plasma and blood cells pass through the 
hollow‐fiber dialysis cartridges (<200 nm pore) that are 
packed with the immobilized affinity matrix. The compo-
nent of matrices can be customized with our purpose and 
can be composed of different affinity agents including 
monoclonal antibodies, aptamers, and various ligands 
to specifically capture and remove soluble proteins from 
the plasma. During the circulation of plasma over the 
cartridge, target molecules can selectively interact with 
the matrix and be isolated from other molecules, while 
unbound components and blood cells of serum pass 
through the device.

The safety and efficacy of the Aethlon haemopurifier 
device have been evaluated in clearing the hepatitis C virus 
(HCV) from the blood of HCV- positive end- stage renal 
disease patients by using lectin affinity plasmapheresis.94 
Of note, ADAPT therapy can be also used for targeting 
and removal of exosomes as an adjuvant treatment in 
cancer therapy. Marleau et al showed that haemopurifier 
technique can be employed for capturing tumor- derived 
exosomes based on specific molecules on the exosomal 
surface, such as high mannose exosomes to remove 
by lectins or HER2 positive exosomes to remove with 
anti- HER2 antibodies.95 Hence, it can be proposed that 
PD- L1 positive exosomes can be eliminated by Aethlon 
haemopurifier device equipped with a matrix containing 
anti- PD- L1 antibody, suggesting an adjunct therapeutic 
candidate to the standard of care cancer treatments. 
However, considering the role of circulating exosomal 
PD- L1 on the mediation of systemic immunosuppression, 
there are concerns about possible severe irAEs along with 
their elimination. Therefore, although some preclinical 
studies showed improved survival with no significant 
adverse effect in exosomal PD- L1 depleted mice bearing 
tumors,73 further preclinical toxicity testing is important 
to address the safety of exosomal PD- L1 elimination.

CONCLUSION AND FUTURE PERSPECTIVES
This review highlights and summarizes current knowl-
edge regarding the role of exosomal PD- L1 in acquired 
resistance to anti- PD- 1/PD- L1 therapy of cancer. In brief, 
exosomal PD- L1 can reprint the effect of tumor cell- 
surface PD- L1 in cancer progression by enabling tumor 
cells to escape from antitumor immunity. Exosomes 
can also deliver PD- L1 from origin tumor cells to other 
cell types with low or no PD- L1 expression and thereby 
suppress systemic antitumor immunity and memory. 
Notably, plasma levels of exosomal PD- L1 are negatively 
correlated with the rate of response to anti- PD- 1/PD- L1 
therapy in patients with cancer. Of note, there is evidence 
that indicates the removal of exosomal PD- L1 can increase 
the response to the anti- PD- L1 blockade in animal 

models. These findings are all consistent with exosomal 
PD- L1- mediated resistance to current anti- PD- L1/PD- 1 
therapies. Although the mechanism underlying thera-
peutic resistance of exosomal PD- L1 is still unknown, 
some possible mechanisms are proposed. Importantly, 
circulating exosomal PD- L1 can interact with anti- PD- 1/
PD- L1 antibodies and limit their therapeutic efficiency. 
Moreover, high levels of exosomal PD- L1 can compete 
with the administered anti- PD- L1/PD- 1 antibodies. It is 
also possible that exosomes attain targets that are seques-
tered from the antibody’s effect. Therefore, combination 
therapy using anti- exosomal treatment may synergize 
the therapeutic efficiency of anti- PD- 1/PD- L1 blockade. 
However, since normal cell- secreted exosomes are crit-
ical for maintaining normal physiology, a drug candidate 
should selectively inhibit cancer- specific exosomes to 
decrease potential toxicity/side- effects. As an alternative 
approach, removal of secreted PD- L1+ exosomes from the 
bloodstream may also be an efficient strategy, of course, if 
toxicity studies verify its safety and the lack of irAEs.
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