
cancers

Article

Merkel Cell Polyomavirus T Antigens Induce Merkel
Cell-Like Differentiation in GLI1-Expressing
Epithelial Cells

Thibault Kervarrec 1,2,3,* , Mahtab Samimi 2,4, Sonja Hesbacher 3, Patricia Berthon 2,
Marion Wobser 3, Aurélie Sallot 5, Bhavishya Sarma 3, Sophie Schweinitzer 3, Théo Gandon 2,
Christophe Destrieux 6 , Côme Pasqualin 7 , Serge Guyétant 1,2 , Antoine Touzé 2,
Roland Houben 3,† and David Schrama 3,†

1 Department of Pathology, Université de Tours, CHU de Tours, Avenue de la République,
37170 Chambray-les-Tours, France; serge.guyetant@univ-tours.fr

2 “Biologie des Infections à Polyomavirus” Team, UMR INRA ISP 1282, Université de Tours,
31 Avenue Monge, 37200 Tours, France; mahtab.samimi@univ-tours.fr (M.S.); patricia.berthon@inra.fr (P.B.);
theo.gandon@etu.univ-tours.fr (T.G.); antoine.touze@univ-tours.fr (A.T.)

3 Department of Dermatology, Venereology and Allergology, University Hospital Würzburg,
Josef-Schneider-Straße 2, 97080 Würzburg, Germany; hesbacher_s@ukw.de (S.H.);
wobser_m@ukw.de (M.W.); Sarma_B@ukw.de (B.S.); sophie.schweinitzer@gmx.de (S.S.);
houben_r@ukw.de (R.H.); Schrama_d@ukw.de (D.S.)

4 Dermatology Department, Université de Tours, CHU de Tours, Avenue de la République,
37170 Chambray-les-Tours, France

5 Plastic Surgery Department, Université de Tours, CHU de Tours, Avenue de la République,
37170 Chambray-les-Tours, France; aurelie.sallot@hotmail.fr

6 Neurosurgery Department, UMR 1253, i Brain, Université De Tours, CHU de Tours, Boulevard Tonnelé,
37044 Tours, France; christophe.destrieux@univ-tours.fr

7 CNRS ERL 7368, Signalisation et Transports Ioniques Membranaires, Equipe Transferts Ioniques et
Rythmicité Cardiaque, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours,
31 Avenue Monge, 37200 Tours, France; come.pasqualin@univ-tours.fr

* Correspondence: thibaultkervarrec@yahoo.fr
† Equal contribution.

Received: 19 June 2020; Accepted: 13 July 2020; Published: 21 July 2020
����������
�������

Abstract: Merkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the
Merkel cell polyomavirus (MCPyV). It is still under discussion, in which cells viral integration
and MCC development occurs. Recently, we demonstrated that a virus-positive MCC derived
from a trichoblastoma, an epithelial neoplasia bearing Merkel cell (MC) differentiation potential.
Accordingly, we hypothesized that MC progenitors may represent an origin of MCPyV-positive
MCC. To sustain this hypothesis, phenotypic comparison of trichoblastomas and physiologic human
MC progenitors was conducted revealing GLI family zinc finger 1 (GLI1), Keratin 17 (KRT 17),
and SRY-box transcription factor 9 (SOX9) expressions in both subsets. Furthermore, GLI1 expression
in keratinocytes induced transcription of the MC marker SOX2 supporting a role of GLI1 in human MC
differentiation. To assess a possible contribution of the MCPyV T antigens (TA) to the development
of an MC-like phenotype, human keratinocytes were transduced with TA. While this led only to
induction of KRT8, an early MC marker, combined GLI1 and TA expression gave rise to a more
advanced MC phenotype with SOX2, KRT8, and KRT20 expression. Finally, we demonstrated
MCPyV-large T antigens’ capacity to inhibit the degradation of the MC master regulator Atonal
bHLH transcription factor 1 (ATOH1). In conclusion, our report suggests that MCPyV TA contribute
to the acquisition of an MC-like phenotype in epithelial cells.
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1. Introduction

Merkel cell carcinoma (MCC) is an aggressive cutaneous neoplasm with a five-year overall
survival rate of 40% [1]. Morphologically, MCC tumor cells display small cell carcinoma features and
express both neuroendocrine and epithelial markers. In 2008, Feng et al. detected the sequence of a
hitherto unknown polyomavirus integrated in the genomes of MCC tumor cells [2]. Subsequent studies
revealed that approximately 80% of MCC cases are Merkel cell polyomavirus (MCPyV)-positive,
and expression of the two viral T antigens (TA) (small T (sT) and large T antigens (LT)) are considered
as the main drivers for carcinogenesis and growth of such tumors [2]. Interestingly, while several
candidates, such as epithelial cells, fibroblasts, neuronal progenitors, or B cells, have been proposed,
the nature of the cells giving rise to MCC following infection remains unknown [3–6].

Based on close phenotypic similarities, the eponymous Merkel cell (MC) was initially regarded as
the most probable cell of origin of MCC. MCs can be found either in the appendages of the skin or in the
basal layer of the epidermis. They function as mechanoreceptors capable of transmitting tactile stimuli onto
Aβ-afferent nerve endings [7]. In mice and humans, MCs can be distinguished immunohistochemically from
other intra-epidermal cells by positivity for the SRY-box transcription factor 2 (SOX2) and cytokeratins (KRT)
8, 18, and 20, which sequentially appear during MC differentiation and are also expressed by MCC [8–12].

For a long time, it was a matter of debate whether MCs develop from the neural crest or from
the epidermal lineage [13]. Based on genetic mouse models, it is now widely accepted that MCs
derive from epidermal progenitors in mammals [12,14,15] and that the transcription factor atonal
homolog 1 (Atoh1) is the master regulator of this differentiation process [12,16,17]. While ectopic
Atoh1 expression can induce MC differentiation throughout the epidermis of transgenic mice [3],
physiological MC development preferentially occurs in hair follicles and in specialized structures
named “touch domes” where the epithelial progenitors of MCs are located [18,19]. A critical step for
MC differentiation in mice hairy skin is that these progenitors come into contact with dermal nerves
leading to activation of the sonic hedgehog pathway (SHH) and subsequent GLI family zinc finger 1
(Gli1) expression [18,19]. Further markers characterizing these Gli1-expressing progenitors in mice are
Krt17 [18], Sox9 [20], and CD200 [21], while only one study has shown KRT17 expression in human
“touch dome” keratinocytes [22]. Notably, a high tumorigenic potential has been demonstrated for
this cell population in transgenic models [23]. Therefore, these MCs’ epithelial progenitors, which
remain poorly characterized in humans, are one potential candidate for MCC origin [24]. In contrast,
due to lack of proliferative activity [25] and insensitiveness to oncogenic stimuli including ectopic TA
expression [26], differentiated MCs are regarded as unlikely to be transformable [4].

Besides MCC, a second tumor entity known as trichoblastoma (TB) harbors cells with an MC
phenotype. In this regard, TB as a benign epithelial skin tumor displaying hair follicle differentiation [27]
is mainly composed of germinative basaloid cells, but is also characterized by sparse intra-tumoral
MC cells. The latter probably reflects a preserved potential of TB cells to act as epithelial progenitors
and, therefore, to differentiate into MCs [28–30]. Applying massive parallel sequencing on a combined
tumor consisting of MCC and TB components, we recently demonstrated that MCPyV integration
in a TB cell gave rise to an MCPyV-positive MCC [31] indicating that an MCPyV-positive MCC can
arise from an epithelial cell. Moreover, the phenotypical similarities between TB and physiologic
hair follicles, where MC progenitors are preferentially located, further support epithelial progenitors
with intrinsic MC differentiation potential as possible ancestry for MCPyV-induced MCC [31]. In the
present study, we first expanded characterization of such MC progenitors in humans and then aimed
to evaluate how the viral T antigens might contribute to the development of an MC-like phenotype in
this population using GLI1-expressing keratinocytes as a model system.
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2. Results

2.1. MCs Are Often Located in Appendage Structures in Human Skin

MC development has mainly been characterized in mouse models [9,12,14]. Hence, in a first
set of experiments, we used immunohistochemistry to compare the MC differentiation process under
physiological conditions as well as in the tumor setting in humans. We started with characterizing the MC
lineage by assessing physiological density and location of MCs in a set of 15 samples from three human
autopsy skin specimens (Figure 1A,B, Figure S1, Table S1). Mean MC density, regardless of the location,
was 50 cells/mm2 of epidermis, and head and neck as well as acral skin were enriched in MCs compared
to the other sites (density = 55 and 104 MCs/mm2, respectively). Moreover, MCs were often located in
appendage structures (72% of all observed MCs), i.e., either hair follicles or sweat glands, as depicted in
Figure 1B, Figure S1. Of note, contrary to previous reports, some dermal MCs were observed (Figure S1).

Figure 1. Merkel cells and possible Merkel cell progenitors in human skin. (A) Keratin 20 (KRT20),
SRY-box transcription factor 2 (SOX2), KRT8, and KRT18 staining was used to identify Merkel cells
(MCs) (bar = 100 µm) (only one hotspot investigated for illustration purpose). Merged analysis is
available in Figure S1B. (B) Identification of potential MC progenitors in human skin: Three MC
hotspots as well as interfollicular epidermis for comparison are depicted (bar = 100 µm) (15 hotspots
investigated in total). Immunohistochemical staining revealed expression of KRT17 and SOX9 in the
epidermal cells surrounding differentiated MCs suggesting that these cells are MC progenitors. Nuclear
GLI family zinc finger 1 (GLI1) was detected only close to MC hotspots in hairy, but not in acral skin.
Of note, neurofilament (NF)-expressing dermal nerves were observed in contact with the MCs.
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2.2. Cells with an MC Progenitor Phenotype Characterized by GLI1 Expression are Found in Close Proximity of
MCs in Human Hairy Skin

Since MC epithelial progenitors can be expected to be found preferentially in regions enriched for
MCs, we focused on the following on MC hotspots [18,22]. Such areas enriched in KRT20-positive
MCs were mostly observed in hair follicles (52% of cases) or in junctions between eccrine sweat
ducts and the overlying epidermis (36%). In the latter case, MCs were surrounded by clusters of
verticalized basal keratinocytes resembling structures reported as “touch domes” [22] (Figure 1B,
Figure S1, Table S1). Slides of MC hotspots were subsequently stained for the epithelial progenitor
markers GLI1, SOX9, and KRT17, revealing that epidermal cells surrounding MCs—in contrast to the
rest of the epidermis—were characterized by nuclear GLI1 expression and positivity for the stem cell
markers KRT17 and SOX9 (Figure 1B, Figure S1). In mice, Gli1-expressing keratinocytes in the hair
follicle have been identified as MC progenitors [17–20]. Hence, our results demonstrate that also in
human hairy skin an equivalent GLI1-positive population is preferentially located in the hair follicle.

2.3. GLI1 Expression in Keratinocytes Induces MC Lineage Markers

To evaluate a role of GLI1 expression in the establishment of the MC lineage in human epithelial
cells, we used primary normal human epidermal keratinocytes (NHEK) as model system (Figure S2).
These cells were transduced with a lentiviral vector encoding GLI1. Gene expression analysis after
14 days revealed an increase of the MC lineage markers SOX2 (110-fold compared to the empty vector
control, p = 0.002) and KRT8 (4-fold, p = 0.05) in those cells (Figure 2A). Moreover, in GLI1-transduced
cells KRT17 and SOX9 messenger RNA (mRNA) levels were found to be slightly elevated (2-fold),
which, however, did not reach statistical significance. On protein level, we observed increased
expression levels of SOX2 upon GLI1 expression by immunocytochemistry and immunoblot (Figure 2B,
Figure S3A,B). Additional immunostainings suggested enhanced KRT17 and SOX9 expression in
GLI1-transduced NHEK, while no expression of the additional MC markers KRT8 or KRT20 was
observed (Figure 2B, Figure S3). The discrepancy between induction of mRNA and lack of KRT8 protein
in immunostaining upon GLI1 expression might be explained by protein levels below the detection
limit of the antibody used. Nevertheless, together, these results suggest that GLI1, the executor of
the sonic hedgehog pathway, is capable of initiating the first step of MC differentiation via SOX2
induction [6,9].
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Figure 2. Ectopic GLI1 expression in primary human epidermal keratinocytes induces several MC
lineage markers: Normal human epidermal keratinocytes (NHEK) were infected with a lentiviral vector
coding for GLI1 and puromycin resistance. Following antibiotic selection, cells were harvested after
14 days of cultivation. (A) Immunoblot analysis was performed to confirm GLI1 expression (insert),
and isolated RNA was subjected to complementary DNA (cDNA) synthesis and real-time PCR. Relative
messenger RNA (mRNA) expression levels of the indicated Merkel cell lineage markers are given as
mean (+ standard error of the mean (SEM)) of four independent experiments (* p value < 0.05, paired
t test) (mean CT value of the controls was used as reference). (B) Expression of GLI1, the MC progenitor
(KRT17, SOX9) and the MC markers (SOX2, KRT8, and KRT20) was assessed by immunohistochemistry
and relative protein expression quantification was performed on at least 1000 cells/condition using
ImageJ software. Results are displayed as box and whiskers diagram with median, Q1, and Q3,
as well as first and 99th percentile. These results were confirmed by two additional independent
experiments (immunostaining and immunoblot) as shown in Figure S3. Uncropped membranes and
Western blot signal quantifications are available in Figures S8 and S9, respectively.
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2.4. MC-Progenitor and MC Markers Are Expressed in Trichoblastoma and Merkel Cell Carcinoma

Next, we assessed how the markers defining the MC differentiation status are distributed in the two
tumor entities harboring MC-like cells, i.e., TB and MCC. In five out of six MC containing interpretable
TBs, we detected sparse SOX2-positive intra-tumoral cells. As typical for trichoblastoma, these expected
“MCs” represented only a minority of cells dispersed within a vast majority of germinative tumor cells
displaying a MC progenitor phenotype, and may be explained by germinative TB cells undergoing MC
differentiation [30,32]. In line with this view and in line with the necessity of active hedgehog pathway
signaling for potential MC differentiation in human epithelial cells [9,18], widespread nuclear GLI1
expression in the germinative cells was detectable in seven out of eight TB specimens (Table 1, Table S2,
Figure S4A). Furthermore, diffuse expression of the GLI1 target genes, SOX9 and KRT17, was observed
in germinative cells of all TB cases (Table 1, Table S2, Figure S4A). In conclusion, these results further
substantiate known similarities between MCs’ epithelial progenitors and TB cells. In light of our
previous report of an MCPyV-positive MCC arising from a TB cell [31], these observations further
suggest such MC epithelial progenitors as a potential origin of MCPyV-induced MCC.

Table 1. Expression of Merkel cell progenitor markers in trichoblastoma (n = 8) and Merkel cell
carcinoma (n = 103).

MC Progenitor Markers TB (n = 8 Cases) MCC (n = 103 Cases)

GLI1
Negative 1 (13%) 60 (67%)

Positive (nuclear) 7 (87%) 29 (33%)
No data available 0 14

KRT17
Negative 0 94 (100%)

Positive (cytoplasmic) 8 (100%) 0
No data available 0 9

SOX9
Negative 0 7 (8%)

Dot-like (cytoplasmic) 0 59 (64%)
Patchy (nuclear) 0 26 (28%)
Diffuse (nuclear) 8 (100%) 0
No data available 0 11

MC markers TB MCC

SOX2
Negative 1 (17%) 2 (2%)

Positive (nuclear) 5 (83%) 94 (98%)
No data available 2 7

KRT20
Negative 0 8

Diffuse (cytoplasmic) 8 (100%) 2
Mixed (cytoplasmic) 0 66

Dot-like pattern (cytoplasmic) 0 19
No data available 0 8

KRT: Cytokeratin; GLI1: GLI family zinc finger 1; MC: Merkel cell; MCC: Merkel cell carcinoma; SOX2: SRY-box
transcription factor 2; SOX9: SRY-box 9, TB: Trichoblastoma. Representative photos of SOX9 expression patterns are
available in Figure S3. Results are given as numbers and percentage of interpretable cases.

While in TB a mixture of cells with either epithelial progenitor or MC phenotype is present,
almost all MCC tumor cells display a phenotype of mature MC. Indeed, in a previous study we
observed 100, 99, and 92% of MCC cases with widespread positivity for the MC markers KRT8,
18, and 20, respectively [33,34]. Accordingly, in the present work, diffuse and strong nuclear positivity
for SOX2 was detected in almost all analyzed MCC tumors (98%). While the MC progenitor marker
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KRT17 was not detectable (Table 1, Figure S4A), GLI1 and SOX9 nuclear expression, representing
the active forms of these transcription factors, were detected in 33% and 28% of cases, respectively
(Table 1, Table S2). Moreover, such findings were more frequently observed in MCPyV-negative than
in MCPyV-positive cases (GLI1: 52 versus 24%, p < 0.03; SOX9 nuclear positivity: 81 versus 10%,
p < 10−9, respectively) (Figure S4B,C, Table S3), suggesting that MCPyV presence is associated with a
more mature MC phenotype.

2.5. T Antigens Can Trigger Early MC Differentiation Marker Expression in Epidermal Cells

On the supposition that MCC arises upon integration of MCPyV in a cell of the MC lineage,
the virus might either hit an already determined MC cell or might trigger or promote the acquisition of
the MC phenotype in an epithelial progenitor. To investigate a possible contribution of the MCPyV
TAs to the development of an MC phenotype, sT and truncated LT were ectopically expressed in
NHEK (Figure 3A). Notably, while cells could not be immortalized by the viral proteins, significant
morphologic changes with reduction of cell size were observed upon TA expression (Figure 3A).
Gene expression analysis after two weeks revealed an increase of mRNAs coding for early MC
differentiation markers (KRT8 p = 0.02 and KRT18 p = 0.02), while the keratinocyte marker KRT14 was
slightly reduced upon TA expression (p = 0.09) (Figure 2B). Induction of KRT8 upon TA expression in
NHEKs was confirmed by immunoblot and immunocytochemical staining, while no expression of
SOX2 or KRT20 was observed in three independent experiments (Figure 3C,D, Figure S5). Interestingly,
in situ KRT8 staining of TA-expressing NHEK demonstrated that expression of this marker was
restricted to a subpopulation of cells with small-medium size and round shape (Figure 3C).
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Figure 3. T antigens induce expression of some early MC differentiation markers in primary human
keratinocytes. A: NHEKs were infected with a lentiviral vector coding for small T (sT) and truncated
Large T (LT) as well as a puromycin resistance. Following antibiotic selection, cells were analyzed after
14 days of cultivation. (A) Immunoblot analysis confirmed LT expression, and microscopic inspection
revealed a less-flattened phenotype and cultures reaching much higher densities. Under microscopic
examination such cells harbored reduced cytoplasmic size compared to the controls, as confirmed using
imageJ software (bar = 100 µm) (* p value < 0.05, Mann–Whitney U test, n = 3 independent experiments).
(B) Relative mRNA levels of the indicated Merkel cell differentiation markers (* p value < 0.05, paired
t test, n = 4 independent experiments), (C) Immunoblot demonstrated T antigens (TA)-induced KRT8
protein expression and immunohistochemistry additionally revealed KRT8 expression is restricted to a
subpopulation of small- to medium-sized round cells. Furthermore, occasionally “dot like” staining
was observed (white arrows). (D) Immunohistochemical assessment of the indicated MC markers in
TA-expressing NHEK, control NHEK and the MCC cell line WaGa (bar = 100 µm). KRT8 induction by
T antigens was confirmed in two additional independent experiments, which are depicted in Figure S4.
For relative quantification of protein expression levels, at least 1000 cells/condition were evaluated
using ImageJ software. Results are displayed as box and whiskers diagram with median, Q1, and Q3
as well as first and 99th percentile. Uncropped membranes and Western blot signal quantifications are
available in Figures S8 and S9, respectively.

2.6. T Antigens Induce Late MC Markers in GLI1-Expressing NHEK

To model TA expression in GLI1-expressing epithelial progenitor cells, we infected NHEKs with
a bicistronic lentiviral construct coding for GLI1 and MCPyV-TA. After two weeks, morphological
analysis of these cells in comparison to control cells infected with an empty vector revealed induction
of a subpopulation of non-adherent, living cells forming clusters similar to the one observed for MCC
cell lines (Figure 4A). Moreover, immunocytochemical staining revealed expression of the MC markers
KRT8, SOX2, and, to a lesser extent, KRT20 (Figure 4B,C, Figure S5). Given that NHEKs represent only
a limited model for MC progenitor cells, these findings—even though the detection of KRT20 was
restricted to only a few cells—indicate that the interplay of GLI1 and MCPyV TA bears the potential of
enforcing MC differentiation.
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Figure 4. Induction of late MC markers by combined expression of GLI1 and Merkel cell Polyomavirus
(MCPyV) T antigens (TA) in primary keratinocytes. NHEKs were infected with a bicistronic lentiviral
vector coding for GLI1 as well as sT and truncated LT. Under control of a second promoter, a pure
resistance was expressed. Following antibiotic selection, cells were analyzed after 14 days of cultivation.
(A) GLI1/TA combined ectopic expression was associated with formation of floating clusters of living cells
in normal human epidermal keratinocytes (NHEK), while these findings were not observed in controls or
when GLI1 and TA were transduced independently (PC: Phase contrast) (Figure S4) (n = 3 independent
experiments). White arrows indicate the floating cells. (B,C) Immunohistochemical assessment
of Merkel cell markers (SOX2, KRT8, and KRT20) expression levels in GLI1/T antigen-expressing
NHEKs and controls. Immunohistochemistry was performed on the respective cells spotted on slides
(2 × 105 cells/condition). B. Count of cells expressing the Merkel cell markers in GLI1/T antigens
(TA)-expressing NHEK and controls (results are mean ±SEM of three independent experiments).
Counting of positive cells was preferred to relative protein level quantification due to the low number
of GLI1/TA-expressing cells. C. Representative photos of LT, GLI1, SOX2, KRT8, KRT18, and KRT20
expression in NHEK (controls), GLI1/TA-expressing NHEK, and the WaGa MCC cell line. White arrows
indicate cells expressing the respective proteins. The results for two additional independent experiments
are shown in Figure S5.

2.7. T Antigens Prevent ATOH1 Degradation

In NHEK, MCPyV-TA induced transcription of MC markers without significantly affecting
ATOH1 (Figure 3B), the known master regulator of MC differentiation [12,14]. Indeed, although
LT-mediated ATOH1 induction was recently reported [35], we only observed a slight and statistically
not significant mRNA increase upon TA expression. Hence, we hypothesized that the TAs might
affect ATOH1 protein independent of gene transcription. To test this hypothesis, we transfected
U2OS cells either with hemagglutinin (HA)-tagged ATOH1 alone or in combination with MCPyV-TA
and analyzed RNA as well as protein levels. To this end, while the ATOH1 mRNA level was not
affected by TA co-expression, ATOH1 protein was increased (Figure 5A). Next, a constant amount
of ATOH1-encoding plasmid (0.3 µg) and increasing amounts of TA-encoding plasmid (0–1.4 µg)
were co-transfected, demonstrating a dose-dependent relation of increasing ATOH1 in the presence
of MCPyV-TA (Figure 5B). Then, we asked whether this effect might be due to decreased protein
degradation. To test whether protein stability is affected, the co-expression was performed while
translation was inhibited in cycloheximide chase assays, allowing to assess ATOH1 protein decay in
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the presence or absence of TA (Figure 5C). These analyses revealed that TA increased ATOH1 half-life
from 2 to 9 h. Interestingly, knockdown of TA expression in the MCC cell lines MKL-1 and WaGa failed
to reduce ATOH1 protein levels (Figure S6) suggesting that in established MCC cells ATOH1 does not
depend on stabilization by LT.

Figure 5. MCPyV T antigens increase the half-life of ATOH1 (A) Hemagglutinin (HA)-tagged ATOH1-
and/or TA-encoding plasmids were transfected either individually or combined into U2OS cells.
After two days, real-time PCR and immunoblot analyses were performed. While ATOH1 mRNA was
not affected (mean ± SEM of three independent experiments), ATOH1 protein accumulation in the
presence of TA was observed. (B) Co-transfection of a constant amount (0.3 µg) of HA-tagged ATOH1
and increasing amounts of TA in U2OS cells followed by immunoblot analysis. ATOH1-HA signals
relative to actin were quantified using ImageJ. Mean ± SEM of three independent experiments was
displayed. (C) Evaluation of ATOH1 half-life in absence or presence of T antigens. Twenty-four hours
after transfection, HEK293 cells were exposed to the translation inhibitor cycloheximide (CHX) for
variable durations (0–6 h). ATOH1-HA expression was then evaluated by immunoblot analysis and
quantified using the Image J Software (mean ± SEM of three independent experiments are depicted).
(D) A mutant of ATOH1-HA, in which the three serines at positions 331, 337, and 342 were all exchanged
to alanines (ATOH1-HA-3A), was generated, and the impact of co-transfected TA on ATOH1-HA wild
type and ATOH1-HA-3A expression was analyzed in CHX chase experiments (see C). Quantified
signals relative to actin are given in the graphs below. (E) Co-transfection of ATOH1-HA-3A with
increasing amounts of TA did not affect ATOH1 protein expression level (this was confirmed in a
second independent experiment). Uncropped membranes and Western blot signal quantifications are
available in Figures S8 and S9, respectively.
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In mice, Atoh1 degradation has been shown to be controlled by phosphorylation of three
carboxy-terminal serine residues (S331, S337, S341) leading to Atoh1 ubiquitinylation and subsequent
targeting to the proteasome [36,37]. Hence, we speculated that TA-dependent stabilization might
involve the respective sites in the human protein. Consequently, we generated expression constructs
coding for ATOH1 proteins in which the serines were exchanged to alanines, either individually
(S331A, S337A, and S342A) or all three combined (ATOH1-3A). Indeed, these modified ATOH1 proteins
displayed extended half-lives in cycloheximide chase assays (Figure 5D, Figure S7A). More importantly,
however, while T antigens still stabilized ATOH1 proteins harboring single phospho-site mutations
(Figure S7B), no additional stabilization could be observed for the triple mutant protein (Figure 5D,E).
Therefore, it is likely that the TAs act in the same pathway either by impacting phosphorylation of
several serine residues on ATOH1 or by interfering with subsequent phosphorylation-dependent
proteasome targeting.

2.8. The MCPyV Unique Region 1 (MUR1) in MCPyV LT Contributes to ATOH1 Stabilization

Irrespective of the fact that the exact mechanism of TA-mediated ATOH1 protein stabilization still
requires further investigations, we finally wanted to know which of the two T antigens and which
protein subdomains are involved in the process. Hence, we assessed ATOH1 protein levels after
co-transfection of ATOH1 with either sT or LT, respectively. These experiments identified LT as the main
effector of ATOH1 stability (Figure S7C). To scrutinize which functional domain of large T might be
involved in regulating ATOH1 degradation, another series of co-transfections was performed combining
ATOH1 with LT mutants devoid of either specific interaction sites or the MCPyV unique region 1
(MUR1) region. Interestingly, mutants, which have been demonstrated to lack any growth-promoting
activity, like the heat shock protein 70 (HSC70)-binding mutant D44N [38,39] or the RB transcriptional
corepressor 1 (RB1)-binding deficient variants E216K and S220A [38], were still capable of mediating
ATOH1 accumulation (Figure S7D). However, co-transfection of ATOH1 with MCPyV-LT∆MUR1, a LT
variant still bearing growth-promoting activity [38], did not result in enhanced protein expression
(Figure S7D), suggesting that the MUR1 region of MCPyV-LT is essential for its ATOH1-stabilizing
capacity. Since, however, the applied LT antibody (CM2B4) does not recognize LT∆MUR1, we could
not confirm that the protein was de facto expressed in these experiments (Figure S7D). We, therefore,
repeated this experiment with V5-tagged versions of LT and LT∆MUR1. Now, both proteins were
detectable and we again observed no stabilization of co-transfected ATOH1 in the case of LT lacking
the MUR1 region (Figure S7E). To further confirm the contribution of the MUR1 region, we also tested
the truncated large T of AlDo, an MCC cell line expressing a truncated LT with an additional large
deletion representing most of MUR1 [40]. Indeed, upon co-expression of AlDo LT, no stabilization but
even a reduction of the ATOH1 protein level was observed (Figure S7F).

3. Discussion

Today, the identification of the cell of origin for MCC is still pending. Based on the similarities in
phenotype to MCs, the initially described “trabecular carcinoma of the skin” got its name MCC [24].
These phenotypic similarities can result either from transformation of the eponymous cell or inducing
phenotypic changes during oncogenesis resulting in a phenotype resembling those cells. Since (1)
MCs are regarded as post-mitotic cells with low sensitivity to oncogenic stimuli, (2) they demonstrate
different preferred localizations compared to MCCs, (3) lack of infection of MCs by MCPyV, and (4)
neuroendocrine tumors tend to derive from epithelial progenitor cells rather than end-differentiated
cells [24], a direct transformation of MCs into MCCs is considered as quite unlikely. In this regard,
we recently demonstrated that MCPyV integration in a TB gave rise to an MCPyV-positive MCC [31].
Of note, scattered MCs are frequently observed in TB [27,29,30], demonstrating that at least some of the
cells possess the potential for MC differentiation, although the molecular determinants of this process
are unknown.
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Of note, the knowledge on MC development is mainly derived from mouse experiments. In the
present study, we confirmed that MC hotspots are mostly located in the hair follicle in human hairy
skin. In close vicinity to the MCs, we observed GLI1 and its downstream targets SOX9 [41] and
KRT17 [42]-expressing keratinocytes. Similarly, we could confirm nuclear GLI1 positivity and related
downstream SOX9 and KRT17 [27] expression in our TB cases suggesting that MC development
under human physiological conditions as well as in TB tumors are quite similar and resemble
the murine process with GLI1 activation being an early step. Accordingly, upon GLI1-expression
in NHEK, we detected an increased expression of SOX9 and KRT17, and—as has been described
for other cell lineages [43,44]—a prominent induction of SOX2. Since SOX2 can drive ATOH1
expression by binding to ATOH1 enhancer [17] or ATOH1 promoter [6] and thereby promote MC
differentiation [45], SOX2 induction appears as a potential mechanism by which GLI1 promotes
ATOH1-driven MC development.

Based on our recently reported observation that a MCPyV-positive MCC could arise from a TB,
we hypothesized that MCPyV oncoprotein expression is able to induce acquisition of a Merkel cell-like
phenotype in epithelial progenitors with intrinsic MC differentiation potential. Indeed, while TA
expression in NHEK reduced cell size, triggered KRT8 protein expression, and enhanced KRT18 mRNA
levels, we did not observe expression of KRT20, a marker appearing later during the MC differentiation
process [9]. Although Atoh1 alone is able to initiate MC differentiation during embryonic mice
development, Sox2 expression is required for Krt20 expression [9]. Accordingly, the two MCC tumors
lacking SOX2 expression in our cohort were also KRT20 negative (data not shown). Hence, to test if the
lack of KRT20 expression was due to a lack of SHH activation in NHEK, and subsequent lack of SOX2
expression, we generated a MC progenitor model system and assessed TA impact in it, by co-expressing
GLI1 and TA in these cells. Although GLI1-expressing NHEKs represent only an artificial and limited
model for MC progenitor cells, GLI1 and TA co-expression resulted in cells expressing SOX2 and KRT8,
and even to a few cells displaying KRT20 positivity. Of note, similar as to what has been described for
ectopic expression of LT in fibroblasts, we detected living cells with suspension growth. In contrast,
however, we did not observe a different expression of Merkel cell markers between the adherent and
floating cells (Figure S4).

While our results suggest SHH activation is required at some time point in MCC cell development,
GLI1 expression was only observed in about 30% of cases in our study, which were mostly
MCPyV-negative cases. Accordingly, therapeutic inhibition of SHH pathway using chemical inhibitors
failed to reduce MCC tumor cell viability [46]. Therefore, SHH activation might contribute to MCC cell
of origin establishment but then be lost during tumor development.

Another important factor in MC development is ATOH1. In this regard, induction of ATOH1
upon large T expression has been recently reported in fibroblasts [35]. In keratinocytes, we observed
only a slight, statistically nonsignificant ATOH1 mRNA level increase upon TA expression. This is
in accordance with data obtained in mice where ectopic sT expression in combination with Atoh1
in epidermal cells did initiate a MC-like development [3], but only TA expression did not [3,47].
Thus, cellular context seems to influence the impact of LT expression on ATOH1. Indeed, we observed
that ATOH1 degradation is impaired in the presence of LT in U2OS and 293 cells while TA knockdown
does not affect ATOH1 protein levels in MCC cell lines. This might imply that TA only stabilizes
ATOH1 in a specific environment. It is conceivable that, in a hit-and-run type mechanism (although the
virus stays integrated in the host genome), LT contributes to initiating MC-like differentiation which
later becomes independent of the viral protein. Indeed, T antigens are known to hijack many cellular
processes [48], and stabilization of LT by sT via inhibition of the ubiquitin ligase “F-box and WD repeat
domain containing 7” (SCFFbw7) has been proposed [49], although this finding was recently called
into question [50]. In mice, phosphorylation of the Atoh1 serine residues S328, S334, and S339 [36,37],
equivalent to the amino acids S331, S337, and S342 in human, led to the ubiquitination of the protein by
the ubiquitin ligase “HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1” (HUWE1)
and subsequent targeting to the proteasome. Accordingly, human ATOH1 lacking the respective
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phosphorylation sites presented with an extended half-life in our study. Notably, while LT impaired
degradation of wild-type ATOH1, it had no effect on mutant ATOH1. Hence, LT appears to affect the
degradation process of ATOH1, either by interfering with the phosphorylation or ubiquitination step.
With respect to the latter, although interactions between MCPyV-LT and SCFFbw7 or “beta-transducin
repeat-containing protein” (βTrCP) have been reported [49], these ubiquitin ligases appear as unlikely
candidates since the (1) LT has been described as their target but not as targeting them, (2) sT,
which inhibits both ubiquitin ligases, did not stabilize ATOH1, and (3) none of these ubiquitin ligases
was shown to interact with ATOH1 [51]. In contrast, HUWE1 is a ubiquitin ligase that has been
identified as ATOH1 binding partner using an unbiased comparative mass spectrometry approach [51].
Therefore, it is possible that the ubiquitin ligase HUWE1 is mediating the ATOH1 stabilization by
MCPyV-LT. Moreover, our results suggest that for the ATOH1 stabilization MUR1 in LT is essential.
In addition to the several unique functions of MCPyV-sT which have been described [52], this may
contribute to the exceptional position of MCPyV among the polyomavirus family in being able to
induce a neuroendocrine carcinoma of the skin. Furthermore, these observations suggest that the cell
of origin of MCC might already display some degree of ATOH1 expression.

In the present study, we demonstrated that in a specific cellular context, i.e., GLI1-expressing
keratinocytes, the expression of MCPyV T antigens can induce a MC-like differentiation.
Moreover, the stabilization of ATOH1 by LT might enhance or promote the differentiation of
the cell of origin toward an MCC phenotype.

4. Material and Methods

4.1. Human Samples

Healthy cutaneous tissues were obtained from dead people who had signed a body donation
procedure for scientific purposes. Skin from five anatomic sites (scalp, face, trunk, finger, lower limb)
were collected using a 6-mm-diameter punch in the 24 h following death, and then immediately fixed
in formalin and then paraffin embedded. Fifteen TB cases were extracted from the archives of the
Dermatology department of Würzburg (Local Würzburg Ethics Committee in Human Research, 196/12).
After histological diagnosis confirmation by two pathologists (M.W., T.K.), only cases containing MCs
were selected based on KRT20 immunostainings (n = 8). MCC cases enrolled in the present work were
already included in a tissue microarray used in a previous study [34] (local ethics committee (Tours,
France, N◦ ID RCB2009- A01056-51)). MCPyV status was previously determined using a validated
real-time PCR [34].

4.2. Immunohistochemistry

Protein immunochemical detection was performed on formalin-fixed, paraffin-embedded (FFPE)
samples (tissue), paraformalin-fixed (cytospin), or living cells. Immunohistochemical staining for
KRT20, MCPyV-LT, Neurofilament, and SOX9 were performed using a BenchMark XT Platform,
as instructed [34,53]. Immunohistochemical staining for GLI1, KRT8, KRT17, KRT18, and SOX2 as well as
all cytospin stainings were performed manually. Microscopic evaluation was performed by a pathologist
(T.K.). All details regarding antibodies and dilutions are provided in Supplementary Methods.

4.3. Samples’ Management and Interpretation of Immunohistochemical Staining

To determine MC densities, 250 consecutives 5-µm-thick sections were cut from FFPE healthy
cutaneous tissues (6-mm-diameter skin punches cut into two equal parts). Every 10th slide, a KRT20
immunohistochemical staining allowing the detection of MC was performed, i.e., one KRT20-stained
slide every 50 µm. Unstained slides were preserved for further analyses (MC progenitor markers’
evaluation). MC number and location (interfollicular epidermis, hair follicle (infundibulum or isthmus),
sebaceous, or sweat glands) were then assessed by a pathologist (T.K.). Since MC are frequently located
in the connection area between epidermis and an appendage, i.e., either hair follicles or sweat glands,
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all MCs located in front of an appendage structure (hair follicle, ostium of a sweat gland or sweat gland
duct) were considered to belong to this appendage. Of note, MC hotspots were defined as areas with
more than three MCs in one microscopic field at high magnification. Densities of MCs and related
hotspots were estimated, taking cut thickness and length of the skin sample into account (estimated
evaluated surface = 14.74 mm2/punch). Unstained slides adjacent to the hotspots were consequently
investigated for MC progenitor markers.

4.4. Primary Keratinocytes and Cell Lines

After informed written consent of the patients (n = 3), normal human epidermal keratinocytes
(NHEK) were extracted, respectively, from abdominal human samples obtained from the plastic surgery
of the University Hospital center of Tours (France) using previously described protocols [40,54–56]
(Local Ethics Committee in Human Research, Tours, France; no. ID RCB2009-A01056-512016 064).
NHEK were cultured in Keratinocyte Serum-Free Medium (K-SFM; Invitrogen Life Technologies),
supplemented with epidermal growth factor (5 ng/mL) and bovine pituitary extract (50 µg/mL;
all purchased from Invitrogen Life Technologies) at 37 ◦C, 5% CO2 in a humidified incubator. HEK293
(RRID: CVCL_0045), HEK293T (RRID: CVCL_0063), U2OS (RRID: CVCL_0045), the MCC cell line WaGa
(RRID:CVCL_E998), and MKL-1 (RRID:CVCL_2600) [57] were cultivated in Roswell Park Memorial
Institute (RPMI) 1640 supplemented with 10% Foetal calf serum (FCS), 100 U/mL penicillin and
0.1 mg/mL streptomycin. HEK293 (RRID: CVCL_0045) and U2OS (RRID:CVCL_0045) were used for
co-transfection experiments. HEK293T (RRID:CVCL_0063), i.e., HEK293 expressing SV40 T antigens,
were used for lentivirus production. The MCC cell line WaGa was included as positive control for
immunostaining of MC markers.

4.5. Lentiviral Vectors’ Generation and Transduction Protocol

The pFLAG-CMV-4-GLI1 plasmid was kindly provided by Dr. J. Vachtenheim (Czech Republic) [58].
GLI1 was subcloned into pFLAG-CMV backbone (System Biosciences) containing puromycin resistance by
classical cloning. Phosphosite mutations (S331A, S337A, S341A) were introduced in ATOH1 sequence using
the Quickchange Lightning mutagenesis kit (Agilent, Frankfurt, Germany) [59]. All TA- and LT-expressing
pCDH vectors were previously described [38]. GLI-IRES-TA sequence was cloned into a pCDH backbone.
For inducible knockdown of MCPyV-LT, we used the lentiviral single vector TA.shRNA.tet, allowing
constitutive green fluorescent protein (GFP) expression and doxycycline (Dox)- inducible expression of
an shRNA targeting all transcripts derived from the MCPyV early region [59]. Lentiviral supernatants
were produced in HEK293T cells as previously described [60]. Harvested virus supernatant was sterile
filtered (0.45 µm) and polybrene (1 µg/mL) was added for infection. Lentiviral transduction of NHEK
was performed after seven days of culture. Then, 14–20 h after infection, target cells were washed with
medium. NHEK were then subjected to antibiotic selection (puromycin). NHEK were analyzed two weeks
after transduction.

4.6. Gene Expression Analyses

Total cellular RNA was isolated by using the peqGOLD total RNA kit (VWR; Darmstadt, Germany)
with a subsequent DNaseI digestion step according to the manufacturer’s instructions. For cDNA
synthesis, the Superscript II RT First Strand Kit (Invitrogen GmbH, Karlsruhe) was used. PCR primer
sequences used to detect ATOH1, GLI1, KRT8, 14, 17, 18, 20, RPLP0, SOX2, and SOX9 are given in
Supplementary Methods. Thermal profile for the PCR using the Takyon Low Rox Sybr MasterMix
(Eurogentec; Cologne, Germany) contained an initial denaturation step at 95 ◦C for 10 min, followed by
40 cycles of two-step PCR including 15 sec at 95 ◦C and 60 sec at 60 ◦C. Quantification was performed
in three independent experiments.
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4.7. Immunoblot

Cells were lysed in 0.6% SDS, 1 mM Ethylenediaminetetraacetic acid (EDTA), 10 mM Tris- HCl
(pH 8.0), 2 mM NaF, 2 mM NaVO3 supplemented with a protease inhibitor cocktail (Roche Diagnostics,
Basel, Switzerland). Samples were resolved by SDS-PAGE, transferred to nitrocellulose membrane,
blocked for 1 h with Phosphate buffered saline (PBS) containing 0.05% Tween 20 and 5% powdered skim
milk, then incubated overnight with anti-HA (ab18181, Abcam, 1:1000), LT (CM2B4, Santa Cruz, 1:200),
sT (2T2, Hybridoma obtained from C. Buck laboratory), anti-GLI1 (C68H3, Ozyme, 1:200), anti-SOX2
(EPR3131, Abcam, 1:200), anti-ATOH1 (polyclonal, Proteintech, 1:600), or anti-Actin antibody (A5441,
Sigma, 1:1000), washed three times with PBS with 0.05% Tween 20 (PBS/Tween), then incubated for 1 h
with a peroxidase-conjugated secondary antibody. Finally, following three washes with PBS/Tween,
respective proteins were detected by using a chemiluminescence detection procedure. All primary
Western blot membranes’ acquisition without cropping and intensity adjustment are available in
Figure S8.

4.8. Transient Transfection and ATOH1 Half-Life Evaluation

Transient transfections were done using 2 µg of DNA with polyethylenimine (PEI) and
protein expression was analyzed 24 h after transfection. For ATOH1 half-life determination, 24 h
after transfection, cells were exposed to cycloheximide (0.3 mg/mL) in a time-course experiment.
After harvesting, protein expression was then investigated by immunoblotting, and quantification was
performed using ImageJ software.

4.9. Flow Cytometry

Anti-CD200 phycoerythrin (PE)-conjugated (OX-104, BioLegend) and anti-leucine rich repeat
containing G protein-coupled receptor 6 (LGR6) Allophycocyanin (APC)-conjugated (Sc-393010,
SantaCruz) antibodies were used for NHEK characterization.

4.10. Image Analysis and Expression Score Determination

Cell morphology was analyzed on adherent living cells. After acquisition of five adjacent
microscopic fields, cell contouring was performed on 100 cells per conditions (three independent
experiments) and cell size was then analyzed using ImageJ software. For protein expression evaluation,
2 × 105 cells were fixed in formalin, spotted on slides, and submitted to immunohistochemical
staining. Stained slides were scanned by using NanoZoomer (Hamamatsu, Hamamatsu City, Japan).
Computation of the expression score after transduction was performed with a custom software written
in ImageJ Macro language. Briefly, color range for each staining was first defined from the whole image
data set. Afterwards, cells were segmented in each image. For each cell-related area, the percentage
of each type of viral protein staining (low, medium, and high) was computed. H-score was finally
calculated for each cell with the following formula:

Hscore =
(lowstainingarea× 1) + (mediumstainingarea× 2) + (highstainingarea× 3)

totalcellarea

Analysis was initially performed on 10 consecutive fields (magnification × 10). In cases in which
fewer than 1000 cells per conditions were analyzed, new acquisitions were performed in order to
reach this minimal limit of analyzed cells. Results were subsequently expressed as median, quartiles
Q1–Q3, and 1st–99th percentiles of the complete cell population analyzed. Protein quantification on
immunoblot was performed by ImageJ using the “gel analysis” function.

4.11. Statistical Analysis

Continuous data are described as mean with standard error of mean (SEM), and categorical data
with number and as percent. Associations were assessed by two-tailed Fisher exact test for categorical
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data and Mann–Whitney test for continuous data. Paired t test was used for RNA expression analysis
without multiple testing correction. The p < 0.05 was considered statistically significant. XL-Stat-Life
(Addinsoft, Paris, France) was used for statistical analyses.

5. Conclusions

Whether MCC is derived from MC or from another skin lineage is a long-time matter of
debate. In this regard, we recently demonstrated that MCPyV integration in a TB gave rise to an
MCPyV-positive MCC [31] and, consequently, postulated that MCC tumorgenesis can be initiated
in MC epithelial progenitors. In the present work, we confirmed the close similarities between TB
tumor cells and epithelial MC progenitors, evident by expression of GLI1 and its related downstream
targets, i.e., KRT17 and SOX9, in both settings. While a mixture of cells with either MC progenitor
phenotype or already differentiated MCs was observed in TB, almost all MCC tumor cells display a fully
differentiated MC phenotype. Consequently, we assessed if TA could contribute to the acquisition of an
MC phenotype. In accordance with this hypothesis, ectopic TA expression in NHEK led to induction of
early MC markers while concomitant induction of SOX2, KRT8, and KRT20 were only achieved upon
co-expression of TA and GLI1. Therefore, our results suggest that TA can induce acquisition of Merkel
cell-like phenotype when expressed in epithelial MC progenitors. Accordingly, since large T antigen
extends ATOH1 half-life, ATOH1 stabilization by MCPyV oncoproteins might further contribute to the
MC-like phenotype observed in MCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1989/s1.
Figure S1. Further characterization of Merkel cells and related progenitors in human, Figure S2. Characterization
of the NHEK, Figure S3. Further characterization of native and GLI1-transduced normal human epidermal
keratinocytes, Figure S4. Expression of the Merkel cell progenitor markers in tumors, Figure S5. Further
characterization of native, TA, and GLI1/TA-transduced normal human epidermal keratinocytes, Figure S6.
Impact of TA knockdown on ATOH1 protein level in the MCC cell lines MKL-1 and WaGa, Figure S7. Further
characterization of factors involved in ATOH1 stabilization, Figure S8. Uncropped Western blot membranes’
primary acquisitions, Figure S9. Signal quantification of the Western blots, Table S1. MCs density and location
depending on the anatomic site, Table S2. Expression of the MC progenitor and MC markers in the trichoblastoma
and MCC tumors, Table S3. Expression of GLI1 and SOX9 according to the MCPyV status in MCC tumors.
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