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Most ene-reductases belong to the Old Yellow Enzyme (OYE) family of

flavin-dependent oxidoreductases. OYEs use nicotinamide coenzymes as

hydride donors to catalyze the reduction of alkenes that contain an elec-

tron-withdrawing group. There have been many investigations of the struc-

tures and catalytic mechanisms of OYEs. However, the origin of coenzyme

specificity in the OYE family is unknown. Structural NMR and X-ray crys-

tallographic data were used to rationally design variants of two OYEs,

pentaerythritol tetranitrate reductase (PETNR) and morphinone reductase

(MR), to discover the basis of coenzyme selectivity. PETNR has dual-

specificity and reacts with NADH and NADPH; MR accepts only NADH

as hydride donor. Variants of a b-hairpin motif in an active site loop of

both these enzymes were studied using stopped-flow spectroscopy. Specific

attention was placed on the potential role of arginine residues within the b-
hairpin motif. Mutagenesis demonstrated that Arg130 governs the prefer-

ence of PETNR for NADPH, and that Arg142 interacts with the coenzyme

pyrophosphate group. These observations were used to switch coenzyme

specificity in MR by replacing either Glu134 or Leu146 with arginine resi-

dues. These variants had increased (~15-fold) affinity for NADH. Mutage-

nesis enabled MR to accept NADPH as a hydride donor, with E134R MR

showing a significant (55-fold) increase in efficiency in the reductive half-re-

action, when compared to the essentially unreactive wild-type enzyme.

Insight into the question of coenzyme selectivity in OYEs has therefore

been addressed through rational redesign. This should enable coenzyme

selectivity to be improved and switched in other OYEs.

Introduction

In recent years, there has been a gradual shift away

from traditional synthetic methods to more environ-

mentally friendly and sustainable approaches in the

production of fine chemicals [1–4]. The development of

novel chemoenzymatic approaches for the manufactur-

ing of high value chemicals is driven by the ever-in-

creasing knowledge of enzyme structures and

mechanisms, coupled with advances in metabolic engi-

neering and synthetic biology. The asymmetric reduc-

tion of activated C=C bonds is one of the most widely

employed chemical reactions in industry for which bio-

catalytic routes are intensively explored [5,6]. The

stereoselective reduction of alkenes that contain an

electron-withdrawing group is catalyzed by a large
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family of enzymes, known collectively as ‘ene-reduc-

tases’ [7–9]. The majority of ene-reductases are homo-

logs of the Old Yellow Enzyme (OYE) family of

oxidoreductases [9,10], a large family of flavin

mononucleotide (FMN)-dependent enzymes that use

NADH and/or NADPH coenzymes as ancillary

hydride donors [10–13]. Extensive research has con-

tributed to a wide range of catalysis applications

employing OYEs, including their use in individual bio-

catalytic reactions [14], as components of multiple

enzymatic [15–19] and chemoenzymatic cascade reac-

tions [20], and in whole-cell biotransformation reac-

tions [21]. These studies have also driven the

development of effective nicotinamide coenzyme recy-

cling systems [22–24], biomimetic counterparts, and

the use of coenzyme-independent reduction methods

[25–29]. In particular, the use of coenzyme biomimetics

and coenzyme-free reduction systems has attracted

recent attention for biocatalytic reductions. However,

their utilization is limited in cell factory engineering

applications, where natural coenzymes are required to

drive flux through natural and engineered metabolic

pathways, enable coenzyme cycling and maintain

redox balance. In these cases, there is a need to use

self-sufficient closed-loop recycling systems and to

have the ability to engineer predictably coenzyme

specificity to meet pathway and cellular requirements.

Broadening of substrate scope for asymmetric biore-

ductions and improvements in the chemo-, regio-, and

stereoselectivity of target compounds has been exten-

sively reported with OYEs [15,30–39]. However,

despite these achievements, there is little understanding

of the basis of coenzyme binding and selectivity in

OYEs. Most use NADPH as the preferred hydride

donor, but several display higher affinity and/or reac-

tivity with NADH [40–42]. Conversely, others can use

both nicotinamide coenzymes (NADH and NADPH)

[26]. The sequence identity across different members of

the OYE family is not generally conserved (< 15%

conserved residues across all three classes of OYEs),

and quaternary structures range from monomers to

dodecamers [10]. However, most OYE enzymes share

a highly conserved monomer architecture, the (a,b)8-
barrel structure (also known as a TIM fold [43,44]),

with the FMN cofactor bound noncovalently at the C-

terminal region of the b-strands (Fig. 1). Despite this

similarity, amino acid residues and/or structural motifs

that direct coenzyme specificity are not known. In

other dehydrogenases/reductases (e.g. based on the

Rossmann fold), coenzyme discrimination is driven in

part by interactions with the adenine 20-phosphate
(NADPH) or the adenine 20-hydroxyl (NADH; see

Fig. 1 for numbering) [45,46]. Recent studies have also

suggested that coenzyme specificity can be engineered

through heuristic-based approaches involving struc-

ture-guided, semirational strategies for enzyme engi-

neering [47]. In the ene-reductase class, X-ray

crystallographic structures are available for several

OYEs in complex with reduced coenzyme mimics [e.g.,

1,4,5,6-tetrahydro-NAD(P), (NAD(P)H4)], but insight

from these structures is limited. While the stacked

arrangement of the nicotinamide moiety of NAD(P)H

and the FMN isoalloxazine ring is conserved across

these structures, the coenzyme ‘tail’ (Fig. 1) is often

disordered, or in different conformations, some artifi-

cially induced by coenzyme–coenzyme stacking interac-

tions in crystallo. It is this ‘tail’ that differs between

NADH and NADPH, and its interaction(s) with the

enzyme underpins the molecular basis of coenzyme

selectivity.

Recently, we have reported the first and only struc-

tural NMR assignments of an OYE family member,

pentaerythritol tetranitrate reductase (PETNR) [48,49].

PETNR is a widely studied ene-reductase with a broad

substrate scope. It is a monomeric 40 kDa enzyme,

which uses both NADH and NADPH, but reacts pref-

erentially with NADPH [50–52]. Like all OYEs, the

reaction catalyzed by PETNR occurs by a single-site

ping-pong mechanism comprising a reductive half-re-

action (RHR; hydride transfer from the C4 pro-R

hydrogen atom of NAD(P)H to the FMN N5 atom)

and an oxidative half-reaction (hydride transfer from

the FMN N5 and proton transfer from solvent to an

oxidizing substrate, typically an-a,b unsaturated

alkene) [53,54]. A range of NMR chemical shift per-

turbations in the enzyme active site were observed

upon coenzyme binding. However, these data also

revealed a large reorientation of a b-hairpin structural

motif (residues T129–T147; Fig. 1) upon coenzyme

binding, indicative of an induced fit mechanism. Major

chemical shift perturbations were observed in particu-

lar for T131 and the neighboring R130, with more

pronounced effects with NADPH4 compared to

NADH4 [49]. This coenzyme-specific binding by

induced fit contrasts with a previous X-ray crystal

structure, which now appears to be in an ‘open’ con-

formation [50].

Informed by the NMR studies, we set out to deter-

mine the molecular basis of coenzyme recognition in

PETNR. We then attempted to rationally tune/switch

coenzyme specificity by protein engineering of the

dual-specificity PETNR and the related NADH-depen-

dent morphinone reductase (MR) [42,55]. In doing so,

we have identified the structural determinants of coen-

zyme specificity in these OYEs in a flexible and poorly

conserved coenzyme-binding pocket. On the basis of
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the rational engineering reported, we also suggest how

protein engineering could be used to tune coenzyme

specificity across other OYE oxidoreductases to facili-

tate future applications in biocatalysis and cell factory

engineering.

Results and Discussion

Residue Arg130 in the b-hairpin flap governs

PETNR specificity toward NADPH

Recent 1H-15N TROSY NMR studies of the PETNR:

NAD(P)H4 complexes have suggested a potential role

for residue Arg130 in differentially binding NADPH

and NADH. Aside from the perturbations observed in

localized areas of the active site upon binding of either

NADH4 or NADPH4, significant chemical shift pertur-

bations are also observed in the b-hairpin structural

motif (Fig. 1) [49]. Within this b-hairpin flap, notewor-

thy differences in chemical shift were observed between

the two complexes, indicating each coenzyme alters the

orientation of the structural motif in different ways,

possibly suggesting an interaction between Arg130 and

the 20-phosphate of NADPH. However, upon inspec-

tion of X-ray crystal structures of PETNR and

NADH4-bound PETNR (Fig. 1), an interaction

between Arg130 and the bound coenzyme seems unli-

kely. The X-ray crystal structure of PETNR bound to

NADH4 indicates the side chain of Arg130 faces the

outer side of the active site channel and points away

from the tail of the nicotinamide coenzyme.

Specifically, the guanidino moiety of Arg130 is > 7 �A

away from the pyrophosphate and > 10 �A away from

the 20-hydroxyl group of bound NADH4. To investi-

gate the interaction of Arg130 with NAD(P)H, the

neutral variants R130M and R130L, along with the

negatively charged variant R130E, were created. The

RHR of each variant was characterized by stopped-

flow spectroscopy. The dependence of the observed

rate of FMN reduction (kobs) on NADH and NADPH

concentration at 25 °C was determined (Figs S1–S4),
and the kinetic parameters obtained by fitting observed

rate constants to Eq. are shown in Fig. 2, along with

previously reported values for wild-type (WT) PETNR

[49] represented for comparison.

kobs ¼ krev þ kred NAD Pð ÞH½ �
KS þ NAD Pð ÞH½ � ð1Þ

Wild-type PETNR is reduced by both NADH and

NADPH, with NADPH having a limiting rate con-

stant (kred) value 17-fold higher than NADH and 10-

fold higher affinity toward NADPH (KS of 0.1 mM)

than for NADH [49]. Consequently, NADPH is the

preferred coenzyme for WT PETNR, with an overall

efficiency for performing the RHR (kred/KS) 170-fold

higher than NADH. However, by targeting Arg130 of

PETNR, we observed significant coenzyme-dependent

changes to these kinetic parameters (Fig. 2). The val-

ues of all kinetic parameters for the reactions of

R130L, R130M, and R130E PETNR with NADH are

Fig. 1. Overlaid structures of coenzyme-free and coenzyme-bound pentaerythritol tetranitrate reductase. The structures of oxidized PETNR

(PDB: 5LGX) and PETNR:NADH4 complex (PDB: 3KFT) are shown as pink and teal cartoons, respectively, with the b-hairpin structural motif

highlighted in red. The middle panel encompasses a more detailed view of the active site and the b-hairpin motif, with the FMN cofactor

(yellow), the NADH4 coenzyme mimic (blue) and two arginine residues from the b-hairpin motif (green in holoenzyme, orange in coenzyme-

bound PETNR) highlighted as sticks. NAD(P)H structure is shown in the right panel [R=H (NADH) or R=PO3
2- (NADPH)], with the ‘tail’

moiety shown in blue and key atoms labeled.
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broadly maintained and the only notable differences

are the presence of two kinetic phases for the reduc-

tion of FMN in R130L and R130M PETNR (Figs S1–
S4; multiple kinetic phases attributed to conforma-

tional heterogeneity in the active site have been previ-

ously observed in other OYE ene-reductases [49,56])

and a threefold decrease in NADH affinity (KS) and

efficiency (kred/KS) for R130E. These results suggest

that Arg130 does not have a major role in NADH

binding to PETNR. It is likely that the modest

changes observed in the kinetic parameters are a prop-

agated effect of the substitution, that is, causing other

nearby residues with a functional role to adopt a dif-

ferent conformation, or creating a slight electrostatic

repulsion in the case of the R130E variant.

In contrast, both R130L and R130M PETNR vari-

ants show noticeably decreased rates of hydride trans-

fer in their reaction with NADPH. A reverse rate of

reaction (krev = 0.46 � 0.11 s�1 for both variants) and

a striking > 80-fold reduction in affinity values toward

the phosphorylated coenzyme are also observed. This

reduces the efficiency of the RHR (kred/KS) to values

similar to the reaction of WT, R130L, and R130M

PETNR with NADH. As expected, the most pro-

nounced effect on the binding affinity of NADPH to

PETNR is seen for the R130E variant. In this case,

the substitution of the positively charged guanidino

group with a negatively charged carboxylate prevents

formation of a stable complex. Instead, FMN reduc-

tion by NADPH in R130E PETNR is second order,

with a rate constant of 0.09 � 0.01 s�1�mM
�1 and

approximate kred value of 13.5 s�1 (assuming a maxi-

mum solubility of NADPH of 150 mM). The approxi-

mate upper limit of kred, used in this study, enables

better comparison of the catalytic efficiency between

variants exhibiting second-order as opposed to satura-

tion kinetics. This kind of decrease in binding affinity

upon replacement of an active site arginine with a glu-

tamate was previously observed in other NADPH-de-

pendent dehydrogenases [45].

Since NADH and NADPH are isostructural (except

at the 20-hydroxyl/phosphate groups), the striking dif-

ferences in affinity of the variants for these coenzymes

indicates that Arg130 likely coordinates the 20-phos-
phate group of NADPH. Replacement of Arg130 with

a neutral amino acid of similar length (Met or Leu)

leads to no discrimination between the two coenzymes,

as evidenced by the similar kred/KS values for NADH

and NADPH. This is mostly caused by changes in

affinity, with rates of FMN reduction by NADPH

being higher than those with NADH in all variants.

This suggests the Arg130 site is mainly involved in

preferentially binding the tail of NADPH, with limited

effects on the positioning of the nicotinamide site for

H-transfer.

Residue Arg142 in the b-hairpin flap of PETNR

coordinates the pyrophosphate group of the

nicotinamide coenzymes

The R130E PETNR variant showing a moderate reduc-

tion in affinity toward NADH suggests that the R130E

carboxylate may also perturb NADH and NADPH

binding through electrostatic repulsion of the coenzyme

pyrophosphate group. Significant NMR chemical shift

perturbations of Ile141 (also in the b-hairpin flap) have

been observed on binding NADH4 [49], suggesting

charged residue(s) in this loop are likely involved in

coenzyme binding. The most likely candidate, Arg142,

was targeted for mutagenesis, by substitution with Leu

and Glu residues. The RHR of R142L and R142E vari-

ants was investigated using stopped-flow spectroscopy

(Figs S5–S6). Kinetic parameters from these measure-

ments are presented in Fig. 3.

Fig. 2. Kinetic parameters for the RHR of WT, R130L, R130M, and

R130E PETNR variants with (A) NADH and (B) NADPH. The kinetic

parameters are represented as bars, with the same logarithmic y-

axis maintained in both panels for a better comparison. *The

kinetics of FMN reduction in R130E PETNR with NADPH follow a

second-order reaction, with a rate constant, k, represented instead

of the kred/KS value. **In this case, the kred constant has an

approximate upper limit value calculated by multiplying the second-

order rate constant (k) by the maximum solubility limit of NADPH

in solution (KS ~ 150 mM), and the KS value representing the

solubility limit is shown as bars crossed out with black lines. Error

bars are standard errors from the fit. All kinetic parameters are

tabulated in Tables S1 and S2.
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A notable feature of the reaction of R142L PETNR

with both NADH and NADPH is the presence of two

kinetic phases that contribute to the total change in

amplitude at 465 nm. With NADH, one of the phases

has similar kinetic parameters to WT PETNR. The

other phase, which has a larger amplitude, has reduced

kred (0.82 � 0.06 s�1) and increased KS

(5.07 � 1.87 mM) values. This leads to significantly

impaired reaction efficiency. The reaction of R142L

with NADPH is similar, with a minor phase showing

kinetic parameters that are comparable to WT

PETNR and a dominant kinetic phase, which is appar-

ently second order (k = 0.025 � 0.001 s�1�mM
�1). The

RHR of R142E PETNR with NADH is monophasic

and almost completely impaired, with FMN reduction

following a second-order reaction (k = 0.034 � 0.002

s�1), comparable to the dominant kinetic phase of

R142L PETNR with NADPH. The reaction of R142E

PETNR with NADPH is even more impaired (with a

second-order rate constant of 0.008 � 0.002

s�1�mM
�1), consistent with an electrostatic clash

between R142E and the NADPH 20-phosphate. For

reference to the WT reactions, approximate maximal

first-order kred values of 5 s�1 and 0.4 s�1 can be esti-

mated for the RHRs of R142L PETNR with NADH

and NADPH, respectively, at saturating (150 mM)

concentrations of NAD(P)H.

Removal of the positive charge of the Arg142 side

chain leads to notable reduction in the ability of the

enzyme to bind both NADH and NADPH. These data

are consistent with Arg142 stabilizing bound NAD(P)H

through electrostatic interactions with the coenzyme

pyrophosphate group. Differences between reactions of

R142E PETNR with NADH and NADPH, and the

multiple kinetic phases observed in the reactions of

R142L PETNR, may arise through alternative (and

poorly reactive) coenzyme-binding conformations where

the pyrophosphate group forms ionic bond(s) with

R130. Again, these data are consistent with an induced

fit mechanism.

Learning from PETNR enables switching of

coenzyme specificity in NADH-dependent MR

As previously mentioned, Arg130 is located in the b-
hairpin flap, which is part of a large polypeptide

excursion situated between the b3 strand and a3 helix

of the TIM barrel structure of PETNR (Figs 1 and 4).

While this motif of the enzyme is flanked by two con-

served regions across OYEs (the b3 strand and the a3
helix are essential secondary structure elements of the

TIM barrel fold, see conservation of the structural fea-

tures across the family in Fig. 4A–F), the sequence

identity of this loop is not conserved between members

of the OYE family (Fig. 4G), which explains why a

common coenzyme-binding sequence motif has not

been identified for OYEs. This leads one to question if

there are equivalent residue(s) to Arg130 in other

OYEs, and if so, how would one identify these residue(s)

to engineer new coenzyme selectivity?

MR is a dimer and it uses NADH in its natural cat-

alytic cycle [42,55]. It shares 51% sequence identity

with PETNR and the subunit X-ray crystal structures

of the two enzymes are similar. MR also has a b-hair-
pin flap in a position similar to that found in PETNR.

Comparison of the b-hairpin region in PETNR and

MR indicates that MR does not possess residues

equivalent to Arg130 and Arg142 found in PETNR.

Instead, MR possesses an acidic residue (Glu134) in

place of Arg130, and the neutral side chain of Leu146

in place of Arg142 found in PETNR (Fig. 5A). As

Arg130 governs coenzyme specificity in PETNR and

R130E PETNR variant does not accept NADPH as a

Fig. 3. Kinetic parameters for the RHR of WT, R142L and R142E

PETNR variants with (A) NADH and (B) NADPH. R142L_1 and

R142L_2 denote the two different kinetic phases observed for the

FMN reduction in R142L PETNR variant. The kinetic parameters

are represented as bars, with the same y-axis maintained in both

panels for a better comparison. *In these cases, the kinetics of

FMN reduction follow a second-order reaction, with a rate

constant, k, represented instead of the kred/KS value. **kred

constants are approximate upper limit values, calculated by

multiplying the second-order rate constant (k) by the maximum

solubility limit of NAD(P)H in solution (KS ~ 150 mM), and the KS

value representing the solubility limit is shown as bars crossed out

with black lines. Error bars are standard errors from the fit. All

kinetic parameters are tabulated in Tables S1 and S2.
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hydride donor, we reasoned that the NADH-only

specificity of MR might be attributed to the presence

of Glu134. To test this hypothesis, we created two

MR variants, E134R and L146R, and characterized

their properties using stopped-flow spectroscopy. The

resulting kinetic parameters are presented in Fig. 5B.

The RHR of WT MR with NADH proceeds with

kred = 55.44 � 0.41 s�1 and KS = 89 � 4 lM [53,57].

The limiting rate of reaction of E134R and L146R

MR with NADH are similar to WT with kred =
44.64 � 0.07 and 61.69 � 0.22 s�1, respectively. How-

ever, the introduction of an arginine at either site leads

to a dramatic increase in binding affinity toward

NADH, with estimated KS values of 6 and 5 � 1 lM
for E134R and L146R, respectively. These are likely to

be an upper limit due to the experimental limitations

of the study (Fig. S7). Again, these results are consis-

tent with coenzyme binding through ionic interactions

between the NADH pyrophosphate moiety and the

guanidine side chain(s) of arginine residues in the b-
hairpin flap. The small differences in H-transfer rates

(kred) between MR variants may be attributed to sub-

tle perturbations of the nicotinamide moiety of the

NADH in each Michaelis complex.

Finally, we investigated whether NADPH could

reduce any of the MR variants. While it was previ-

ously reported that WT MR does not react with

NADPH [42], we were able to observe slow RHR

kinetics at very high concentrations of NADPH (kred =
0.86 � 0.15 s�1, KS = 38.5 � 12.6 mM). Along with

this slow phase, a minor fast phase was observed,

which we attribute to a small amount of NADH impu-

rity (0.05–0.1%) in the NADPH stock (Fig. S8). The

reactions of E134R and L146R MR with NADPH

show greatly improved RHR kinetics, with reaction

efficiencies (kred/KS) 55- and 20-fold greater than for

WT MR, respectively (Fig. 5B). As improvements in

both kred and KS were observed, improved NADPH

binding did not impair the rate of this reaction. Fur-

thermore, the E134R and L146R MR variants also

give rise to a 10- and 20-fold increase in kred/KS for

the RHR with NADH, respectively, when compared

to WT MR. Together, these results show that the

introduction of an arginine residue at either of the tar-

geted sites (Arg130 and Arg142 in PETNR) leads to

improved RHR kinetics in MR.

This leads to the intriguing question as to why

PETNR and MR have not evolved to bind nicoti-

namide coenzymes more tightly. First, there is likely to

be no strong evolutionary constraint to achieve values

KS < 100 lM, as NADH is often detected at concentra-

tions above 100 lM in vivo [58,59]. Second, tight bind-

ing of NAD(P)H may lead to tight binding of the

NAD(P)+ product, preventing fast release from the

active site. This would slow the overall rate of catalytic

turnover, since the complete enzyme reaction cycle is a

shared single-site ping-pong mechanism. As such, the b-
hairpin flap might also have a role in binding the oxida-

tive substrate, and further improvement of NAD(P)H

binding might be at the expense of binding productively

the oxidative substrate in the enzyme active site.

To investigate this aspect, we investigated the

steady-state turnover kinetics of E134R and L146R

MR with NADH and a widely used OYE family sub-

strate, 2-cyclohexen-1-one. Similar kinetics to WT MR

[53,55] were observed (Fig. S9) and the oxidative half-

reaction was rate-limiting in all cases. This finding

demonstrates that improved coenzyme affinity does

not necessarily lead to impaired MR oxidative half-re-

action kinetics. As the E134R and L146R MR variants

have enhanced NADH affinity and as well as an abil-

ity to work with NADPH, they offer new opportuni-

ties for use in biocatalysis applications.

We were able to dramatically change the affinity of

the NADH-dependent MR toward both NADH and

NADPH by redesigning the b-hairpin flap through sin-

gle-point mutagenesis. Based on these results, we suggest

that coenzyme specificity can be rationally designed in

other members of the OYE family by targeting the large

polypeptide excursion between the b3 strand and the a3
helix of the TIM barrel. Although the sequence (and

often the structural elements) of this loop is not con-

served across the family, the large degree of sequence

conservation/similarity of the flanking regions (in partic-

ular, of the b3 strand and the a3 helix and also of the

first and last four residues of the loop element; Fig. 4)

Fig. 4. Structural architecture and multiple structural alignment of selected ene-reductases from class I, II and III (as classified in [10]) of the

OYE family. The structures of several representative enzymes are shown: (A) XenA (PDB: 3L5L), (B) YqjM (PDB: 1Z41), (C) OYE1 (PDB:

1OYA), (D) PETNR (PDB: 5LGX), (E) MR (PDB: 1GWJ) and (F) TOYE (PDB: 3KRU). The structure of the OYEs is illustrated in cartoon form

(colored orange, with the b-sheets shown in green, highlighting the conserved TIM barrel architectural fold). The FMN cofactor is shown as

yellow sticks, and the polypeptide excursion between the b3 strand and a3 helix of the TIM barrel is shown in blue. (G) Multiple sequence

alignment of selected OYEs represented in (A)–(F), along with two more members (XenB and CYE) for which there are no available crystal

structures. Residues highlighted in red are conserved among all selected OYEs, while those highlighted in yellow only partially conserved

(sharing similar physico-chemical properties). Each line on the first column of the figure is showing the Uniprot accession code followed by

the abbreviated name of each ene-reductase.
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should enable a focused approach toward switching

coenzyme specificity in other OYEs, which could be

applied in the absence of crystallographic data as well.

Concluding remarks

The construction of efficient metabolic pathways

requires the ability to control enzymatic nicotinamide

coenzyme utilization, but also to engineer or reverse

coenzyme preference in oxidoreductases, one of the

largest classes of enzymes frequently used in biocat-

alytic processes. Efforts have been made toward under-

standing and switching coenzyme preference of

oxidoreductases, in particular for the dehydrogenase

family [45,47,60,61]. Despite being targets for a large

number of biocatalytic processes [9,12], there is a lack

of understanding regarding the molecular basis of

NAD(P)H specificity in OYEs, the largest group of

enzymes in the ene-reductase class of oxidoreductases.

We have demonstrated that charged residues in the

b-hairpin flap of two OYEs are largely responsible for

the tight and selective binding of nicotinamide coen-

zymes in these ene-reductases. We have established

that the b-hairpin structural motif dictates the affinity

of PETNR toward NADPH through electrostatic

interactions between two arginine residues (Arg130

and Arg142) and both the pyrophosphate and 20-phos-
phate groups of the coenzyme. Inspection of conserved

structural (not sequence) motifs in MR and PETNR

identified two residues in MR (Glu134 and Leu146)

that control binding affinity and coenzyme selectivity

in this enzyme. Structure-based design has therefore

addressed long-standing uncertainties related to coen-

zyme specificity in OYEs. The majority of OYEs have

a similar loop emerging between strand b3 and helix

a3 of the TIM barrel. While sequence similarity might

not be conserved in this region, structure-based

approaches, as described herein, should allow tuning

of nicotinamide affinity and selectivity in other mem-

bers of the OYE family.

Experimental section

Materials

All commercial reagents were of analytical grade and were

purchased from Sigma-Aldrich (Dorset, UK), unless other-

wise stated. NADH and NADPH were procured from Mel-

ford Laboratories (Chelsworth, UK).

Cloning, overexpression, and purification of

variant enzymes

Pentaerythritol tetranitrate reductase from Enterobacter

Cloacae PB2 and MR from Pseudomonas putida were over-

expressed from C-terminal His6-tagged constructs cloned

into pET21a plasmids. The desired mutations were intro-

duced into PETNR and MR genes using the Q5 Site-

Fig. 5. (A) Overlay of the X-ray crystal structures of PETNR:NADH4 (teal cartoon, orange sticks, PDB: 3KFT) and MR:NADH4 complexes (yellow

cartoon, magenta sticks, PDB: 2R14) showing the active site and b-hairpin flap. The NADH4 conformation in PDB: 3KFT is displayed in line

form. (B) Kinetic parameters for the RHR of WT, E134R, and L146R MR variants with NADH (top) and NADPH (bottom). The kinetic parameters

are represented as bars, and error bars are standard errors from the fit. All kinetic parameters are tabulated in Tables S3 and S4.
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Directed Mutagenesis Kit from New England BioLabs

(Hitchin, UK), with custom primers ordered from Euro-

fins Genomics (Ebersberg, Germany). The designed

nonoverlapping primers used for each variant are pre-

sented in Table S5. All mutations were confirmed by

DNA sequencing (Eurofins Genomics). NiCo21(DE3)

Escherichia coli cells were used for overexpression of all

variant enzymes. The His6-tagged enzymes were isolated

by affinity chromatography, using HisTrap HP nickel-

charged IMAC columns from GE Healthcare (Little Chal-

font, UK).

Extinction coefficients

NADH and NADPH concentrations were determined using

a molar extinction coefficient of 6.22 mM
�1�cm�1 at

340 nm [62]. PETNR and MR enzymes concentrations

were determined using a molar extinction coefficient of

13.3 mM
�1�cm�1 at 46 nm (the same value was used for all

enzyme variants, as they presented the same UV-vis spec-

tral features as the WT enzyme, with mutagenesis not

affecting the characteristic spectra of PETNR/MR-bound

FMN).

Stopped-flow spectroscopy

The RHR of the ene-reductases (PETNR and MR) with

NADH and NADPH was investigated using a Hi-Tech Sci-

entific (TgK Scientific, Bradford on Avon, UK) stopped-

flow spectrophotometer, which had the sample handling

unit placed inside a Belle Technology anaerobic glovebox

(<5 p.p.m. of O2). All experiments were performed in

50 mM potassium phosphate buffer solution, pH 7.0, which

was degassed prior to the experiments, as previously

described [49]. All concentration dependence measurements

were performed at 25 °C, using 20 lM enzyme (final con-

centration, after mixing of the two reactant solutions) and

various NADPH or NADH concentrations (7–12 different

concentrations for each concentration dependence experi-

ment, 0.1–25 mM final coenzyme concentration). FMN

reduction was observed by continuously monitoring the

decrease in absorbance at 465 nm (maximum peak for oxi-

dized flavin-bound enzyme, same for both PETNR and

MR). All transient kinetic traces were analyzed and fitted

with standard first-, second-, or third-order exponential

decay functions (depending on the number of phases

observed), using ORIGINPRO 9.1 (OriginLab Corporation,

MA, USA). The reported observed rate constants (kobs)

represent the mean average of three to six individual mea-

surements, with error bars plotted as � 1 standard devia-

tion. The limiting rate constant (kred) and the apparent

saturation constant (KS) for the RHR of each variant with

NAD(P)H were determined by fitting the kobs values at

varying coenzyme concentration to a hyperbolic function

(Eq. 1).

Steady-state kinetics

The reduction of 2-cyclohexen-1-one using MR variants

was followed by monitoring the oxidation of NADH

(marked by the decrease in absorbance at 340 nm). All

measurements were carried out at 25 °C in 50 mM potas-

sium phosphate buffer solution, pH 7.0, using a saturating

concentration of NADH (200 lM). All experiments were

performed anaerobically, using a Hi-Tech Scientific

stopped-flow spectrophotometer, by mixing a reactant

solution consisting of 0.2 lM enzyme and 150 lM NADH

(prepared prior to the stopped-flow mixing) with a reac-

tant solution containing variable concentrations (0.5–
50 mM) of 2-cyclohexen-1-one. All 2-cyclohexen-1-one

reactant solutions were freshly prepared just before use,

and three to six traces were recorded for each substrate

concentration. All transient kinetic traces were fitted with

a standard linear function, using OriginPro 9.1. The maxi-

mum velocity (Vmax) and the Michaelis constant (KM)

were determined by fitting the initial reaction rates at

varying 2-cyclohexen-1-one concentrations to the

Michaelis–Menten equation (Eq. 2).

V0 ¼ Vmax 2-cyclohexen-1-one½ �
KM þ 2-cyclohexen-1-one½ � ð2Þ

Multiple sequence alignment

The multiple sequence alignment was performed using the

Clustal Omega web server [63] and the alignment file was

rendered using the ENDscript server [64].
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Fig. S1. Concentration dependence of FMN reduction

in WT PETNR with NADH and NADPH.

Fig. S2. Concentration dependence of FMN reduction

in R130L PETNR variant with NADH and NADPH.

Fig. S3. Concentration dependence of FMN reduction

in R130M PETNR variant with NADH and NADPH.

Fig. S4. Concentration dependence of FMN reduction

in R130E PETNR variant with NADH and NADPH.

Fig. S5. Concentration dependence of FMN reduction

in R142L PETNR variant with NADH and NADPH.

Fig. S6. Concentration dependence of FMN reduction

in R142E PETNR variant with NADH and NADPH.

Fig. S7. Concentration dependence of FMN reduction

in WT MR, E134R MR, and L146R MR variants

with NADH.

Fig. S8. Concentration dependence of FMN reduction

in WT MR, E134R MR, and L146R MR variants

with NADPH.

Fig. S9. Steady-state kinetics for the reduction in 2-cy-

clohenexen-1-one with WT, E134R and L146R MR

variants.

Table S1. Kinetic parameters for the reductive half-

reaction of PETNR variants with NADH.

Table S2. Kinetic parameters for the reductive half-

reaction of PETNR variants with NADPH.

Table S3. Kinetic parameters for the reductive half-

reaction of MR variants with NADH.

Table S4. Kinetic parameters for the reductive half-re-

action of MR variants with NADPH.

Table S5. Forward and reverse primers sequences used

for site-directed mutagenesis of PETNR and MR.
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