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Abstract: The stock index is an important indicator to measure stock market fluctuation, with a
guiding role for investors’ decision-making, thus being the object of much research. However, the
stock market is affected by uncertainty and volatility, making accurate prediction a challenging task.
We propose a new stock index forecasting model based on time series decomposition and a hybrid
model. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)
decomposes the stock index into a series of Intrinsic Mode Functions (IMFs) with different feature
scales and trend term. The Augmented Dickey Fuller (ADF) method judges the stability of each IMFs
and trend term. The Autoregressive Moving Average (ARMA) model is used on stationary time
series, and a Long Short-Term Memory (LSTM) model extracts abstract features of unstable time
series. The predicted results of each time sequence are reconstructed to obtain the final predicted
value. Experiments are conducted on four stock index time series, and the results show that the
prediction of the proposed model is closer to the real value than that of seven reference models, and
has a good quantitative investment reference value.

Keywords: stock index forecasting; CEEMDAN; ADF; ARMA; LSTM; hybrid model

1. Introduction

The stock index is calculated based on some representative listed stocks. To some
extent, it can reflect price changes of the whole financial market, hence its use as an
important indicator of the country’s future macroeconomic performance. Forecasting the
stock index accurately is of paramount importance for reducing risks in decision-making,
by providing some important reference information [1]. However, owing to the complexity
of the internal structure and the variability of external factors, changes of the stock market
are dynamic and uncertain, and forecasting the stock index has always been a challenge.
Many stock forecasting models are mostly classified as either statistical or machine learning
models [2]. Statistical models were first used to predict the stock market in finance, and have
made some achievements. However, they assume a linear and stationary time series, which
is inconsistent with the dynamic, non-linear characteristics of the real stock market, so
they have great limitations. A deep learning model can overcome the defects of traditional
statistical models in time series prediction but is easily affected by noise in some complex
and dynamic financial systems, making it difficult to mine the hidden features of time
series, resulting in poor learning ability and limited prediction accuracy.

Therefore, a single statistical or machine learning model cannot well predict the
stock index. To overcome these limitations, we propose a hybrid stock index forecasting
model based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) [3]. In this model, CEEMDAN is first used to decompose the original financial
time series into a series of Intrinsic Mode Functions (IMFs) and a residual term. Then, the
stability of the IMFs and the residual term is characterized using the Augmented Dickey
Fuller (ADF) method, the low-volatility time series are classified as linear components,
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and high-volatility time series are classified as non-linear components. In the final step,
the Autoregressive Moving Average (ARMA) model is applied to the linear component,
and Long Short-Term Memory (LSTM) is applied to the non-linear component. The final
prediction result is obtained by reconstructing each prediction series. This method makes
full use of ARMA in linear problems and uses LSTM to identify and abstract non-linear
features, mining the movement rules of hidden components in time series and improving
prediction accuracy. Hence, our proposed method is referred to as CAL (CEEMDAN-
ARMA-LSTM). In the CAL model, CEEMDAN sequence decomposition can reduce the
complexity of time series, and the sequences that pass the ADF stationarity test have
significant linear trends. Therefore, we employ ARMA to predict the data of the linear part,
avoiding the waste of effective information caused by differential operation.

The hybrid model combining linear and non-linear methods has great advantages in
time series prediction [4]. Ref. [5] proposed a hybrid time-series prediction model taking the
residual generated by Autoregressive Integrated Moving Average (ARIMA), combining the
differences in a non-stationary time series with ARMA, as the input of LSTM for fitting. The
ARIMA-LSTM model has achieved more accurate forecasting results than the individual
LSTM and ARIMA models. A moving average filter was used to decompose a time series
into linear and non-linear components [6]. ARIMA and Artificial Neural Network (ANN)
were used to model low- and high-volatility data, respectively. This hybrid ARIMA-ANN
model can achieve good prediction results. Each hybrid model in the literature combined
linear and non-linear models in different ways, providing different perspectives for time
series data prediction. However, these methods have the limitations that the error sequence
generated by a linear model is assumed to be non-linear [5], and the original sequence is
decomposed into single linear and non-linear components, which cannot mine the internal
features of an overly complicated time series [6].

Our proposed model can properly decompose the original time series, and the ARMA
and LSTM models are applied, which overcomes the defects of strong assumptions [5] and
insufficient decomposition [6]. We validate our model’s effectiveness on four stock market
indices. The experimental results show that the proposed model has higher prediction
accuracy than seven reference models on these indices. The main contributions of this
study are summarized as follows:

1. The advantages of CEEMDAN are used to decompose the original complex sequential
data into trends of different scales. This reduces the complexity of the original time
series to extract abstract and deep features.

2. The ADF test method effectively combines the linear and non-linear models. This
method can judge the stationarity of data. The linear prediction method of ARMA is
used for the stationary time series, and the non-linear prediction method of LSTM for
unstable time series.

3. The proposed CAL model is compared with the individual LSTM, Gated Recurrent
Units (GRU), Bi-directional LSTM (Bi-LSTM), ARIMA models and the hybrid EMD-
ARMA-LSTM, CEEMDAN-LSTM [7], and ARIMA-ANN [6] models. Experiments on
different datasets show that the CAL model outperforms traditional hybrid models,
improved deep learning model, and their separate component models.

The remainder of this article is organized as follows. Section 2 summarizes related
work. Section 3 introduces the proposed CAL model. Section 4 experimentally evaluates
the proposed method on real stock index datasets. Section 5 summarizes the paper and
points out future research directions.

2. Related Work

Time series analysis is an important tool in many stock market prediction methods,
and it makes predictions by analyzing observed points in the series. As one of the most
widely used linear time series forecasting methods, the ARIMA model [8] integrates the
Autoregressive (AR) and Moving Average (MA) models. It assumes that future predictions
have a linear dependence on the current and past data values. Therefore, ARIMA can
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only fit linear stationary time series data; the non-stationary time series might not be
modeled effectively.

Deep learning can overcome the limitations of traditional linear models, such as weak
fitting ability and weak feature extraction ability with non-linear data, and has gradually
become a key research method in stock prediction. Some deep learning models, such as
Convolutional Neural Networks (CNNs), can identify non-linear relationships and extract
hidden information from data. LSTM can retain long historical information and achieve
high prediction accuracy in sequential pattern learning problems. It does not require select-
ing features manually [9] and the performance to be superior to that of Feedforward Neural
Network (FNN) [10], a Deep Neural Networks (DNN) [11], and Support Vector Machines
(SVM) [12]. Although deep learning well models some complex problems, the traditional
linear model still has some advantages. For example, the regression method sometimes has
better prediction performance than deep learning in power system prediction [13,14].

Based on the above analysis, no individual model can be applied well in all circum-
stances. In a practical problem, the appropriate model depends on the characteristics of
the dataset. However, in time series prediction, it is sometimes difficult to define whether
the data are linear or non-linear, especially when there are multiple linear or non-linear
components, making it difficult to choose an appropriate prediction model.

Various hybrid techniques exploit the unique strengths of both types of model to
effectively improve prediction performance [4–6]. Ref. [15] combined ARIMA and SVM,
which showed that the combined model was better than either of its components at stock
price prediction. LSTM and an Autoregressive Conditional Heteroscedasticity (GARCH)
model were combined to predict stock price volatility, with relatively accurate results [16].
Ref. [17] proposed an ARIMA-ANN hybrid model to improve time series predictions when
a time series has both linear and non-linear components. Ref. [18] developed three different
hybrid models combining linear ARIMA and non-linear models, such as SVM, ANN, and
random forest (RF) models, to predict stock index returns. Experimental results showed
that the hybrid model ARIMA-SVM achieved the highest accuracy and the best return.

3. Stock Index Forecasting Model
3.1. Related Models
3.1.1. CEEMDAN

Empirical mode decomposition (EMD) [19] can decompose time series data into
subseries according to their own time scales without setting a basis function, for effective
treatment of non-linear and unstable data. However, mode aliasing can occur during EMD
data decomposition. Ensemble Empirical Mode Decomposition (EEMD) addresses this
problem but cannot completely eliminate reconstruction error after the introduction of
Gaussian white noise [7]. In the process of decomposition, CEEMDAN adaptively adds
white noise to avoid mode mixing of EMD, and addresses reconstruction error due to
noise. The prediction of stock prices is affected by multiple factors and is a non-linear
complex model. The components of CEEMDAN are relatively simple; hence, more accurate
predictions can be obtained.

3.1.2. LSTM

As a special recurrent neural network, LSTM solves the problem of gradient disappear-
ance and explosion in the training process of long sequences, and it has a more complex
network structure. LSTM introduces a cellular state and combines forgetting, input, and
output gates to discard, maintain, and update information. The output of the model is
calculated by multiple functions involving some summation operations, so it is not easy to
produce the problems of gradient disappearance and explosion in the process of backprop-
agation. LSTM has advantages in some problems related to time series, such as industrial
time series prediction [20] and text translation [21]. We take this model as the non-linear
part of time series prediction.
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3.1.3. ARMA

ARMA is a linear sequential method that predicts a future according to historical
and current data. ARMA data prediction must meet the requirements of stationarity. In
practice, trends and periodicity often exist in many datasets, so there is a need to remove
these effects before applying such models. Removal is typically carried out by including an
initial differencing stage in the model, and the model is transformed into an ARIMA model.
Therefore, ARIAM can be seen as an enhanced version of ARMA. It has a wider range of
applications but a certain amount of information loss.

3.2. Proposed Model

It is widely accepted that the financial market is complex and dynamic, which calls for
a noise elimination or time series decomposition. For this purpose, a multi-scale decompo-
sition method called CEEMDAN is used in our model. The decomposed components have
different scales; ARMA and LSTM are used as linear and non-linear prediction modules to
exploit their respective advantages. Thus, a hybrid ARMA-LSTM model for time series
forecasting based on CEEMDAN is proposed, which is called CAL (CEEMDAN-ARMA-
LSTM). CEEMDAN can adaptively decompose a time series, yielding a series of IMFs and
residue with different characteristic scales. The decomposition principle is given by

s(t) =
n

∑
i=1

im fi(t) + res(t), (1)

where s(t) represents given time series data; im fi(t) (i = 1, 2,. . . ,n) represents the different
IMFs; and res(t) is the residue. Each IMF and residue has its own local characteristic time
scale. A low-volatility sequence contains more linear features, and ARMA is more suitable
for processing. A high-volatility sequence can be considered non-linear, which better suits
LSTM. We require a method to separate the linear and non-linear components and feed
them into ARMA and LSTM.

Each hybrid model brings its own perspectives to time series decomposition. We
use a statistical ADF method to separate linear and non-linear components. The ADF test
can identify whether a time series is stationary. The existence of a unit root in a sequence
indicates that a series is unstable. A more negative ADF test result indicates more stable
data, and 0.05 is an accepted threshold to judge the stability of a dataset, which can used to
separate linear and non-linear sequences [4].

s(t) =
m

∑
i=1

li +
n+1

∑
i=m+1

ni. (2)

An ADF stationary test separates time series decomposed by CEEMDAN in Equation (2),
where li and ni, respectively, denote linear and non-linear components.

Lt = g(lt−1, lt−2, . . . , lt−p, εt−1, εt−2, . . . , εt−q). (3)

After the linear and non-linear components, respectively. The modeling process of
ARMA is described by Equation (3), where lt−1 to lt−p are time sequence values of the
past p days, εt−1 to εt−q denote corresponding random error, and g is the linear function
of ARMA. It can be seen from Equation (3) that the results are related to the sequential
values and random errors in a past period of time, so it can be concluded that its prediction
process can reflect the continuity of the original sequence in time.

LSTM can mine the characteristics of non-linear time series, which we use to fit non-
stationary sequences.The LSTM modeling process is described by Equation (4), where f is
the non-linear function of LSTM, and a is the number of days observed by the model, i.e.,
how far we will go back in time. The prediction results of the linear and non-linear parts
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are obtained by the corresponding models, and the final prediction is the integration of the
linear and non-linear parts in Equation (5), where y(t) denotes the final predictions.

Nt = f (nt−1, nt−2, . . . , nt−a), (4)

yt =
m

∑
i=1

Li +
n+1

∑
i=m+1

Ni. (5)

To sum up, the CAL model prediction consists of time series decomposition, an ADF
stationary test, model fitting, and integration of results. Figure 1 shows the prediction
model, where IMF1-IMFn are IMF components after time series decomposition, and res is
the residue. ARMA1-ARMAm denote that the m sequences pass the ADF test and are fitted
using ARMA, and LSTM(m+1)-LSTM(n+1) denote the n−m + 1 sequences that fail the ADF
test and are modeled by LSTM. The steps of the proposed hybrid model are as follows.

1. Given time series decomposition, using a CEEMDAN method (Equation (1)), time
series data are decomposed into finite IMFs and residue. Components can be more or
less volatile.

2. Sequences with different stability are separated by an ADF stationary test (Equation (2)).
3. Low- and high-volatility components are fitted by ARMA (Equation (3)) and LSTM

(Equation (4)), respectively.
4. The final result is the sum of the predictions of each component (Equation (5)).

Figure 1. Stock market index forecasting model.
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4. Experimental Results and Discussions

In this section, we experimentally present the predictive ability of the CAL model.
In Section 4.1, datasets used in experiments are introduced. In Sections 4.2 and 4.3, the
evaluation metrics and parameter settings in the experiment are discussed, respectively.
The decomposition results of EMD and CEEMDAN are compared in Section 4.4. The
models for comparison are listed in Section 4.5. The predicted effects of the CAL model
and other comparative methods are evaluated in Section 4.6.

4.1. Datasets

We use one-step-ahead prediction to verify the prediction accuracy of the proposed
CAL model on four major global stock indices: Deutscher Aktien (DAX), Hang Seng (HSI),
Standard and Poor’s 500 (S&P500), and Shanghai Stock Exchange Composite (SSE). These
have strong representation in the global financial market and can reflect stock market
changes, which has much research value. Stock market indices are affected by national poli-
cies, market environments, and other factors presenting different characteristics. Research
on stock market indices in different financial markets can examine the prediction accuracy
of the model.

The dataset comes from Yahoo! Finance. The range of each stock index is from
13 December 2007, to 12 December 2020, and the daily closing price is selected as the
research object. The first 90% of the dataset in the time order of each stock index is used as
the training set, and the last 10% is used as the test set. Only the data of trading days are
used for research.

The statistical analysis of each stock index is shown in Table 1, where we determine
the amount of data contained in each stock market index, as well as the average, maximum,
minimum, standard deviation, and ADF test results of the closing index. As can be seen
from Table 1, there is a large gap between the maximum and minimum values, and a large
standard deviation, indicating that these closing indices have great volatility within the
research range. Moreover, the ADF test results of the DAX and S&P500 are greater than
the threshold 0.05, indicating that the dataset is highly volatile and non-stationary. SSE is
somewhat more stable than the other three datasets. Figure 2 shows the sequential change
of the closing index within the study range, from which it can be seen that the four indices
all have great volatility and instability in the short term.

Table 1. Descriptive statistics of closing indices.

Index Count Mean Max Min Standard Deviation ADF Test

DAX 3300 9118.21 13,789.00 3666.41 2722.52 0.79
HSI 3219 23,206.70 33,154.12 11,015.84 3660.60 0.11
S&P500 3273 1915.40 3702.25 676.53 713.03 0.99
SSE 3163 2846.43 5497.90 1706.70 586.51 0.01
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Figure 2. Daily closing index series of four financial markets. (a) DAX. (b) HSI. (c) S&P500. (d) SSE.

4.2. Evaluation Metrics

We evaluate the proposed CAL model by the Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2),
defined as Equation (6) to Equation (9).

MAE =
1
n

n

∑
i=1
|pt − yt| (6)

RMSE =

√
1
n

n

∑
t=1

(pt − yt)2, (7)

MAPE =
1
n

n

∑
t=1
| pt − yt

yt
|×100, (8)

R2 = 1− ∑n
i=1(pt − yt)2

∑n
i=1(pt − ȳt)2 . (9)

Here, pt, yt, and ȳt are the predicted, actual, and average of actual values, respectively,
and n is the prediction horizon. MAE measures the average magnitude of the errors in a
set of predictions, without considering their direction. RMSE is a quadratic scoring rule
that also measures the average magnitude of the error. It is the square root of the average
of squared differences between prediction and actual observation. MAPE measures the



Entropy 2022, 24, 146 8 of 18

percentage error of the forecast in relation to the actual values. R2 is a statistical measure in
a regression model that determines the proportion of variance in the dependent variable
that can be explained by the independent variable. It corresponds to the squared correlation
between the observed values and the predicted values by the model. A higher value of R2

means a better prediction accuracy.

4.3. Parameter Settings

The sequential model structure in Keras is used to build the LSTM network. The batch
size of the model is 128. Two layers of LSTM are employed to build the sequential model,
and the output of the second layer of the last LSTM unit is connected to a fully connected
layer. Then, the fully connected layer is connected to another fully connected layer for the
final output. Figure 3 shows the LSTM network structure, where xi (i = 1, 2,. . . , n) is the
input to the model. The numbers of units in each LSTM in the first and second layers are
128, 64, respectively. The third fully connected layer has 16 neurons, and the last layer has
only one unit, which will provide a predicted value. Fully connected units and LSTM units
use the ReLU and tanh activation function, respectively. We use MSE as a loss function, and
use Adam as an optimization algorithm. Adam is an adaptive learning rate optimization
algorithm that utilizes both momentum and scaling, and it has two decay parameters
that control the decay rates and adjust the learning rate adaptively [22]. We explore the
influence of different training epochs on the experimental results, and the results suggest
that more training epochs result in a more skillful model, but it may lead to the problem of
overfitting. Therefore, it is suitable to set the epoch to 200. The time steps works best at 10.
The detailed parameter settings are shown in Table 2.

Figure 3. LSTM network architecture.
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Table 2. Details of the parameters of the CAL model.

Parameter Meaning Value

Input layer Number of input layer nodes 128
Hidden layer 1 Number of first hidden layer nodes 64
Hidden layer 2 Number of second hidden layer nodes 16
Output layer Number of output layer nodes 1
Batch size Pass through to the network at one time 128
Optimization algorithm Select the training mode Adam
Loss function With the goal of minimizing the loss MSE
Epochs Number of training 200
Timesteps Input time steps 10

The best fitted ANN of ARIMA-ANN model in comparison has a layered architecture
of 17 × 17 × 1 [4]. The parameters of CEEMDAN-LSTM refer to Ref. [7]. The parameters of
LSTM, GRU, and Bi-LSTM, in comparison, are similar to that of LSTM in the CAL model.

Grid search is used to determine the optimal parameters p and q of the ARMA model.
The range of the grid search is [0, 5], and the group with the smallest Akaike Information
Criterion (AIC) value is selected.

4.4. Decomposition Results of EMD and CEEMDAN

Stock indices, which contain many influencing factors, can be decomposed used EMD
or CEEMDAN. We take the SSE stock index as an example to decompose the original time
series, so as to compare the two decomposition methods. To intuitively compare the results,
we limit CEEMDAN and EMD to generate the same number of IMFs.

In Figure 4, the decomposing results of the original SSE index series are demonstrated.
The results of sequence decomposition range from high to low frequency. The first few IMFs,
with more noise, represent the high-frequency components in the original data; the middle
IMFs, with reduced frequency, represent middle-frequency components; and the last few
IMFs, with less volatility, which is similar to the long-term movement trend of a stock,
represent the low-frequency components. The left and right sides of Figure 4 show the
results of CEEMDAN and EMD data decomposition, respectively. It can be found that IMF5
and IMF6 on the right of Figure 4 have similar scales and are not easily distinguished. This
is because the mode aliasing of EMD leads to the distribution of some similar time scales in
different intrinsic mode functions, resulting in waveform aliasing and mutual influence.
As a result, the features of a single sequence are not obvious, and feature extraction of
later prediction models is more difficult. CEEMDAN data decomposition effectively solves
this problem. As can be seen from the decomposition results on the left side of Figure 4,
CEEMDAN decomposed the stock index into several components, from high- to low-
frequency, whose characteristics are obvious, and there is no waveform aliasing.
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Figure 4. SSE decomposition results.

4.5. Comparative Models

To verify the effectiveness of the proposed CAL model for stock market prediction,
we experimentally compare seven models. Table 3 lists the models and reference purposes
of these seven controlled experiments, which verify the proposed model from different
perspectives.

1. LSTM deep learning model: LSTM networks can automatically detect the best patterns
suitable for raw data, and are widely utilized in financial time series modeling [23–25].
However, LSTM methods are susceptible to noise. The comparison result of CAL and
LSTM can evaluate whether the proposed model can effectively improve the results
of LSTM in complex time series modeling.

2. Linear ARIMA model: ARIMA can better predict linear time series, but is not suitable
for complex non-linear time series [4]. We combine ARMA and LSTM to extend the
application range of the ARIMA time series model. In addition, the prediction effects
of the ARIMA and CAL models are compared, which verifies the effectiveness of the
proposed model compared with a single linear model.

3. GRU: GRU is a simplified version of the LSTM. It uses only one state vector and two
gate vectors, i.e., reset gate and update gate. The comparison result can evaluate
whether the CAL model is better than other deep learning model.
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4. Bi-LSTM: To preserve the future and the past information, Bi-LSTM makes the neural
network have the sequence information in both directions, i.e., backwards (future to
past) and forward (past to future). The aim of the experiments is to show whether
Bi-LSTM improves the prediction accuracy of LSTM. The experiments also verify the
effectiveness of the proposed model compared with a single improved model.

5. EMD-ARMA-LSTM model: EMD can generate more predictable components when
fed into the decomposing module. CEEMDAN is designed to solve the problem of
EMD mode mixing. To compare the prediction effects of EMD-ARMA-LSTM, and
CAL, we verify the influence of different decomposition methods on model prediction.

6. Hybrid ARIMA-ANN model [6]: ARIMA and ANN are adopted to model the linear
and non-linear data [6], and empirical results demonstrate that ensemble models can
effectively improve performance. We use the ARIMA-ANN model for comparison.
The results can demonstrate the advantages of CAL over ARIMA-ANN when combin-
ing linear and non-linear models. The advantages of LSTM over an ANN in abstract
feature extraction and prediction ability could also be verified.

7. CEEMDAN-LSTM model [7]: The CEEMDAN-LSTM model integrates the advan-
tages of CEEMDAN and LSTM but does not consider that the original time series
may contain linearly correlated components, and the non-linear prediction of all
decomposed sequences will affect the prediction performance of the model. The
empirical results demonstrate the validity of the CAL model in comparison to the
CEEMDAN-LSTM model.

Table 3. Contrastive experiments.

Model Comparison Purpose of Model Settings

LSTM Comparison to single deep learning model
ARIMA Comparison to single linear model
GRU Comparison to other single non-linear model
Bi-LSTM Comparison to improved deep learning model
EMD-ARMA-LSTM Evaluation of CEEMDAN and EMD
ARIAM-ANN Comparison of CAL to hybrid models [6]
CEEMDAN-LSTM Comparison of CAL to stock forecasting model [7]

4.6. Experiments and Discussions

We verify the effectiveness and superiority of the proposed model from three aspects:

1. Statistics of MAE, RMSE, MAPE, and R2 are chosen to assess the consistency between
predicted and observed terms. These indicators measure the deviation between
forecast and reality from different aspects.

2. The deviation between real and predicted values can be observed from Figure 5, and
the variation of the error can be utilized to observe the stability of the CAL model
from Figure 6.

3. A linear regression model is then used to further observe the performance of the
CAL model; then, a series of technical diagnostics are leveraged to check the regres-
sion models.

4.6.1. Observation of the Statistical Data

It can be observed from Table 4 that the CAL model has obvious advantages in stock
index DAX series prediction, which decreases by 56.71% when compared to LSTM, and
by 46.83% when compared to ARIMA in MAE. This indicates that a single model cannot
effectively capture data patterns and make excellent predictions. Although GRU and Bi-
LSTM improve the prediction accuracy of LSTM, their prediction accuracies are still lower
than CAL.
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Table 4. Prediction results of different models in DAX.

Model MAE RMSE MAPE (%) R2

LSTM 167.0816 224.5003 1.4006 0.9570
ARIMA 136.0422 206.5253 1.1633 0.9650
GRU 153.5215 216.7465 1.2982 0.9608
Bi-LSTM LSTM 138.0041 209.2315 1.1768 0.9641
ARIMA-ANN 140.4099 211.9800 1.1966 0.9630
CEEMDAN-LSTM 97.2277 128.2331 0.8106 0.9866
EMD-ARMA-LSTM 127.1255 191.0622 1.0771 0.9687
CAL 72.3340 101.8321 0.6099 0.9915

Methods with EMD achieve remarkably less error in their forecasts than CEEMDAN-
LSTM and CAL, which shows that experimental results vary with data decomposition, and
CEEMDAN-based methods can achieve better predictive performance. The ARIMA-ANN
model is inferior to EMD- and CEEMDAN-based methods, perhaps because it has limited
decomposition ability to extract hidden features. CEEMDAN properly decomposes time
series, reduces their complexity, and improves LSTM information extraction, so the hybrid
CEEMDAN-LSTM model can achieve a better prediction effect than just LSTM. However,
CEEMDAN-LSTM is not as good as CAL because it does not consider linear factors that
may exist in the original sequence in time series prediction.

Table 5 lists the prediction performance of different models on the HSI stock index,
where we find a large error between the real and predicted values. This is mainly because
the data of the HSI stock index are more volatile and difficult to predict. The CAL model
achieves the best prediction accuracy, followed by CEEMDAN-LSTM, EMD-ARMA-LSTM,
and ARIMA-ANN. ARIMA-ANN achieve higher prediction accuracy than the individual
ARIMA and LSTM models, and ARIMA obtains better results than LSTM. As deep learning
is easily affected by noise, it is difficult to learn effective data patterns in complex dynamic
time series. Deep learning methods, such as LSTM, GRU, and Bi-LSTM, have the largest
prediction error on the HSI stock index. Although ARIAM has a higher prediction accuracy
than them, the gap between predicted and actual values of ARIAM is still large. This
indicates the predictive performance of a single model is very limited. The hybrid model
performs better than the single ARIMA and LSTM models. The experimental results show
that ARIAM-ANN gives poorer results than CEEMDAN-LSTM, EMD-ARMA-LSTM, and
CAL, perhaps due to an insufficient scale of decomposition. CEEMDAN-LSTM and EMD-
ARMA-LSTM effectively improve prediction accuracy, but the effect is still inferior to the
proposed CAL model, which has advantages and good potential in high-volatility time
series data.

Table 5. Prediction results of different models in HSI.

Model MAE RMSE MAPE (%) R2

LSTM 257.7703 347.1944 1.0197 0.9454
ARIMA 250.9188 345.3399 0.995 0.9470
GRU 256.1635 345.9382 1.0134 0.9451
Bi-LSTM 258.2292 353.4523 1.0249 0.9450
ARIMA-ANN 249.1046 344.5775 0.9882 0.9469
CEEMDAN-LSTM 127.0750 168.3214 0.5023 0.9879
EMD-ARMA-LSTM 181.7516 235.1773 0.7187 0.9751
CAL 120.8184 159.8226 0.4789 0.9885

Figure 2c shows that the movement trend of S&P500 is relatively stable, with little
fluctuation in the research interval, and an overall upward trend. Hence, the predicted
results are closer to the observed values of stock indices. Table 6 shows the experimental
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results of S&P500. The data show that the CAL model yields the smallest prediction error,
with MAE 48.84% less than LSTM and 49.75% less than ARIMA. This shows that the
single model has better prediction performance in some stable time series sets, but there
is still room for improvement. However, GRU and Bi-LSTM cannot effectively improve
the prediction accuracy. The prediction effect of EMD-ARMA-LSTM is still inferior to
that of CAL, which further demonstrates the superiority of CEEMDAN over EMD data
decomposition. CEEMDAN-LSTM achieves better prediction performance than the single
LSTM model, and ARIMA-ANN yields higher prediction accuracy than ARIAM, showing
that sequence decomposition and model combination can improve the prediction accuracy
of financial series.

Table 6. Prediction results of different models in S&P500.

Model MAE RMSE MAPE (%) R2

LSTM 33.4958 53.4345 1.1207 0.9595
ARIMA 34.1031 54.8336 1.1411 0.9598
GRU 43.3137 63.2251 1.4416 0.9469
Bi-LSTM 33.5198 53.4177 1.1262 0.9610
ARIMA-ANN 33.7170 53.6489 1.125 0.9608
CEEMDAN-LSTM 21.1496 30.1187 0.6964 0.9878
EMD-ARMA-LSTM 22.1886 33.4485 0.7334 0.9843
CAL 17.1362 26.1373 0.5645 0.9910

Table 7 shows the prediction performance results for SSE datasets. From Table 7, we
can see that CAL has better predictive accuracy than the other seven models, with MAE up
to 14.0294, followed by CEEMDAN-LSTM and EMD-ARMA-LSTM. ARIMA can achieve
higher prediction accuracy than ARIMA-ANN and EMD-ARMA-LSTM. GRU and Bi-LSTM
achieve higher prediction accuracy than LSTM.

Table 7. Prediction results of different models in SSE.

Model MAE RMSE MAPE (%) R2

LSTM 38.3486 47.9563 1.2468 0.9475
ARIMA 25.1019 36.9815 0.819 0.9690
GRU 31.8217 43.1568 1.0355 0.9599
Bi-LSTM 31.8026 42.7439 1.0382 0.9596
ARIMA-ANN 25.6976 37.4014 0.8383 0.9686
CEEMDAN-LSTM 14.3562 19.6741 0.4681 0.9913
EMD-ARMA-LSTM 19.5074 28.5532 0.6382 0.9814
CAL 14.0294 19.9246 0.459 0.9911

Several important results are obtained on the SSE dataset. GRU and Bi-LSTM outper-
forms LSTM, but their prediction results are lower than ARIMA, which shows that a linear
model can sometimes achieve a better prediction effect than a deep learning model. The
prediction accuracy of EMD-ARMA-LSTM is relatively low, perhaps because the mode
mixing of EMD leads to the inclusion of other scales of data in an IMF, and these abnormal
data interfere with information extraction.

4.6.2. Prediction Results and Errors

As demonstrated in Figure 5, we zoom in a part of the prediction interval to observe the
consistency between the real and predicted values of different models. It can be seen that
the CAL model yields the closest prediction results, and CEEMDAN-LSTM is closer to the
observed values in comparison with EMD-ARMA-LSTM and ARIAM. LSTM and GRU have
larger volatility and prediction error than the other models. The stem diagram oscillates up
and down around the zero axis in Figure 6 and is locally symmetrical concerning the zero
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axis, indicating that the prediction results of the CAL model are relatively stable within the
prediction interval.
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Figure 5. SSE comparison of sequence prediction results.

0 50 100 150 200 250 300
Trading day

−75

−50

−25

0

25

50

75

Pr
ed

ict
io
n 
er
ro
r

Figure 6. SSE error changes between real and predicted values.

4.6.3. Regression Analysis

We conduct a linear regression to assess the correlation between the real data and the
predicted values. The predicted value is denoted as x, and the real value is y, respectively.
The regression equation is y = ax + b. The metrics, including standard error (SE), p-value
(p) and t-value (t), are used to test the results of regression analysis. The definitions of SE
and t are as follows, and p is derived from the t distribution.

SE = σ√
n , (10)

t = x̄−µ
σ√
n

. (11)

Here, σ is the standard deviation of the predicted values, n is the number of the
predicted (or real) values, x̄ is the mean of the predicted values, and µ is the mean of real
values. Table 8 lists the regression parameters and diagnostics results. It is observed that
the slope a of each stock index is close to 1, the SE for a is relatively small, which means
that the predicted values are very close to the real values. Furthermore, for each linear
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regression model, p for a is below the standard cutoff of 0.05, and t for a is high, suggesting
it is a good model. In addition, Figure 7 shows the linear regression results of each stock
index. The scattered points are evenly distributed near the fitting line, which indicates that
the predicted and real values are highly correlated.

Table 8. The regression parameters and diagnostics results.

Model Parameter Estimation SE t p

DAX a 0.9909 0.005 196.519 0.000
b 104.2845 62.836 1.660 0.098

HSI a 1.0012 0.006 167.616 0.000
b −12.2083 153.286 −0.080 0.937

S&P500 a 0.9844 0.005 192.819 0.000
b 44.7296 16.195 2.762 0.006

SSE a 0.9913 0.005 187.342 0.000
b 28.5226 16.263 1.754 0.080
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Figure 7. Linear regression analysis. (a) DAX. (b) HSI. (c) S&P500. (d) SSE.
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4.6.4. Summary

Based on the above experiment results, the observations are summarized as follows.

1. Our proposed CAL model, with CEEMDAN-based methods, outperforms seven
benchmark models in predictive accuracy on four stock indices from different devel-
oped stock markets, which indicates that methods with multi-scale decomposition
can reduce the complexity of sequences, extract hidden features, and improve predic-
tion accuracy.

2. CAL can obtain predictions closer to real values than CEEMDAN-LSTM, which
indicates that components after decomposition may have both linear and non-linear
characteristics. Therefore, models combining ARMA and LSTM can obtain more
accurate predictions than individual LSTM models.

3. CAL can yield the closest prediction results in comparison to ARIMA-ANN. This
indicates that the CAL model has advantages over some traditional hybrid models.

4. The prediction results show that CAL has a smaller prediction error than EMD-ARMA-
LSTM does, and this indicates that the CEEMDAN method is superior to EMD in
data decomposition.

5. In some volatile financial markets, a single prediction model, even improved deep
learning model, has limited prediction ability because they cannot excavate internal
movement rules of time series and reflect the multi-scale characteristics of financial
time series.

6. The linear regression analysis shows the strong correlation between the predicted
values and the real values, and the proposed prediction model is effective.

5. Conclusions and Discussion

Stock market index prediction plays an important role in reflecting overall stock
market trends and has strong practical investment value. We proposed a hybrid stock
index prediction model based on CEEMDAN and ARMA-LSTM. It takes the strengths of
CEEMDAN in data decomposition, combines linear and non-linear models, and can well
model complex time series. To verify the effectiveness of the prediction model, CAL was
used to forecast the closing index of four stock markets, and seven control experiments
were conducted for comparison. The results show that CAL can achieve the highest
prediction accuracy. To optimize the model, future research can be conducted from the
following aspects.

1. Single data source analysis has certain limitations. Combined analysis with different
data sources, such as text information [26], can improve prediction to a certain extent.

2. Stock market data contain noise that affects forecast results. Methods, such as wavelet
denoising [27] and principal component analysis [28], can eliminate the influence of
irrelevant factors and improve the prediction effect to a certain extent.

3. Time series analysis has been applied in fields, such as natural science [29] and in-
dustrial time series prediction [30]. The application scope of the temporal sequence
model in this paper can be extended, especially in some complicated temporal se-
quence scenes.
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