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Living systems inevitably undergo a progressive deterioration of physiological function with age and an
increase of vulnerability to disease and death. To maintain health and survival, living systems should
optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and
environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a
population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age.
It would be then useful to find an adequate function to describe complicated survival dynamics. Here we
describe a flexible survival function, derived from the stretched exponential function by adopting an
age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in
cumulative mortality rate. The survival function well depicts general features in survival curves; healthy
populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or
laboratory animals.

L
iving systems are known as open self-organizing complex adaptive systems1 and must often cope with hostile
environmental conditions for health and survival2. To maintain their living (far-from-equilibrium) state,
living systems should exchange matter, energy, and information from their surroundings and further adapt

themselves to genetic and environmental fluctuations1,2. To perform a variety of activities for health and survival,
living systems require adaptive interactions among molecules, cells, organs, individuals, and environments or
regulatory mechanisms3. A hallmark of living systems is their extraordinary complexity in physiological pro-
cesses3. Healthy living systems could optimize their survival strategies through adaptive interactions of multiple
control mechanisms that enable each individual to adapt to the exigencies and unpredictable changes of everyday
life3. The formulation of survival (or mortality) curves is essential for the quantification of survival dynamics to
scientists, such as demographers, biologists, and gerontologists. A single survival curve reflects a variance in
survival probability (equally, survival function and survival rate) as a function of age. Despite recent advances
in population biology4–6, general features of biological survival dynamics remain elusive because of plasticity in
survival curves of living systems.

Many mathematical models for survival curves have been proposed (see recent reviews7,8). One of the fun-
damental mortality laws is the Gompertz law9, in which the mortality rate increases roughly exponentially with
increasing age at senescence. However, it seems to be obvious that the human mortality rate does not increase
according to the Gompertz law at very old ages8,10 and the deviation from the Gompertz law remains a great puzzle
to demographers, biologists, and gerontologists. Many other mathematical models such as the Weibull, the
Heligman-Pollard, the Kannisto, the quadratic, and the logistic models yet provide poor fit to the empirical
mortality patterns at very old ages8. There are still needs for an appropriate mathematics for survival (or
mortality) curves with simplicity, efficiency, and flexibility11–14. In previous works15–17, we put forward a simple
survival function, which is derived from the stretched exponential function18–21. In this study, we address that this
function enables us to describe general features of survival curves in healthy living systems.

The stretched exponential function is widely used to describe complex dynamics in physics and biology18–21. In
physics, relaxation is an aging process in which a system gradually changes from a far-from-equilibrium (living)
to an equilibrium (dead) state. Structural relaxation of a glassy state towards a metastable equilibrium amorphous
state is often referred as ‘‘physical aging’’, which generally exhibits nonexponential relaxation20,21. The temporal
behavior of the response function s(u) can be described by the stretched exponential or the Kohlrausch-Williams-
Watts (KWW) function22–24 (often called the Weibull function25). This function has a general form of s(u) 5
exp(–ub) (b . 0), where s(u) is the measurable quantity decreasing with age u (5 x/a). Here real age (x) can be
rescaled with a characteristic life (a) taken at s(a) 5 exp(–1) < 0.367915. The KWW function appears in
many complex systems from soft matter systems, such as glass-forming liquids and amorphous solids26,27, to
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astrophysical objects28. The KWW function is typically classified as
the ‘‘stretched’’ exponential for 0 , b , 1, the ‘‘compressed’’ expo-
nential for b . 1, and the ‘‘simple’’ exponential for b 5 1. The
nonexponential nature (b? 1) is known to result from the ‘‘dynamic
heterogeneity’’ or the ‘‘fractal time’’ of the system29. In biology, the
typical survival curves, s(u), for humans or animals fall into three
main types, usually known as Type-I, -II, and -III curves30. Type-I
survival curves slightly change at early and middle ages and then
suddenly decline at late ages, as seen for long-lived humans.
Type-II curves almost linearly decease with age, as seen for short-
lived birds. Type-III curves quickly decrease at early ages, as seen for
most plants. Interestingly, Type-I survival curves resemble the com-
pressed exponential curves (b . 1). Type-II curves are similar to the
standard exponential curves (b 5 1). Type-III curves correspond to
the stretched exponential curves (0 , b , 1). In this study, we
identify the age dependency of b in biological systems.

Results
Plasticity in survival curves. In our previous works, we showed that
complicated survival curves are well described by modifying the
KWW function with an ‘‘age-dependent’’ shaping exponent b(u),
as follows15–17:

s(u)~ exp ({ub(u))

In this work, we argue that the age dependence of b(u) can be
understood in terms of fractal time ub(u) replacing time u29.
Conceptually, fractal time describes highly intermittent self-similar
temporal behavior that does not possess a characteristic time scale29,31.
The cumulative mortality (hazard) function, h(u) 5 –ln(s) 5 ub(u),
(defined as the negative logarithmic survival function, equally
the fractal time in our case) shows a typical fractal-like scaling as
h(bu) 5 bb(u)h(u) for an arbitrary constant b. By rescaling u, instead
of x, we are able to discover a universal, species-independent, scale-
invariant survival law from different species. Interestingly, we note
that b(u) may vary with time in physical systems; for instance, lumin-
escence decays15 or carrier hopping dynamics32. Most importantly, we
emphasize that the shaping exponent b(u) is a dynamic variable with
age for biological systems. The age dependency of b(u) would shed
light on how living systems evolve towards their ‘‘slowest aging rates’’
for healthy survival, which would be a key feature of survival dynamics
in living systems.

We describe the basic assumptions of our mathematical approach.
We assume three points as follows. (1) Living systems keep trying to
survive by adapting themselves to internal or external conditions,
including genetic (biological) and non-genetic (environmental) con-
ditions. (2) Survival strategies in living systems would be optimized
for better survival. Survival strategies would be consequences of all
functional interactions among genes, molecules, cells, organs, and
individuals within living systems or with environments. Finally, (3) a
survival function depicts survival dynamics of an individual or a
population. In fact, historic trends in human survival curves show
a gradual evolution toward healthy aging. We are able to describe
those trends in human survival curves with the stretched exponential
function s(u) 5 exp(–ub(u)) by adjusting the age-dependent b(u).
Biological differences from species (scaling effect) may be cancelled
by rescaling age (the x axis) as illustrated in Fig. 1. Using the age-
dependent, shaping exponent, b(u), we show how survival curves
evolve towards the rectangular-like curves.

Rectangularity in survival curves. We think of the concept of
‘‘healthy aging’’, which may be indeed an ultimately adaptive feature
in survival curves of living systems. As a typical example, we consider
survival curves for humans. From life table data of human popula-
tions in developed countries, we find that survival probability evolves
over time (remarkably, for last several decades), universally towards a
rectangular shape, as many scientists observed33–35. Such a gradual

evolution in human survival curves, as called the ‘‘rectangulariza-
tion’’33, results from the fact that survival curves become more rect-
angular and deaths are compressed to higher ages. How can we
describe the evolution in human survival curves? Presumably the
healthy aging can be characterized as the ‘‘slowest aging rates’’,
equivalently indicating that the mortality rates are minimized at each
age. Here we suggest a simple mathematical approach, which would
be useful to test the validity of the rectangularization hypothesis.

By modeling s(u) as a modified stretched exponential function
with an age-dependent shaping exponent, we are able to evaluate
the slowest aging rates16,17. Generally speaking, survival function
s(u) decreases monotonically from 1 to 0 with age; that is, –ds(u)/
du . 0. Let –ds(u)/du R 0 denote the slowest aging rates, equiva-
lently implying the largest survival rates (< 1 at u , 1). We find that
–ds(u)/du R 0 can be achieved only for a positive slope of b(u)
(i.e., db/du . e) early in life (u , 1) or for a negative slope of b(u)
(i.e., db/du . e) at late life (u . 1), since the quantity e5 –b/uln(u) is
positive at u , 1 and negative at u . 116,17. Using the age dependence
of b(u), we are able to describe the slowest aging rates in living
systems.

Here we derive a simple mathematics to determine the slowest
aging rates. By solving the equation db/du 5 –b/uln(u) to satisfy
‘‘–ds(u)/du 5 0’’, we obtain an ideal curve of b(u) that holds if and
only if the derivative of the survival probability approaches zero,
implying the ‘‘slowest aging rates’’. This condition reflects the rect-
angular survival curve, where s(u) becomes completely rectangular in
which all individuals are alive with s(u) < 1 to its characteristic life
(u 5 1) and suddenly die with s(u) < 0 after u . 1. Therefore the
slowest aging rates of living systems can be simply described as:

b(u)~
c

ln (u)j j
Here, c is a universal constant (numerically c $ 7 for s . 0.999089

at u , 1). Most importantly, the rectangular survival curve can be
precisely approximated with b(u) for c 5 7. This gives a criterion for
rectangularity of survival curves: when living systems evolve to
achieve the maximum survival probability, b(u) should vary towards
the ideal curve, b(u) 5 7jln(u)j–1. Therefore, b(u) is a good measure
to determine the appearance of the rectangularity in survival curves.

Figure 1 | Basic model. Survival curves are well described with the

stretched exponential survival function s(u) 5 exp(–ub(u)) (see the details

in the text) by adjusting the age-dependent, shaping exponent, b(u).

Biological differences from species (scaling effect) can be cancelled by

rescaling age u 5 x/a, where the characteristic life (a) is graphically taken at

s(x 5 a) 5 exp(–1). Using the age-dependent, shaping exponent, b(u), we

are able to describe how survival curves evolve towards the rectangular-like

curves.
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Application to human demographic data. We test the validity of
our mathematical approach in real systems. For typical human sur-
vival curves, the age-related trajectory of b(u) increases with age
towards the ideal curve of b(u) at early ages (u , 1), as fitted by a
linear form of b0 1 b1u, and in turn decreases with age at late ages
(u . 1), as fitted by a quadratic form16,17 as b0 1 b1u 1 b2u2. For
instance, from Swedish female periodic life table in 2000, we roughly
estimate b(u) with b0 < 1 and b1 < 9 at u , 1 and b0 < –20, b1 < 60,
and b2 < –30 at u . 1, as depicted as circles in Fig. 2. As illustrated
in the inset, the survival curve obtained from the estimated b(u)
(circles) quite well agrees with the actual survival curve of Swedish
females in 2000 (dashed line). Remarkably, the estimated and the
measured survival curves are very close to the rectangular-like sur-
vival curve (solid line).

The evolution towards the slowest aging rates makes survival
curves to have rectangularity. We test this feature for humans with
the reliable demographic data taken from the Human Mortality
Database (http://www.mortality.org). The survival curves are ana-
lyzed by computing the age-dependent shaping exponents b(u) 5

ln(–ln(s))/ln(u) with rescaled age (u 5 x/a) from the general express-
ion of survival probability s 5 exp(2ub(u)), where the characteristic
life (a) is graphically taken at s(a) 5 exp(–1) for each survival curve.
We find that Swedish females’ survival curves during last two cen-
turies from 1800 to 2000 corroborate that the age-related trajectory
of b(u) evolves in a fashion predicted in theory (i.e., towards the ideal
curve, b(u) 5 7jln(u)j–1, solid line), as illustrated in Fig. 3. The age-
dependent evolution of b(u) provides conclusive evidence that
human survival curves evolve towards the slowest aging rates, which
supports the validity of the rectangularization hypothesis33.

Let us consider mortality rate (sometimes called hazard function
or force of mortality), defined as a negative derivative of logarithmic
survival rate. The age-related evolution of b(u) has clues to
interpret the age-related evolution of mortality rate. The mortality
rate m(u) 5 –dln(s)/du in our model is described with respect to the
age-dependent b(u) as:

m(u)~
ub(u)

a

� �
b(u)

u
z ln (u)

db(u)

du

� �

Here, the mortality rate can be calculated from a and b(u) for a
single survival curve. For ideal survival conditions, b(u) tends to
evolve towards the ideal curve of b(u) and the mortality rate should
become zero for all ages. For real survival conditions (for humans or
animals), as the survival curve approaches to a rectangular shape,
b(u) tends to linearly increase with age at early ages (u , 1), which
corresponds to a linear increase of ln(m). The linearity in ln(m) at
middle ages (u 5 0.5–1.0, equivalently 30–80 years for humans) is
similar to the Gompertz mortality law17. At late ages (u . 1), b(u)
shows a quadratic change with age, which corresponds to a quadratic
change of ln(m). The quadratic decline of ln(m) is practically valid for
the oldest-age mortality patterns34. We find a general scaling relation
between b(u) and ln(m); that is, b(u) is approximately proportional to
ln(m), which is valid as shown in Figs. 3 and 4.

Figure 2 | Healthy survival curves. The shaping exponent, b(u),

approaches to the ideal curve, b(u) 5 7 | ln(u) | –1 (solid line), as the survival

probability, s(u), approaches to the rectangular shape (solid line, inset). This

tendency, which stands for healthy aging, is obvious in a typical trajectory of

b(u) for humans (circles, see the fitting parameters in the text). The survival

curve estimated from the typical b(u) (circles, inset) agrees well with the real

survival curve for Swedish females in 2000 (dashed line, inset).

Figure 3 | Evolution of shaping exponents for humans. The historic

evolution in survival curves for Swedish females shows that b(u) dynamically

evolves towards the slowest aging rates (b(u) 5 7 | ln(u) | –1, solid line), where

s(u) becomes rectangular for last two centuries (180022000 years).

Figure 4 | Evolution of mortality rates for humans. The mortality curves

for Swedish females for the last two centuries demonstrate that human

mortality curves evolve towards the slowest aging rates. Interestingly, at late

ages the mortality seems to be fixed (parallel shift, r) over time, while at early

ages it significantly falls down (vertical shift, #). Here, m(u) linearly increases

with reduced age (u) at middle ages, showing the Gompertz law, and converges

with real age (x 5 au [years] with its characteristic life a) at old ages (inset).

www.nature.com/scientificreports
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In principle, the mortality rate is predicted to reach zero for u , 1,
if the survival rate approaches to the rectangular curve. This feature
can be identified by evaluating the age-related evolution of b(u),
which gets close to the ‘‘ideal’’ curve of b(u) 5 7jln(u)j–1. In practice,
it would be relatively easy to diminish the mortality rate to a very low
level at young ages through health care and welfare but not at old ages
by age-associated progressive aging. We find that the mortality rates
of the oldest seem to be fixed at , 1 (parallel shift, r) over time for
humans, while the infant mortality rates plastically fall downward
(vertical shift, #), as shown in Fig. 4. Such parallel and vertical shifts
of the mortality rates imply that death is being delayed because
people are reaching old age in better health36. We also find a conver-
gence of m(u) at old ages as depicted in Fig. 4. This convergence
would universally exist in living systems37 if death rates become
relatively similar at old ages for a single species.

Universality in non-human systems. We further investigate the age-
related evolution of b(u) in non-human systems (Fig. 5). The reliable
life tables were taken for wild-type flies (Drosophila melanogaster,
a 5 46.38 days)38, worms (Blatta orientalis, a 5 45.39 days)38, auto-
mobiles (a 5 8.08 yrs)38, and tyrannosaurs (Albertosaurus sar-
cophagus, a 5 17.45 yrs)39. The data were arbitrary selected for
analysis. Indeed, b(u) dynamically evolves with age for living sys-
tems, which is remarkably shown in flies, while b(u) is relatively
constant (b< 2) for automobiles as non-living systems. Most impor-
tantly, the age-related trajectory of b(u) for flies is very similar to that
for humans, approaching to the ideal curve, b(u) 5 7jln(u)j–1.
Additionally, the mortality rate of flies at u 5 0.5–1.0 linearly
increases with age, showing the validity of the Gompertz law, and
also comes to a saturation at u . 1, showing the singularity of the
mortality plateau. These results suggest that the common features of
mortality curves such as the Gompertz law and the mortality plateau
might spontaneously emerge from the age-dependent shaping expo-
nents that dynamically evolve towards the slowest aging rates of
living systems.

For both cases of humans and flies, b(u) gradually evolves with
age, approaching to the ideal curve, b(u) 5 7jln(u)j–1, as predicted in
theory. The universality of mortality patterns is well confirmed for

insects, worms, and yeasts, as well as humans in many studies5,34. It is
important to note that the evolution towards the maximum survival
probability is scale-invariant regardless of biological species. This
suggests that the evolution towards the slowest aging rates would
be a species-independent, scale-invariant, universal aspect in survival
dynamics of living systems.

Discussion
Why does the dynamic nature in the shaping exponent b(u) emerge
in living systems? Living systems are ubiquitous in our daily life:
specifically, if processes underlying life are explained as a tendency
towards maximum entropy production, systems such as galaxies and
hurricanes might be described as living systems40. Living systems
should be capable of altering strategies and of adapting to internal
and external changes. Healthy physiological functions require an
integration of complex networks of control systems and feedback
loops that operate on multiple scales in space and time3. These frac-
tal-like physiological processes enable an organism to adapt to the
exigencies of everyday life. In general, the complexity of living pro-
cesses should be evolvable with environmental conditions. Adaptive
interactions of each individual occur in a cooperative manner with its
neighbors, resulting in dynamic self-organization and influencing
flexible survival strategies between cooperation and competition.
Since living systems would evolve to optimize their capabilities and
strategies for survival, the slowest aging rates would spontaneously
emerge. Presumably, living processes would not follow simple phys-
ical relaxation processes, where the shaping exponent is invariant
with age. To illustrate evolvable survival curves of living systems, we
adopt an age-related shaping exponent, b(u), which provides a sim-
ple criterion for the slowest aging rates. On this basis, dynamic
change in shaping exponent may be attributed to ‘‘complexity evolu-
tion’’ in living systems. On the other hand, complexity evolution
would be able to give hints about how and why vitality declines with
age41. Consequently, the appearance of the age-dependent b(u) in
living systems is due to the evolution towards the slowest aging rates
and fundamentally attributed to the complexity evolution (age-
related evolution in complexity) for living systems.

Finally, we note that a mathematics-based survival model has a
limitation yet. A more direct link should be established between the
model and the current understanding of aging mechanisms at a
genetic/molecular level42. Such linkage is beyond the scope of this
study. The aging dynamics cannot be always straightforwardly
explained as a loss of complexity43. To better understand the com-
plexity evolution in biological aging dynamics, network theory44,45 or
systems biology46 would be essential. We believe that cooperation
and competition between components would complicatedly contri-
bute to the optimum survival strategy and the aging dynamics ran-
ging from generic to systematic levels. Further study is required to
develop the mathematics-biology linkage in survival dynamics. On
the other hand, our model well describes the rectangularization
trends in the survival curves, as simply characterized as the b(u)
curve that approaches to 7jln(u)j–1. These trends were traditionally
explained by the Gompertz-Makeham law of mortality with the
Makeham parameter changes47,48. Our mathematical interpretation
offers a quite quantitative criterion to confirm the rectangularization
tendency, compared with the classical demographic explanation of
the rectangularization.

In summary, we put forward a simple mathematics to describe
plasticity and rectangularity in survival curves of living systems. Our
description is useful to illustrate how living systems evolve towards
the rectangular survival curves through the slowest aging rates. Such
an elegant evolution is testable with a simple mathematical criterion
derived from the age dependence of the shaping exponent in the
stretched exponential survival function. The age-dependent shaping
exponent is a useful indicator of plasticity in survival curves. The
feature of the slowest aging rates emerges in survival curves for

Figure 5 | Evolutions of shaping exponents and mortality rates for
non-human systems. The feature of the slowest aging rates (solid line,

b(u) 5 7 | ln(u) | –1) emerges for wild-type flies (Drosophila melanogaster,

open circles), worms (Blatta orientalis, closed circles), and tyrannosaurs

(Albertosaurus sarcophagus, open squares). In contrast, automobiles

(closed squares) show a constant value ofb and a high value ofm, indicating

typical non-living systems.
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humans and laboratory flies. Our finding may give more useful
insights into basic aspects of survival dynamics, ‘‘plasticity and rect-
angularity’’, in living systems by offering a mathematical description
of healthy survival dynamics.

Methods
The survival curves were analyzed by computing the age-dependent shaping
exponents b(u) 5 ln(–ln(s))/ln(u) with rescaled age (u 5 x/a) from the general
expression of survival probability s 5 exp(2ub(u)), where the characteristic life (a)
is graphically taken at s(a) 5 exp(–1) from each survival curve16,17. We used the
reliable demographic data for humans, Swedish females’ survival curves during
last two centuries from 1800 to 2000, taken from the Human Mortality Database
(http://www.mortality.org). The reliable life tables for animals were taken for wild-
type flies (Drosophila melanogaster, a 5 46.38 days)38, worms (Blatta orientalis,
a 5 45.39 days)38, automobiles (a 5 8.08 yrs)38, and tyrannosaurs (Albertosaurus
sarcophagus, a 5 17.45 yrs)39.
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