
royalsocietypublishing.org/journal/rsob
Research
Cite this article: de Castro MV et al. 2022
Recurrence of COVID-19 associated with

reduced T-cell responses in a monozygotic

twin pair. Open Biol. 12: 210240.
https://doi.org/10.1098/rsob.210240
Received: 14 August 2021

Accepted: 13 January 2022
Subject Area:
immunology

Keywords:
COVID-19, twins, severe acute respiratory

distress syndrome coronavirus 2, T cell,

recurrence, immunity
Author for correspondence:
Mayana Zatz

e-mail: mayazatz@usp.br
†These authors contributed equally to this

study.
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Recurrence of COVID-19 associated with
reduced T-cell responses in a monozygotic
twin pair

Mateus V. de Castro1,†, Keity S. Santos2,3,4,†, Juliana S. Apostolico3,5,
Edgar R. Fernandes3,5, Rafael R. Almeida2,3, Gabriel Levin2,3,
Jhosiene Y. Magawa2,3,4, João Paulo S. Nunes2,3,4, Mirian Bruni6, Marcio
M. Yamamoto6, Ariane C. Lima2,3,4, Monize V. R. Silva1, Larissa R. B. Matos1,
Vivian R. Coria1, Erick C. Castelli7, Marilia O. Scliar1, Andreia Kuramoto2,3,4,
Fernanda R. Bruno2,3,4, Lucas C. Jacintho2,3,4, Kelly Nunes1, Jaqueline
Y. T. Wang1, Veronica P. Coelho2,3,4, Miguel Mitne Neto8, Rui M. B. Maciel8,
Michel S. Naslavsky1, Maria Rita Passos-Bueno1, Silvia B. Boscardin2,4,6,
Daniela S. Rosa2,5, Jorge Kalil1,2,3,†, Mayana Zatz1,† and Edecio Cunha-Neto2,†

1Human Genome and Stem Cell Research Center (HUG-CELL), Biosciences Institute, Universidade de São Paulo,
São Paulo, SP, Brazil
2Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da
Universidade de São Paulo, (HCFMUSP), São Paulo, SP, Brazil
3Institute for Investigation in Immunology—Instituto Nacional de Ciência e Tecnologia—iii-INCT, São Paulo,
SP, Brazil
4Division of Clinical Immunology and Allergy, Department of Medicine, Faculdade de Medicina da Universidade
de São Paulo (FMUSP), São Paulo SP, Brazil
5Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP/EPM),
São Paulo, SP, Brazil
6Department of Parasitology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil7School of
Medicine, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
8Fleury Laboratory, São Paulo, SP, Brazil

MVd, 0000-0002-8895-652X; KSS, 0000-0001-5271-4011; JSA, 0000-0002-3507-3117;
ERF, 0000-0001-5981-5149; RRA, 0000-0003-3984-7527; GL, 0000-0002-6527-7989;
JPSN, 0000-0003-4355-6669; MZ, 0000-0003-3970-8025

Recurrence of COVID-19 in recovered patients has been increasingly reported.
However, the immune mechanisms behind the recurrence have not been
thoroughly investigated. The presence of neutralizing antibodies (nAbs) in
recurrence/reinfection cases suggests that other types of immune response
are involved in protection against recurrence. Here, we investigated the
innate type I/III interferon (IFN) response, binding and nAb assays and
T-cell responses to severe acute respiratory distress syndrome coronavirus 2
(SARS-CoV-2) with IFN gamma (IFNγ) enzyme-linked spot assay (ELISPOT)
in three pairs of young adultmonozygotic (MZ) twinswith previous confirmed
COVID-19, one of them presenting a severe recurrence four months after the
initial infection. Twin studies have been of paramount importance to compre-
hend the immunogenetics of infectious diseases. Each MZ twin pair was
previously exposed to SARS-CoV-2, as seen by clinical reports. The six individ-
uals presented similar overall recovered immune responses except for the
recurrence case, who presented a drastically reduced number of recognized
SARS-CoV-2 T-cell epitopes on ELISPOT as compared to her twin sister and
the other twin pairs. Our results suggest that the lack of a broad T-cell response
to initial infection may have led to recurrence, emphasizing that an effective
SARS-CoV-2-specific T-cell immune response is key for complete viral control
and avoidance of clinical recurrence of COVID-19.
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Table 2. Primers used for reverse transcription polymerase chain reaction
(RT-PCR) to assess the innate immune response.

RT-PCR primers

gene forward 50 – 3’ reverse 50 – 3’

IFNA2 TCGTATGCCAGCTCACCTTT TCGTGTCATGGTCATAGCAGAA

IFNB1 ACGCCGCATTGACCATCTAT GTCTCATTCCAGCCAGTGCT

IRF7 CTTCGTGATGCTGCGGGATA TTCTCGCCAGCACAGCTC

IFIT3 AAGAACAAATCAGCCTGGTCAC GACCTCACTCATGACTGCCC

IFITM1 GCCAAGTGCCTGAACATCTG TGTCACAGAGCCGAATACCAG

IFNL2 TCCCAGACAGAGCTCAAAACT CAGTCCCCTCTTCTGGATCTC

IFNL3 ACGCGAGACCTGAATTGTGT TCAGGTTGCATGACTGGCG

GAPDH CTCTGCTCCTCCTGTTCGAC ATGGTGTCTGAGCGATGTGG
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1. Background
Clinical recurrence of PCR-confirmed COVID-19 in adults
with previous infection has been increasingly reported [1].
This has been attributed to a viral relapse in a host that
failed to completely eradicate the virus or to reinfection
with a different viral genome [2,3]. The involvement of
innate/Type I/III IFN response as well as the specific anti-
body and T-cell responses is well established in the
protection against severe acute respiratory distress syndrome
coronavirus 2 (SARS-CoV-2) [4]. However, the immune
mechanisms underlying reinfection/virus relapse are
mostly unexplored. In this context, investigation of anti-
SARS-CoV-2 immunity in clinical recurrence/reinfection
cases has only been directed to the humoral response [5].
Since COVID-19 reinfection can occur both even in the pres-
ence of significant neutralizing antibody (nAb) titres [6],
additional immune responses apart from humoral response
may be involved in controlling reinfection and recurrence.
The investigation of COVID-19 reinfection/recurrence can
thus provide key information regarding immune protection
mechanisms and guide vaccine development [6].

Studies with monozygotic (MZ) twins regarding viral
infections have been a valuable source since they allow
deep analysis of the environmental and host influences
from different infectious agents [7]. In this article, we present
a comprehensive assessment of innate and adaptive immu-
nity in three pairs of recovered young adult MZ twins with
confirmed COVID-19 and one recurrence case requiring
admission to an intensive care unit.
2. Methods
2.1. Participants recruitment
Three pairs of COVID-19 recovered young adult MZ twins
from São Paulo (the most populous city in Brazil) who
were living together were recruited at the Human Genome
and Stem Cell Research Center (HUG-CELL): a pair of MZ
twin sisters who acquired mild COVID-19 in early 2020
where one, a healthcare worker, displayed severe clinical
recurrence of COVID-19 four months after initial infection
(ID 01 and ID 02); a second pair of MZ twin brothers with
concordant asymptomatic infection (ID 03 and ID 04); and
a third pair of MZ twin brothers with discordant sympto-
matic infection (ID 05 and ID 06). Baseline characteristics of
the six twins are shown in table 1.

2.2. Sample collection
Blood samples were collected for global immune profiling at
two instances post infection. On the first blood draw, we
assessed SARS-CoV-2 IgG, IgA and IgM against SARS-
CoV-2 spike (S), receptor-binding domain (RBD) and nucleo-
capsid protein (NP), nAbs and antibodies against the RBD
region of human endemic coronaviruses, at least four weeks
after initial COVID-19 diagnosis and then in January 2021.
Twins were followed up for 10 months after the first blood
draw. Samples were taken in vacutainer tubes with sodium
heparin (BD Biosciences, USA, catalogue no. 367874) to
obtain peripheral blood mononuclear cells (PBMCs); tubes
without additives to obtain serum (BD Biosciences, USA,
catalogue no. 366703) and tubes with ethylene diamine tripo-
tassium (BD Biosciences, USA, catalogue no. 360057) to
obtain plasma and for DNA extraction. Plasma and serum
were obtained by centrifugation for 10 min at 2000g at
room temperature within 30 min after blood draw. After
this, the supernatant was transferred in aliquots of 1.5 ml
into cryo vials (Corning, USA, catalogue no. 430487), and
samples were transferred to a –80°C freezer until the
moment of use. PBMCs were obtained by centrifugation of
PBS-diluted 1 : 1 (Thermo Fisher Scientific, EUA, catalogue
no. 10010031) blood samples in a leucosep tube (Greiner
Bio-One, Austria, catalogue no. 163290) over a Ficoll-Paque
(GE Healthcare Biosciences, USA, catalogue no. 17-5442-03)
gradient following the manufacturer’s instructions. The iso-
lated PBMCs were stored in liquid nitrogen in solution of
fetal bovine serum (FBS) (Sigma-Aldrich, USA, catalogue
no. F4135) complemented with 10% dimethyl sulfoxide
(Sigma-Aldrich, USA, catalogue no. D2650) until use.

2.3. Immunological assays

2.3.1. Type I/III IFN innate immune response

Cryopreserved PBMCs were thawed and stimulated with
1 µg/ml of Poly I:C HMW (Invivogen, USA, catalogue no.
tlrl-pic-5) for 1, 4 and 8 h. Negative controls were incubated
with R10 medium alone. Total RNA was extracted using the
RNeasy Mini kit (Qiagen, Germany, catalogue no. 74106),
and cDNAwasprepared using the Superscript II Reverse Tran-
scriptase (Thermofisher Fisher Scientific, USA, catalogue no.
18064014), according to the manufacturer’s instructions.
Real-time PCR was performed using the Power SYBR Green
Master Mix (Thermo Fisher Scientific, USA, catalogue no.
4368706) on a QuantStudio 12 K flex (Applied Biosystems,
USA, catalogue no. 4471087). The cycling programme was
used as follows: 95°C for 15min; 40 cycles of 95°C for 15 and
60°C for 1 min. Primers used are listed in table 2.

2.3.2. Humoral immune response

SARS-CoV-2 IgG and IgM were initially detected by the clini-
cal laboratory using the chemiluminescence immunoassay
MAGLUMI 2019-nCoV IgM/IgG assay (Shenzhen New
Industries Biomedical Engineering Co., Ltd, China, catalogue



Table 3. CD4+ and CD8+ T-cell epitopes used in ELISPOT assay.

protein start–end sequence

CD4+ T-cell epitopes

spike 443–466 GNYNYLYRLFRKSNLKPFER

spike 334–352 FGEVFNATRFASVYA

spike 1086–1105 KAHFPREGVFVSNGTHWFVT

spike 503–522 VGYQPYRVVVLSFELLHAPA

spike 1009–1028 QLIRAAEIRASANLAATK

spike 896–915 IPFAMQMAYRFNGIGVTQNV

spike 747–763 TECSNLLLQYGSFCTQL

envelope 55–72 SFYVYSRVKNLNSSRVPD

membrane 43–62 NRFLYIIKLIFLWLLWPVTL

membrane 63–81 ACFVLAAVYRINWITGGIA

membrane 98–113 ASFRLFARTRSMWSFN

nucleocapsid 212–234 ALALLLLDRLNQLESKM

nucleocapsid 80–97 DQIGYYRRATRRIRGG

nucleocapsid 308–330 SAFFGMSRIGMEVTPSGTW

NSP3 3589–3613 TSLLVLVQSTQWSLF

ORF3a 26–40 SDFVRATATIPIQAS

ORF3a 118–137 INFVRIIMRLWLCWKCRSKN

ORF7a 105–120 AAIVFITLCFTLKRKT

ORF8 43–57 SKWYIRVGARKSAPL

ORF8 1–17 MKFLVFLGIITTVAAFH

CD8+ T-cell epitopes

spike 89–97 GVYFASTEK

spike 269–277 YLQPRTFLL

spike 269–277 MIAQYTSAL

spike 691–699 SIIAYTMSL

spike 1220–1228 FIAGLIAIV

nucleocapsid 307–315 FAPSASAFF

nucleocapsid 219–227 LALLLLDRL

nucleocapsid 222–230 LLLDRLNQL

membrane 171–179 ATSRTLSYY

membrane 61–70 TLACFVLAAV

NSP3 1081–1089 YYKKDNSYF

NSP3 1374–1382 ASMPTTIAK

NSP3 1802–1810 AELAKNVSL

NSP3 686–694 TISLAGSYK

NSP3 887–895 GEAANFCAL

NSP5 219–227 FLNRFTTTL

NSP6 84–92 VYMPASWVM

NSP9 23–31 CTDDNALAY

RNA polymerase 253–261 AESHVDTDL

RNA polymerase 500–508 KSAGFPFNK

RNA polymerase 907–915 LTNDNTSRY

exonuclease 223–231 TYACWHHSI

exonuclease 232–240 GFDYVYNPF

exonuclease 288–296 KRVDWTIEY

exonuclease 487–495 HANEYRLYL

helicase 386–394 VVNARLRAK
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Figure 1. Early transcriptional type I/type III IFN innate immune response. PBMCs were stimulated with 1 µg ml–1 of double-stranded RNA Poly I:C for 1, 4 and 8 h.
Total RNA was extracted for qPCR. Gene expression is relative to unstimulated cells. Expression kinetics of type I/type III genes after TLR3 stimulus for twin pair 1
(female): (a) ID 01 = severe clinical recurrence of COVID-19, (b) ID 02 = mild COVID-19 (non-recurrence); twin pair 2 (male): (c) ID 03 and (d ) ID 04, asymptomatic
infections; twin pair 3 (male): (e) ID 05 = mild COVID-19 and ( f ) ID 06 = asymptomatic infection. All subjects presented an early and strong (FC = 20 or higher)
mRNA expression of at least one of the four type I/III IFN (IFNA2, IFNB1, IFNL2 and IFNL3) at the earliest time point after Poly I:C stimulus.
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no: 130219018M). Enzyme-linked immunosorbent assay
(ELISA) was performed using 96-well high-binding half-
area polystyrene plates coated overnight at 4°C with
4 µg ml−1 of spike protein, 2 µg ml−1 NP (kindly provided
by Dr Ricardo Gazzinelli, UFMG) or 0.8 µg ml−1 of the
RBD domain from human endemic coronaviruses HKU-1,
OC43, NL63 and 229E, all expressed in HEK293T cells. Plas-
mids encoding endemic coronavirus RBD domains are
described in [8]. Patients’ plasma samples were incubated at
56°C for 30 min, diluted 1 : 100 and run in triplicates. In
short, 50 µl of diluted sera were incubated at 37°C for
45 min. Peroxidase-conjugated goat anti-human IgG (BD
Pharmingen,USA), anti-human IgA (KPL, USA) or anti-
human IgM (Sigma, USA) secondary antibody conjugates
were diluted 1 : 10 000 and incubated at 37°C for 30 min.
Values were determined as optical density minus blank,
and cutoff was determined as blank+ 3× s.d. Besides, the
pseudovirus neutralization assay was performed exactly as
described previously [9]. HT1080 expressing ACE2 cells
(HT1080/ACE2) and plasmids HIV-1NLΔEnv-NanoLuc and
pSARS-CoV-2-SΔ19 were kindly provided by Dr Paul
D. Bieniasz (The Rockefeller University). Briefly, 104
HT1080/ACE2 were plated in 96-well plates and maintained
at 37°C, 5% CO2 for 24 h. The pseudovirus was incubated in
duplicate with serial dilutions of the samples for 1 h at 37°C.
After 48 h of incubation at 5% CO2 at 37°C, wells were
washed, and cells were lysed with Lysis Buffer (Promega,
USA, catalogue no E2661). Luciferase substrate (Promega,
USA, catalogue no E1500) was added to each well, and the
plate read at a GlowMax luminometer (Promega, USA, catalo-
gue no GM2000). Fifty per cent inhibitory dilution was
calculated using Prism software (v. 7.0, GraphPad) after
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Figure 2. Humoral immune response profiles. (a–c) SARS-CoV-2-binding specific antibodies (IgG, IgA and IgM) against trimeric spike (S), the receptor-binding
domain (RBD) and the nucleocapsid protein (NP). (d ) IgG against RBDs of human endemic alpha- and beta-coronaviruses NL63, 229E, HKU1 and OC43.
(e) SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Antibody responses for SARS-CoV-2 and endemic human coronaviruses
were evaluated by ELISA. All subjects displayed IgG against the spike protein, confirming that all of them had been infected by SARS-CoV-2. Besides, the antibody
response to endemic human coronaviruses was virtually identical in each twin pair, indicating no difference in exposure to these potentially cross-reactive viruses.
Neutralizing antibodies (nAb) were detected in all of them except for ID 06 (asymptomatic infection).
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subtraction of the background RLUs in the control wells
(cells only).

2.3.3. IFNγ ELISPOT assay

SARS-CoV2 specific T-cell responses were assessed using
human ex vivo IFNγ enzyme-linked spot assay (ELISPOT)
against a set of 20 CD4+ and 26 CD8+ T-cell epitopes from
13 distinct SARS-CoV-2 proteins with high HLA allelic popu-
lation coverage in isolated PBMCs of each volunteer, three
to four months after the COVID-19 episode or hospital
discharge in the recurrence case. We identified and syn-
thesized the CD4+ T-cell epitopes by scanning the whole
proteome in SARS-CoV-2 reference genome (RefSeq:
NC_045512.2) using the promiscuous HLA-DR binding pep-
tide approach [10]. The chosen CD8+ T-cell epitopes were
known to bind stably (www.immunitrack.com) or to be
directly recognized [11] in the context of the 10 most frequent
HLA class I alleles. The world population coverage of
HLAs predicted to bind to the 20 CD4+ T-cell epitopes and
26 CD8+ T-cell epitopes was 99.6% and 94%, respectively,
according to the IEDB epitope database [12]. Peptide
sequences are listed in table 3. Cryopreserved PBMCs were
thawed and rested overnight in R10 medium (RPMI sup-
plemented with 10% of FBS, 2 mM l-glutamine, 1% v/v
vitamin solution, 1 mM sodium pyruvate, 1% v/v non-
essential amino acids, 50 U ml−1 penicillin/streptomycin
and 5 × 105 M of 2-mercaptoethanol (Thermofisher, USA, cat-
alogue no. 15070063) containing 30 U ml−1 of recombinant
human IL-2 (ProleukinTM, Boehringer Ingelheim Pharma,
Germany, catalogue no. PHC0023). Cells were seeded at 105
cells/well in MultiScreen MAIPS Filter Plates (Merck, USA,
catalogue no. MAIPS4510) using coating and secondary
anti-IFNγ antibodies (BD Biosciences). Incubation was per-
formed for 18 h with synthetic peptides (5 ug ml−1;
Genscript), medium alone or phorbol 12-myristate 13-acetate
plus ionomycin (50 ng ml−1 and 1 ug ml−1, respectively) and
developed with AEC substrate. Spots were counted using an
AID ELISpot Reader System (Autoimmun Diagnostika
GmbH, catalogue no ELR08IFL). The number of IFNγ produ-
cing cells/106 PBMC for each peptide was calculated after
subtracting the values of control wells (R10 medium alone) for
each subject. The cutoff value (105 IFNγ producing cells/106
PBMC) was established as the average + 3 s.d. of test results of
the 46 peptides on cryopreserved PBMC from 19 pre-pandemic
Brazilian healthy control subjects (data not shown).

2.4. Genomic assays
Whole-exome sequencing was performed on peripheral blood
DNA in Illumina NovaSeq platform at HUG-CELL facilities.
Sequencing data were analysed following bwa-mem, and
GATK Best Practices workflow, quality control and annotation
were performed as previously described [13]. HLA genes
were realigned and called using HLA-mapper, which reduces
mapping and calling errors [14].
3. Results and discussion
Here, we investigated the immunological profiles of three
pairs of recovered young adult MZ twins, living together

http://www.immunitrack.com
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Figure 3. CD4+ and CD8+ T-cell responses to SARS-CoV-2 T-cell epitopes in isolated PBMCs, three to four months after COVID-19 episodes and the recurrence. T-cell
responses were assessed using human ex vivo IFNγ ELISPOT against a set of 20 CD4+ (a) and 26 CD8+ (b) SARS-CoV-2 T-cell epitopes with high HLA allelic
population coverage identified with bioinformatics tools. PBMC were stimulated with synthetic peptides for 18 h. All subjects recognized greater than 70% of
CD4+ and CD8+ epitopes except the patient with severe recurring infection (ID 01) who recognized only 7 of 46 CD4+ and CD8+ T-cell epitopes (15%). Overall,
the SARS-CoV-2 T-cell response is the only immune parameter that was substantially lower in the COVID-19 recurrence case (ID 01).
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with confirmed COVID-19: (i) a pair of MZ twin sisters who
acquired mild COVID-19 in March 2020 where one, a health-
care worker, displayed severe clinical recurrence of COVID-19
four months after initial infection (July 2020); (ii) a second
pair of MZ twin brothers with concordant asymptomatic
infection in June 2020; and (iii) a third pair of MZ twin broth-
ers with discordant infection (one symptomatic and one
asymptomatic) in April 2020. Demographical data, clinical
manifestation of COVID-19, laboratory results and dates of
specific immunological tests for all twin pairs are summar-
ized in table 1 as well HLA-A, HLA-B, HLA-C and HLA-
DRB1 alleles of each of the twin pairs.

Since innate type I/III IFN responses are the first line of
cellular defence against RNA viruses, we evaluated the
type I/III IFN production by PBMCs after toll-like receptor
(TLR) stimulus (double-stranded RNA Poly I:C). Although
there was heterogeneity in expression of the particular IFN
or IFN-induced gene expression, all subjects presented an
early and strong (FC = 20 or higher) mRNA expression of at
least one of the four type I/III IFN (IFNA2, IFNB1, IFNL2,
IFNL3) at the earliest time point after Poly I:C stimulus
(figure 1). The finding that all six tested volunteers including
the COVID-19 recurrence case presented an early and strong
type I/III IFN response indicates that recurrence was not
associated with failure in the innate IFN response.

To investigate the humoral immune response, we per-
formed serological assays for SARS-CoV-2 IgA, IgG and
IgM through ELISA for S, RBD and NP proteins (figure 2a–c).
We observed that all MZ twins displayed IgG against the
spike protein, confirming that all of them had been infected
by SARS-CoV-2. However, detection of IgG-RBD and IgG-NP
was variable among the MZ twins. As expected, the antibody
titres against SARS-CoV-2 declined with time when comparing
the two blood collections. On the other hand, IgG antibodies
against the RBD of the four main circulating endemic corona-
viruses, NL63, 229E, HKU1 and OC43, were similar for all six
cases, displaying antibodies for three of four tested corona-
viruses. The antibody profiles to human endemic
coronaviruses were virtually identical in the MZ twin siblings
(figure 2d).

In addition, nAbs titres were around 1 : 500 for the recur-
rent sister (ID 01), while the sister without recurrence (ID 02)
presented titres similar to the negative control (figure 2e). For
pair 2, nAb levels were similar to those of ID 01. On the other
hand, the symptomatic brother from pair 3 (ID 05) displayed
nAb titres around 1 : 500, while nAb titres similar to the negative
control nAb were observed in the asymptomatic brother (ID 06).
nAbs were detected in several cases of reinfection/recurrence [6],
suggesting that responses beyond nAbs are important to control
reinfection.

Finally, we assessed the T-cell responses to SARS-CoV-2
T-cell epitopes, by performing IFNγ ELISPOT assays
(figure 3) on PBMC samples. We found that all recovered
young adult MZ twins recognized greater than 70% of
CD4+ and CD8+ epitopes except the patient with recurring
infection (ID 01) who recognized only 7 of 46 CD4+ and
CD8+ T-cell epitopes (15%), while her sibling recognized 36
CD4+ and CD8+ T-cell epitopes (78%; p < 0.0001, Fisher
Exact Test). Thus, patient ID 01, who showed a COVID-19
recurrence, displayed a drastically reduced breadth (number
of recognized epitopes) of both CD4+ and CD8+ SARS-
CoV-2 T-cell epitopes as compared with her non-recurrent
sibling and the others MZ twin pairs.
Interestingly, we found that the T-cell response is the only
immune parameter that was substantially lower in the
COVID-19 recurrence case ID 01. To our knowledge, this is
the first report of T-cell immune responses in the context of
COVID-19 recurrence and reinfection. Of note, there were
also fluctuations in some other immune parameters within
each MZ twin pair.

Our finding that the CD4+ and CD8+ T-cell response of
the COVID-19 recurrence case had a drastically reduced
breadth four months after hospital discharge is indicative of
a low SARS-CoV-2-specific T-cell response. Given the impor-
tance of T-cell responses associated with COVID-19 infection
[15], a dampened CD4+ T-cell response can have important
consequences for many aspects of anti-SARS-COV-2 immu-
nity. Asymptomatic and mild cases of COVID-19 are
correlated with specific CD4+ and CD8+ T-cell responses,
but not with IgG or nAb, suggesting that T cells are the pri-
mary effectors controlling a primary SARS-CoV-2 infection
[4,16,17]. The dominant cytokine produced by virus specific
CD4+ T cells is IFNγ with a Th1 profile, associated with anti-
viral activity. CD4+ T cells protect mice from lethal SARS-
CoV infection [18], and Th1 CD4+ T cells are important to
provide help for the cytotoxic CD8+ T responses crucial for
clearance of viral infections. CD4+ T follicular helper cells
contribute for B cell responses, and IL-22-producing T cells
observed in COVID-19 are keys for maintenance of mucosal
repair, particularly gut and lung epithelial cells [4].

It is unlikely that the reduced T-cell responses observed in
ID 01 are due to the deficient HLA presentation to T cells,
since her MZ twin ID 02 carrying the same HLA alleles dis-
played a broad recognition profile. Also, it is not likely that
the contrasting T-cell responses observed between the two
siblings is a result of previous exposure to cross-reacting cor-
onaviruses [19] since their IgG profile against human
endemic coronaviruses’ RBD was nearly identical. Our find-
ings are also illustrative that adaptive immune responses
and clinical presentations of COVID-19 can be drastically
different within a MZ twin pair. The observed diversity is
consistent with the fact that T- and B-cell repertoire develop-
ments are somatic DNA rearrangement events likely to differ
even among MZ twins.

In short, our results suggest that the failure in inducing a
broad T-cell response might have enhanced susceptibility to
COVID-19 recurrence in patient ID 01. Our data may support
a prime role for T cells in protection against reinfection. Given
the increased concern that SARS-CoV-2 variants escaping
antibody neutralization could give rise to a massive raise in
reinfection [20,21], our case stresses the importance of T-cell
immune responses in protection against reinfection. This is
in line with the reported lack of deleterious effect of virus
variants in the cellular immune response [22]. Further
investigation in a larger cohort can shed light on whether
T-cell dysfunction is a common mechanism for recurrence
of COVID-19.
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