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Abstract: Background: Emerging and re-emerging infectious diseases (EIDs and Re-EIDs)
cause significant economic crises and public health problems worldwide. Epidemics ap-
pear to be more frequent, complex, and harder to prevent. Early warning systems can
significantly reduce outbreak response times, contributing to better patient outcomes.
Improving early warning systems and methods might be one of the most effective re-
sponses. This study employs a bibliometric analysis to dissect the global research hotspots
and evolutionary trends in the field of infectious disease early warning, with the aim
of providing guidance for optimizing public health emergency management strategies.
Methods: Publications related to the role of early warning systems in detecting and re-
sponding to infectious disease outbreaks from 1999 to 2024 were retrieved from the Web
of Science Core Collection (WoSCC) database. CiteSpace software was used to analyze
the datasets and generate knowledge visualization maps. Results: A total of 798 relevant
publications are included. The number of annual publications has sharply increased since
2000. The USA produced the highest number of publications and established the most
extensive cooperation relationships. The Chinese Center for Disease Control & Prevention
was the most productive institution. Drake, John M was the most prolific author, while
the World Health Organization and AHMED W were the most cited authors. The top two
cited references mainly focused on wastewater surveillance of SARS-CoV-2. The most
common keywords were “infectious disease”, “outbreak”, “transmission”, “virus”, and
“climate change”. The basic keyword “climate” ranked the first and long duration with the
strongest citation burst. “SARS-CoV-2”, “One Health”, “early warning system”, “artificial
intelligence (AI)”, and “wastewater-based epidemiology (WBE)” were emerging research
foci. Conclusions: Over the past two decades, research on early warning of infectious
diseases has focused on climate change, influenza, SARS, virus, machine learning, warning
signals and systems, artificial intelligence, and so on. Current research hotspots include
wastewater-based epidemiology, sewage, One Health, and artificial intelligence, as well as
the early warning and monitoring of COVID-19. Research foci in this area have evolved
from focusing on climate–disease interactions to pathogen monitoring systems, and ulti-
mately to the “One Health” integrated framework. Our research findings underscore the
imperative for public health policymakers to prioritize investments in real-time surveil-
lance infrastructure, particularly wastewater-based epidemiology and AI-driven predictive
models, and strengthen interdisciplinary collaboration frameworks under the One Health
paradigm. Developing an integrated human–animal–environment monitoring system will
serve as a critical development direction for early warning systems for epidemics.
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1. Introduction
With the acceleration of globalization, interactions between people and animals have

become more frequent, significantly increasing the transmission probability of emerging
and re-emerging infectious diseases (EIDs and Re-EIDs) [1]. The World Health Organization
(WHO)’s 2019 list of the top 10 threats to global health underscores this concern, with four
entries directly related to infectious diseases: pandemic influenza, HIV, dengue, and high-
threat pathogens such as Ebola [2]. The COVID-19 pandemic has further highlighted that
emerging infectious diseases, as a critical and high-priority issue in public health research,
continue to pose serious threats to both human physical and mental well-being [3,4].

It is widely acknowledged that effective monitoring and early warning systems are
essential to preventing and controlling infectious disease outbreaks at their source [5]. The
monitoring and early warning of infectious diseases refer to the long-term, continuous,
and systematic collection and analysis of data on the dynamic distribution of infectious
diseases within populations and their influencing factors prior to outbreaks or epidemics,
aiming to minimize the harm caused by infectious diseases [6]. Critically, such systems
are vital for minimizing the spread of EID, particularly in resource-limited settings where
delayed responses can lead to catastrophic outcomes. An effective early monitoring and
warning system exhibits high sensitivity, universality, and timeliness, enabling healthcare
providers to implement rapid containment measures as well as initiate timely patient
management strategies [7]. Since the WHO defined the scope and significance of public
health monitoring at the 21st World Health Assembly, an increasing number of countries
and regions have established monitoring and early warning systems [8].

Bibliometrics employs mathematical and statistical methods to quantitatively ana-
lyze large volumes of the literature in a specific research field, revealing key trends and
patterns [9]. CiteSpace is a widely used software tool for quantitative analysis and visual-
ization in bibliometrics and knowledge mapping [10]. Despite the increasing recognition
that an early warning system is the linchpin of epidemic management, no comprehensive
bibliometric study has examined the evolution of infectious disease early warning research.
Addressing this gap is essential for optimizing global surveillance strategies and guiding
the construction of future public health emergencies. Thus, we perform a bibliometric
analysis of infectious disease early warning research from 1999 to 2024 using CiteSpace.
Our study not only maps the current landscape of this critical field, but also identifies future
directions to strengthen pandemic preparedness. These findings provide policymakers
and public health practitioners with insights to improve surveillance strategies, thereby
alleviating the global burden of infectious diseases. Specifically, we address the following
research questions:

(1) Who are the major contributors (disciplines, authors, institutions, and countries) to
the field?

(2) What are the hotspots and frontiers in the field?

2. Materials and Methods
2.1. Data Sources

We derived the literature under study from the Science Citation Index Expanded
(SCI-Expanded) of the Web of Science database. WoSCC prioritizes peer-reviewed journals
in core disciplines such as epidemiology and public health, ensuring access to high-quality,
relevant literature for infectious disease early warning research [11]. Moreover, WoSCC
demonstrates exceptional compatibility with CiteSpace’s co-citation algorithms, as its data
can be directly recognized and processed using CiteSpace [12], safeguarding the reliability
and consistency of the analytical results.
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The search was conducted based on the topic (TS), and the search term was set to
TS = “infectious disease” and TS = “warning*”. The type of literature was limited to “article”
or “review article” and the language was limited to English. The temporal scope of our liter-
ature search spanned from the database’s inception to the retrieval date (5 September 2024).
This temporal scope has been carefully designed to achieve dual objectives: it ensures
systematic literature retrieval through comprehensive coverage of the complete historical
dataset while simultaneously maximizing the inclusion of cutting-edge research outputs,
thereby fully capturing the most current advancements in the field.

Following the search protocol, we initially identified 915 potentially relevant articles.
After removing duplicate records, 906 unique publications remained for preliminary eval-
uation. To ensure data quality and relevance, we systematically reviewed all abstracts,
excluding studies that did not involve human subjects or focus on infectious diseases.
Finally, we exported 798 documents in plain text format, including full records and cited
references, for subsequent bibliometric analysis.

2.2. Research Method

For literature-based research, understanding a field’s landscape, hotspots, and trends
is crucial. With the growth of data-driven approaches, mining research hotspots and trends
from the existing literature using scientific methods have become increasingly common.
CiteSpace, a bibliometric visualization tool, is widely used for systematic literature anal-
ysis and review writing. Previous investigations have employed CiteSpace to visualize
the evolutionary trajectories of diverse healthcare disciplines. It can be used to construct
visual knowledge frameworks by analyzing keyword co-occurrence networks, document
co-citation clusters, and emergent theme detection. These visualizations are structured
around nodes and edges: nodes signify research entities such as keywords, authors, and
journals, with their size proportional to centrality and occurrence frequency; edges repre-
sent semantic or citation relationships, where thickness and density indicate the strength of
interconnectedness. Notably, CiteSpace’s burst detection algorithm identifies terms experi-
encing sudden surges in usage, enabling the tracking of emerging trends or declining topics.
By mapping these dynamic shifts, the software facilitates the identification of research
frontiers and knowledge gaps within academic landscapes. Such analytical capabilities
have proven to be instrumental in synthesizing interdisciplinary research and guiding
future inquiries.

In this study, we used CiteSpace 6.3.R3 (64 bit) Advanced software to perform the
analysis, and the parameters were set as follows:

(1) Timespan: 1999–2024 (timespan from first publication to search termination date);
(2) Time slice: 1 year;
(3) Node type = country/institution/author/journal/keyword/cited reference;
(4) Threshold selection criteria = the top 25 results for each time slice (balancing compu-

tational feasibility with network representativeness, capturing the vast majority of
important nodes while minimizing noise);

(5) Other parameters were kept at default settings.

3. Results
3.1. Basic Statistical Analysis

Figure 1 depicts the annual publication trend of 798 studies from 1999 to 2024, showing
an overall fluctuating upward trend. Between 1999 and 2011, publications on infectious
disease early warning systems remained relatively scarce, with an average of 7.4 per year.
From 2012 to 2019, scholarly attention toward early warning systems for EIDs gradually
increased, with publication numbers showing a steady upward trend. A significant surge
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occurred after 2020, peaking in 2021 with 136 publications before gradually declining.
Figure 1 directly demonstrates that infectious disease early warning technologies and
systems have emerged as a prominent research focus in recent years.
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Figure 1. The annual number of publications from 1999 to 2024.

3.2. Co-Occurrence Analysis of Countries and Institutions

The geographical distribution analysis reveals national contributions to this research
field. Figure 2 demonstrates the robust collaborative relationships among countries con-
tributing publications in this research field. In total, 113 countries released 798 records
in the past 20 years. The United States and China are the most productive nations, con-
tributing 235 (29.4%) and 230 (28.8%) publications, respectively, establishing their global
leadership in this field. Notably, the United States demonstrated the highest central-
ity score (0.48), indicating its pivotal role in international research collaborations. The
network visualization reveals distinct geographical disparities in research productivity.
Developed nations—particularly the United States, United Kingdom, Spain, Australia,
and Germany—demonstrate clear dominance in infectious disease early warning research.
This stands in contrast to the overall limited output from developing economies. However,
certain Asian developing countries show notable research activity, with Vietnam, Thailand,
China, and India all contributing meaningful publications. Notably, China and India rep-
resent the only developing nations ranking among the top ten most prolific countries in
terms of publication volume. While China’s publication volume rivals that of the United
States (235 vs. 230 articles), its lower centrality score (0.05 vs. 0.48) indicates comparatively
limited international collaboration.

Table 1 illustrates the Top 10 institutions in terms of highest centrality. The
top 10 publishing institutions comprise leading American universities, such as Harvard
University and the University of California System, British, Australian, and French aca-
demic institutions, the World Health Organization, and specialized Chinese medical re-
search centers. The institutional rankings mirror broader national research trends, cor-
responding directly to the prominent roles played by the United States, United King-
dom, France, Australia, and China in global infectious disease surveillance research. This
alignment demonstrates how national research priorities and investments translate into
institutional leadership positions within the field.
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Figure 2. Country collaboration map. Visualization created using CiteSpace software. Nodes
represent individual countries participating in research collaboration, where node size corresponds to
the frequency of each country’s research output. Connecting lines signify collaborative relationships
between countries, with edge thickness reflecting the intensity of cooperative engagement. The
legend in the lower left corner shows the mapping of colors to time. The bottom corresponds to the
year 1999, the top corresponds to the year 2024, and the time gradually moves backwards from cooler
to warmer colors.

Table 1. Top 10 institutions in terms of highest centrality.

Rank Centrality Publications Institution Country

1 0.22 17 World Health Organization International organization
2 0.20 18 Harvard University United States
3 0.14 36 Chinese Center for Disease Control & Prevention China
4 0.12 21 University of California System United States
5 0.09 22 Chinese Academy of Sciences China
6 0.06 9 University System of Maryland United States
7 0.06 9 Centre National de la Recherche Scientifique France
8 0.05 21 University of London United Kingdom
9 0.05 6 Universite Paris Cite France

10 0.04 16 London School of Hygiene & Tropical Medicine United Kingdom

Notably, the WHO demonstrated the highest centrality (0.22), indicating its predomi-
nant influence within the collaborative network. Among the top 10 publishing institutions,
a clear dichotomy emerges: while American universities, British universities, and other
Western academic institutions dominate the list, China’s contributions are primarily driven
by specialized research organizations like the Chinese Center for Disease Control & Preven-
tion and the Chinese Academy of Sciences. This distribution reveals two critical observa-
tions: Western universities serve as primary research engines, likely due to greater resource
allocation for scholarly work within their academic structures, and China’s specialized
research institutions achieve comparable output through targeted resource concentration
in dedicated public health research programs. The collaboration network analysis reveals
strong collaboration networks among American and European institutions, but limited
cooperation between developed and developing nations, particularly across continental
divides (America–Europe vs. Asia–Africa). This disparity suggests an urgent need for more
equitable global partnerships to bridge the research capacity gap.
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3.3. Analysis of Authors and Co-Cited Authors

Figure 3 presents the author collaboration network, where node dimensions reflect
individual publication productivity, and the thickness of connecting edges denotes the
strength of the collaborative relationships The top 10 most prolific authors collectively
published 65 articles, making substantial contributions to the field. Drake, John M emerged
as the most prolific author (16 articles), followed by Hu Wenbiao (10), Yang Weizhong (7),
Brownstein, John S (6), and Colwell, Rita R (5). Notably, these high-output authors exhibit
paradoxically low network centrality (all ≤ 0.05) and minimal direct collaboration, forming
no interconnected clusters, despite their individual productivity.

Figure 3. Co-occurrence map of authors. The visual representation of co-authorship networks was
generated using CiteSpace. Each node corresponds to an individual author, and edges signify
co-authorship relationships. The number of shared publications weights edge thickness, while
node size is scaled according to each author’s prominence in the network. The legend in the
lower left corner shows the mapping of colors to time. The bottom corresponds to the year 1999,
the top corresponds to the year 2024, and the time gradually moves backwards from cooler to
warmer colors.

An author co-citation analysis identified frequently co-cited authors within published
research, enabling the recognition of influential scholars in a specific field. Figure 4 displays
this network, where node size corresponds to citation frequency. Analysis revealed the
WHO to be the most cited author (198 citations), followed by AHMED W (36), JONES KE
(32), and SEMENZA JC (29). The WHO’s prominent citation reflects its global leadership
in public health initiatives. The network topology exhibits a distinct radial structure with
the WHO at the center and limited interconnection among peripheral authors, suggesting
that, while these scholars contribute significantly to specialized subdomains, their work
develops along relatively independent trajectories. The uniformly low centrality among
top-cited authors (all scores = 0) indicates minimal co-citation relationships between these
influential sources, with collaboration occurring primarily at institutional rather than
individual researcher levels.
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Figure 4. Co-occurrence map of co-cited authors. The visual representation of co-cited author
networks was generated using CiteSpace. Each node corresponds to an individual author, and
edges signify co-cited relationships. The number of times two authors are co-cited together weights
edge thickness, while node size is scaled according to each author’s citation prominence in the
network, such as total citation count. This visualization allows for the identification of clusters of
highly co-cited authors and the strength of connections between them, highlighting key figures and
collaborative relationships within the research field. The legend in the lower left corner shows the
mapping of colors to time. The bottom corresponds to the year 1999, the top corresponds to the year
2024, and the time gradually moves backwards from cooler to warmer colors. In the figure, WHO
stands for World Health Organization.

3.4. Dual-Map Overlay Analysis of Journals

By analyzing this journal-level overlay, we identified patterns of cross-disciplinary
knowledge diffusion within the field of infectious disease early warning systems. The
visualization highlights how research in this domain draws upon and contributes to diverse
disciplinary areas, offering insights into the interdisciplinary nature of infectious disease
surveillance and prediction.

In Figure 5, the left map represents citing journal domains (“#1 Mathematics/Systems/
Mathematical”, “#2Medicine/Mmedical/Clinical”, “#3Ecology/Earth/Marine”, “#4Molecu-
lar/Biology/Immunology”, “#5Physics/Materials/Chemistry”, “#6Psychology/Education/
Health”, “#7Veterinary/Animal/Science”, “#8Neurology/Sports/Ophthalmology”, “#9Den-
tistry/Dermatology/Surgery”, “#10Economics/Economic/Political”), (“#1Systems/
Computing/Computer”, “#2Environmental/Toxicology/Nutrition”, “#4Chemistry/
Materials/Physics”, “#5Health/Nursing/Medicine”, “#6Mathematical/Mathematics/
Mechanics”, “#7Psychology/Education/Social”, “#8Molecular/Biology/Genetics”,
“#9Sports/Rehabilitation/Sport”, “#10Plant/Ecology/Zoologyth/Geology/Geophysics”).
The former can be seen as the field application of the early warning of infectious diseases,
and the latter can be seen as the research basis of the early warning of infectious diseases.
The citation trajectories between domains indicate knowledge flow patterns, revealing that
the discipline transformation still mainly remained in molecular biology, medicine, and
research, primarily transitions from molecular biology foundations to clinical applications
in infectious disease early warning systems.
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Figure 5. Overlay of dual images of journals of early warning of infectious diseases. A dual-map
overlay visualization was generated by CiteSpace to illustrate the interdisciplinary knowledge transfer
between citing journals and cited journals. The left map represents citing journal domains, while the
right map shows cited journal domains. By juxtaposing these two maps in an overlay, researchers
can comprehensively analyze how knowledge is transferred across different journal domains. This
includes identifying key bridging journals, understanding the evolution of research topics, and
detecting emerging.

3.5. Analysis of Keywords
3.5.1. Analysis of Keyword Co-Occurrence

We used a keyword co-occurrence analysis to examine the frequency of keyword pairs
appearing together, revealing research hotspots and trends. Table 2 presents high-frequency
keywords ranked by the frequency of occurrence and centrality. Keywords related to the
early warning of infectious diseases mainly include infectious diseases, transmission, virus,
outbreak, climate change, disease, public health, surveillance, infection, and epidemiol-
ogy. Notably, the keywords “climate change”, “diseases”, “outbreak”, “public health”,
and “infectious diseases” appear in both the top ten centrality and frequency rankings,
highlighting their critical importance in this research field. The prominence of “climate
change” as a key theme underscores the academic recognition of environmental drivers
in disease transmission dynamics, while terms like “surveillance” and “epidemiology”
reflect the field’s methodological priorities. The co-occurrence patterns of these keywords
demonstrate a significant interdisciplinary convergence, particularly between climate sci-
ence and public health, providing multidimensional perspectives for infectious disease
early warning research.

Table 2. Top ten keywords of highest frequency and centrality.

Rank Frequency Centrality Keyword Centrality Frequency Keyword

1 181 0.31 infectious diseases 0.31 181 infectious diseases
2 64 0.06 transmission 0.16 50 disease
3 57 0.06 virus 0.15 53 climate change
4 53 0.10 outbreak 0.11 34 early warning system
5 53 0.15 climate change 0.1 53 outbreak
6 50 0.16 disease 0.1 21 children
7 48 0.07 public health 0.07 48 public health
8 48 0.04 surveillance 0.07 36 early warning
9 39 0.04 infection 0.07 31 risk
10 38 0.05 epidemiology 0.07 25 emerging infectious diseases

The cluster analysis of keyword co-occurrences (Figure 6) identified several research
themes. The clusters tagged as “#0 SARS-CoV-2” ranked first place, followed by “#1 Climate
change”, “#2 Infectious diseases”, “#3 Critical slowing down”, “#4 Machine learning”,
“#5 Earlywarming system”, “#6 Clinical manifestations”, and “#7 Avian influenza”.
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Figure 6. Cluster map of keywords. This visual map was generated using CiteSpace to display
the distribution of keyword clusters. In the map, regions of different colors correspond to different
keyword clusters, respectively. These clusters are identified through modular algorithms, aggregating
related keywords at the semantic level. Within each cluster, keywords that are centrally located and
have relatively large node sizes constitute the core theme of that cluster. Other specific keywords sur-
rounding the core keywords are closely associated with the theme keywords, refining and expanding
the research scope of this theme.

The most important research cluster, “#0 SARS-CoV-2”, dominates the research land-
scape, reflecting the scientific community’s great interest in the COVID-19 pandemic. This
research cluster includes wastewater surveillance, genome sequencing, and transmission
modeling studies for SARS-CoV-2, showing how a novel pathogen rapidly reshaped re-
search priorities. The closely following “#1 Climate Change” cluster highlights the growing
recognition of environmental factors in the emergence and spread of disease, includ-
ing research on vector-borne diseases, zoonotic spillover events, and the development
of climate-informed early warning systems. “#4 Machine Learning” demonstrates the
field’s increasing reliance on artificial intelligence for pattern recognition and predictive
modeling. Clinical perspectives emerged in the “#6 Clinical manifestations” group, empha-
sizing the continuing importance of symptom-based surveillance and the need to correlate
population-based warnings with clinical outcomes.

The coexistence of these research clusters demonstrates the multifaceted nature of
contemporary infectious disease early warning systems, in which four synergistic areas col-
lectively improve surveillance capabilities: (1) pathogen-specific investigations (e.g., SARS-
CoV-2 genome surveillance), (2) environmental determinants (especially the impact of
climate change on vector ecology), (3) technological innovations (e.g., machine learning),
and (4) clinical translation (real-time syndromic surveillance integration).

Based on the clustering results, we generated a timeline visualization to track the
temporal evolution of these keywords (Figure 7). The horizontal axis represents the pub-
lication years, while the vertical axis displays different clusters. Each node corresponds
to a keyword, with size indicating the frequency of occurrence. The timeline reveals a
continuous increase in keywords related to infectious diseases (1999–2024), with a sharp
surge in COVID-19 (2020–2022), reflecting pandemic-driven research priorities. Prior to
2020, predominant keywords include “surveillance”, “infectious diseases”, “norovirus”,
“malarias”, “environment”, “influenza”, and “climate”, indicating that the development of
disease surveillance technologies, the mechanisms of transmission of specific pathogens,
and the impact of environmental and climatic factors on infectious diseases are the focus of
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early attention. During the peak of the pandemic in 2020–2022, “SARS-CoV-2”, “COVID-
19”, and “pandemic” emerged as dominant keywords, highlighting the urgent global focus
on understanding the novel coronavirus, its disease manifestations, and pandemic-scale
strategies. Recent keywords like “One Health” and “wastewater surveillance” signaled a
shift towards an interdisciplinary ecosystem-based approach.

Figure 7. Timeline view of keywords. Visualization generated using CiteSpace depicting the evolution
of keyword co-occurrence networks over time. Nodes represent keywords, sized by total occurrence
frequency. The position of a node on the timeline corresponds to the time when the keyword emerged,
which can reflect the keyword’s activity level in different time periods (from left to right represents
time from early to late). Lines indicate co-occurrence relationships, with thickness proportional to
co-occurrence strength. The legend in the lower left corner shows the mapping of colors to time. The
bottom corresponds to the year 1999, the top corresponds to the year 2024, and the time gradually
moves backwards from cooler to warmer colors. The phrases in the figure are clusters of semantically
related keywords identified through modularity optimization.

Synthesizing the timeline, keyword evolution reflects a transition from reactive disease
control to proactive multi-sectoral surveillance. This visualization provides a historical
context for understanding research priorities and identifies emerging frontiers in infectious
disease early warning systems.

3.5.2. Analysis of Keyword Bursts

Analyzing keyword burst visualizations can help identify emerging research fron-
tiers and trace the developmental trajectory of the research area. Figure 8 presents the
top 25 keywords exhibiting the strongest citation bursts during the period from 1999 to
2024. The analysis of keyword bursts reveals three distinct phases in the evolution of infec-
tious disease early warning research, each characterized by specific thematic focuses and
reflecting broader shifts in public health paradigms: (1) 2004–2016: “climate change”, “in-
fectious diseases”, “environment”; (2) 2016–2022: “COVID-19”, “influenza”, “surveillance”;
(3) 2022–2024: “One Health”, “Wastewater-based epidemiology”, “system”.

The keywords in the earliest phase (2004–2016) were “climate change”, “infectious
diseases”, and “environment”. Research during this period primarily focused on em-
ploying epidemiological approaches to investigate environmental determinants of disease
transmission, particularly the associations between pathogen spread and ecological fac-
tors. Studies during this period provided an important foundation for understanding the
environmental drivers of disease emergence, while also revealing the limitations of climate-
only approaches to disease prediction. The subsequent period (2016–2022) witnessed a
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remarkable shift in infectious disease early warning, with site-specific “COVID-19” and
pathogen-specific “influenza”. These phased keyword occurrences document the field’s
conceptual evolution from investigating disease–environment linkages to implementing
pathogen-specific surveillance systems, reflecting a paradigm shift toward outbreak-driven
real-time research methodologies. The most recent phase (2022–2024) shows the matura-
tion of the field towards systems integration, as evidenced by the burst of the keywords
“Wastewater-based epidemiology”, “One Health”, and “system”. The transition from
pathogen-specific to systems-level approaches suggests that the field has learnt the lessons
of previous phases, particularly the need for interdisciplinary collaboration and the value
of computational approaches in managing complex disease systems. The emergence of
“One Health” as an emergent keyword is particularly important, formally recognizing the
interconnectedness of human, animal, and environmental health in disease surveillance—a
concept that evolved directly from earlier climate-focused research.

Figure 8. A list of the top 25 keywords exhibits the strongest citation bursts between 1999 and 2024,
as determined by CiteSpace. Each row shows the keyword, its burst strength, and the beginning/end
years of the citation surge. The blue line indicates the study period, while red segments denote burst
durations, characterized by both intensity and temporal span.

Using a systematic analysis of keyword burst maps and timeline visualization, we can
delineate the evolutionary trajectory of infectious disease early warning research. Research
foci in this area have evolved from focusing on climate–disease interactions to pathogen
monitoring systems and ultimately to the “One Health” integrated framework.

3.6. Analysis of Cited References

Table 3 lists the top 10 most frequently co-cited references, including four papers cited
more than 15 times and all papers cited at least 10 times. When two publications are cited
jointly by a third citing publication, this is defined as a co-citation relationship [13]. In
general, the number of times a publication is cited represents its importance in a certain
field. Thus, by analyzing the most frequently cited publications, we can grasp the hotspots
in this field.

The most cited document is the one published by Ahmed in 2020, with 25 citations.
Sims N’s publication in 2020 ranks second in 2020, garnering 19 citations, while Huang CL’s
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publication in 2020 secures the third position with 17 citations. Notably, these highly cited
references predominantly originate from prestigious journals, such as Lancet and Nature,
and comprise seven epidemiological studies, one clinical trial, and two review articles. Six
epidemiological studies focus on SARS-CoV-2. The top two references primarily address
wastewater surveillance of SARS-CoV-2. Ahmed W et al. [14] pioneered the application
of RT-qPCR to detect SARS-CoV-2 in Australian wastewater systems, thereby validating
wastewater-based epidemiology as a viable approach for community-level COVID-19
surveillance. The wastewater monitoring approach is referred to as wastewater-based
epidemiology. This methodology, grounded in the extraction, detection, and subsequent
analysis of chemical and biological markers, has since been instrumental in tracking the
prevalence of various infectious pathogens [15,16]. Sims N et al. [17] provided a com-
prehensive review of current infectious disease surveillance frameworks, emphasizing
the emerging role of WBE as a complementary tool for public health monitoring and its
technological advancements. Specifically, the authors highlight the need for standardized
protocols and longitudinal data collection to maximize WBE’s utility in infectious disease
management. Huang CL et al. [18], Zhou F et al. [19], and Guan W et al. [20] reported the
clinical characteristics of SARS-CoV-2 in China, respectively. These papers contributed
significant clinical data on SARS-CoV-2, as evidenced by the fact that they were cited in
several publications. Brett TS et al. [21] provide a theoretical basis for the development
of methods to anticipate disease emergence. In summary, these ten highly cited refer-
ences show the clinical characteristics of SARS-CoV-2, the application and development
of wastewater-based epidemiology, and the exploration of establishing infectious disease
prediction models.

Table 3. Top 10 cited references ranked according to frequency.

Rank Frequency Year Article Title Journal Title

1 25 2020
First confirmed detection of SARS-CoV-2 in untreated wastewater in
Australia: A proof of concept for the wastewater surveillance
of COVID-19 in the community [14]

Science of the Total
Environment

2 19 2020
Future perspectives of wastewater-based epidemiology:
Monitoring infectious disease spread and resistance to the
community level [17]

Environment
International

3 17 2020 Clinical features of patients infected with 2019 novel coronavirus
in Wuhan, China [18] The Lancet

4 17 2020
Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with
Reported COVID-19 Prevalence in the Early Stage of the
Epidemic in The Netherlands [22]

Environmental Science
& Technology Letters

5 14 2020 Clinical course and risk factors for mortality of adult inpatients
with COVID-19 in Wuhan, China: a retrospective cohort study [23] The Lancet

6 14 2020 Clinical Characteristics of Coronavirus Disease 2019 in China [20] The New England
Journal of Medicine

7 14 2020 A pneumonia outbreak associated with a new coronavirus of
probable bat origin [19] Nature

8 10 2020 The effect of human mobility and control measures on the
COVID-19 epidemic in China [24] Science

9 10 2017 Anticipating the emergence of infectious diseases [21] Journal of The Royal
Society Interface

10 10 2018 Wastewater-based epidemiology biomarkers: Past, present and
Future [25]

Trends in Analytical
Chemistry
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4. Discussion
4.1. General Information

In this study, we perform a systematic bibliometric analysis of infectious disease early
warning research using Web of Science Core Collection publications from 1999 to 2024.
The analysis includes 789 English-language articles published in 387 journals, containing
1029 co-cited references from 3300 institutions across 344 countries/regions.

Our results demonstrate a consistent upward trend in publications related to infec-
tious disease early warning systems, reflecting growing scholarly attention to this field.
Publication output peaked in 2021, likely in response to the COVID-19 pandemic. The
COVID-19 pandemic has served as a wake-up call, dramatically elevating global awareness
of the indispensable role that robust early warning systems play in pandemic preparedness
and response. The insights gained from COVID-19 triggered a paradigm shift in global
health security thinking, making early warning a central pillar of pandemic prevention
strategies. Given the global impact of COVID-19 and other EIDs/Re-EIDs, research in
disease surveillance and early warning has advanced significantly worldwide. Notably,
publication volumes have remained at elevated levels through 2024, suggesting that the
pandemic has effected an enduring transformation rather than a temporary reaction in
global surveillance paradigms.

4.2. Research Hotspots and Frontiers
4.2.1. Climate, Machine Learning, and Avian Influenza

As keywords encapsulate the core essence of the literature, analyzing keyword co-
occurrence frequency and centrality can facilitate the identification of research hotspots [26].
We found that “climate change”, “outbreak”, and “public health” were the only three
keywords which appeared in both the top 10 keywords of highest frequency and centrality,
except for conceptual terms such as “infectious disease” and “disease”, suggesting that
these keywords are the focus of current research.

It is widely recognized that climate and other environmental changes directly affect
infectious disease patterns [27], and disease agents such as viruses, bacteria, and related
vectors to diseases are sensitive to temperature and humidity [28]. The COVID-19 pan-
demic provided striking examples of this complex interplay, where a number of countries
suffered from natural hazard events during the COVID-19 pandemic [29,30]. Quigley MC
et al. [31] suggest that there is an increased risk of compounding impacts originating from
meteorological and geophysical hazards during the pandemic, including both the effects
of the natural disaster being worse and the additional spread of infectious disease. These
observations have formed a key consensus in the scientific community: the interaction
between climate and health requires comprehensive monitoring, and traditional single-
hazard early warning systems are insufficient to address compound risks. As a result, there
is broad consensus that integrated early warning systems, with special emphasis on climate
change and public health, play an essential role in reducing compound and cascading
impacts [32].

Furthermore, according to keyword cluster analysis, “machine learning”, “Avian in-
fluenza”, and “Clinical manifestations” were also regarded as the current research hotspots.
The availability of large-scale and diverse datasets, coupled with advances in computational
infrastructure, has prompted scholars to explore machine learning techniques to improve
infectious disease surveillance and early warning capabilities [33,34]. Many investigations
have leveraged diverse machine learning methodologies, such as random forests, decision
tree models, and deep neural network architectures to analyze various datasets. These
include electronic health records, genomic sequencing data, and social media metadata,
with the aim of forecasting the spatiotemporal dynamics and emergence of infectious
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diseases [35,36]. For instance, Raina MacIntyre C et al. [37] propose the use of artificial
intelligence as well as machine learning to analyze massive open-source datasets from
news platforms, social media, and other digital sources, thereby generating actionable early
warning signals for emerging epidemics. Chiu HR et al. [38] employed machine learning to
analyze hospital admissions for influenza-like illness, successfully modeling severe illness
or mortality risk. This demonstrates the utility of machine learning in addressing the
complex challenges posed by emerging infectious diseases. Most of the current research on
avian influenza focuses on H5N1, H7N9, or H10N8, which have caused human infections
in multiple Asian and European nations [39]. The ongoing prevalence of avian viruses,
particularly H5N1, within avian populations, coupled with their heightened potential for
cross-species transmission to humans and other mammals, may present an unprecedented
opportunity to prepare for the next pandemic threat. This opportunity lies in addressing
key scientific questions such as viral cross-species transmission mechanisms and host
adaptive mutations [40,41]. Thus, the core objective of multidimensional research on avian
influenza by researchers is to enhance the predictive capabilities and intervention efficiency
of global public health emergency responses through prospective studies.

Keyword burst analysis encompasses two fundamental parameters: the intensity of
the burst and its temporal persistence. A longer-lasting burst typically correlates with
higher intensity, indicating the sustained influence of a research topic during a specific
period. Keywords that maintain continuous relevance from their initial emergence in a
given year are often identified as persistent hotspots and as indicative of ongoing research
frontiers [42]. As presented in the keywords burst map, “influenza” and “climate change”
saw the most extended burst periods, indicating that scholars continue to pay attention to
the outbreak of influenza and the association between climate change and early warning
of infectious diseases. In addition, “sars” ranked second in the duration of citation burst,
suggesting a large amount of research was attracted to investigate monitoring and early
warning systems to prevent and control SARS. The keyword “virus” had the second highest
burst intensity. In 2003, the WHO issued a worldwide alert for an unknown emerging
illness, later named SARS. Since then, we have witnessed the emergence of several influenza
viruses, including avian influenza H5N1, H7N9, and H10N8, and variant influenza A H3N2
virus, which seriously endangers human health [43]. In response, various surveillance
systems have been developed to monitor the emergence of infectious diseases; researchers
have also attached great importance to the study of viruses and published relevant articles.

4.2.2. Wastewater-Based Epidemiology, One Health, and Artificial Intelligence

Recently, “Wastewater-Based Epidemiology”, “sewage”, “One Health”, and “artificial
intelligence” have become the present research trends. Wastewater-based epidemiology
was first proposed by researchers from the US Environmental Protection Agency in 2001,
who hypothesized that the analysis of drug residues in sewage could be linked to popu-
lation usage [44]. Thereafter, sewage epidemiology is widely used in tracking illicit drug
consumption in various countries [45,46]. At present, WBE has successfully assessed con-
sumption and trends in the use of alcohol, tobacco, and caffeine through the analysis of
sewage [47,48]. Water-borne viruses are a kind of microbial community widely existing
in sewage, and they are also the main infection and diffusion mode of various human
diseases [49]. WBE operates on the premise that analyzing aggregated wastewater from
populations enables the comprehensive real-time monitoring of infectious disease spread,
antimicrobial resistance dynamics, and the emergence of novel outbreaks at the community
level. Therefore, researchers have proposed the use of WBE for the detection of water-borne
diseases, such as poliovirus, hepatitis virus, and norovirus, and it has been applied in Japan
and Israel [50]. In addition, some animal infectious viruses, such as avian influenza and
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SARS virus, are often detected in sewage, which is the basis for scholars to propose the
application of WBE to warn SARS-CoV-2 virus [51].

The outbreak of the COVID-19 pandemic in 2020 has revitalized scientific attention
toward WBE, demonstrating its dual utility as both a predictive indicator and sustainable
monitoring mechanism for tracking community-level pathogen transmission dynamics.
WBS remains a cost-effective and non-invasive methodology for the large-scale long-term
monitoring of SARS-CoV-2 prevalence within populations. [52]. Recent studies employing
WBE for routine monitoring of human adenoviruses and enteroviruses have revealed
distinct seasonal patterns, with viral concentrations peaking consistently during the spring
and summer months [53]. From a public health perspective, these findings carry significant
implications for the predictive surveillance of potential outbreak waves and the timely
implementation of preventive measures. Importantly, studies demonstrate WBE’s partic-
ular utility as a complementary surveillance tool when clinical monitoring systems are
inadequate or unavailable [54,55]. During endemic phases, WBE’s objectives and potential
evolve from early case identification to delivering situational assessments of viral infection
trends within populations, offering actionable insights for public health strategy adjustment.
These results align with growing evidence that environmental surveillance can effectively
bridge gaps in traditional health monitoring systems, especially for pathogens with high
rates of asymptomatic transmission. The methodologies devised during the SARS-CoV-2
pandemic and their analytical frameworks hold significant utility for future wastewater
surveillance initiatives. Such approaches can facilitate the discovery of emerging zoonotic
pathogens and enable the early detection of potential pandemic threats, thereby enhancing
global preparedness for infectious disease outbreaks [56]. The findings underscore the
critical need for public health systems to strengthen real-time surveillance infrastructure by
integrating wastewater-based epidemiology (WBE) as a core component of disease monitor-
ing frameworks and to allocate funding to expand WBE monitoring networks, particularly
in resource-limited settings where clinical surveillance is sparse. By institutionalizing WBE,
policymakers can transform reactive outbreak responses into proactive, data-driven public
health strategies.

More than 30 new human pathogens have been detected over the past three decades,
75 percent of which have originated in animals [57], which confirms the view that the
majority of emerging infectious diseases originate in animals, both wild and domestic [58].
This highlights the critical need to strengthen surveillance systems at the human–animal–
environment interface and improve early warning systems for zoonotic diseases, which
provides compelling justification for implementing the One Health approach. The term
“One Health” was first used in 2003–2004; the emergence of SARS put a spotlight on the
need for a more integrated global framework for improved global disease prevention,
surveillance, control, and, in particular, for the inclusion of wildlife health. It is officially
defined by the WHO as the “integrated, unifying approach that aims to sustainably balance
and optimize the health of people, animals, and ecosystems” [59]. With the development
of early warning for infectious disease detection, the One Health paradigm has emerged
as a transformative framework for anticipating outbreaks through early warning systems,
emphasizing the interdependencies among human, animal, and environmental health [60].
Effective One Health infectious disease surveillance systems require collaboration among
human, animal, and environmental health agencies to establish communication networks
and multi-level coordination systems, ensuring the integration of data across all health
domains [61].

COVID-19 has dramatically elevated One Health approaches to becoming priorities in
global health and development agendas [62]. The COVID-19 pandemic has demonstrated
that traditional single-disciplinary prevention and control models have struggled to achieve
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effective outcomes when confronting complex transmission networks of pathogens like
SARS-CoV-2 across human–animal–ecosystem interfaces. Recognizing the importance
of the One Health approach in detecting and controlling future pandemics, more coun-
tries are prioritizing and practicing the prevention of zoonotic disease outbreaks and the
promotion of interdisciplinary collaboration [63,64]. Genomic sequencing technologies
have enabled cross-species pathogen tracking, such as monitoring H5N1 avian influenza
variant strains [65,66]. The integration of environmental DNA detection with AI-driven
predictive models has facilitated the real-time dynamic assessment of wildlife pathogen
reservoirs [67,68]. These technological breakthroughs provide essential tool-based support
for establishing risk monitoring within the One Health framework. For example, Thai-
land’s federal government initiated a pilot avian influenza surveillance initiative, engaging
multi-sectoral stakeholders from human health, veterinary, and environmental domains
to monitor influenza A viruses across human populations, waterfowl, and poultry [69].
This innovative pilot framework establishes a strategic model for designing, integrating,
and strengthening One Health surveillance methodologies. By fostering cross-disciplinary
collaboration, such systems aim to address emerging global pathogen risks proactively
and enhance collective health security measures, providing a replicable template for multi-
jurisdictional disease monitoring. The post-COVID era demands a paradigm shift from
reactive outbreak response to proactive One Health-driven prevention. By integrating human,
animal, and environmental surveillance, policymakers can detect threats earlier, healthcare
systems can prepare more effectively, and global health security can be strengthened.

In recent years, with the advancement of artificial intelligence, this technology has been
widely applied in the realm of infectious disease prevention and control [70]. Artificial intel-
ligence has rapidly emerged as a cutting-edge frontier in infectious disease prevention and
control, primarily due to its superior computational capacity for analyzing complex datasets
and enabling real-time decision-making [71]. Conventional statistical approaches have
proven inadequate for processing multifaceted data streams, including genomic sequences,
environmental surveillance metrics, and human mobility patterns [72]. Advanced deep
learning architectures in AI systems demonstrate unique capabilities to decode such com-
plex high-dimensional data, significantly enhancing epidemic prediction accuracy [73,74].
Furthermore, the integration of AI into intelligent healthcare systems has facilitated its
comprehensive application across the entire clinical workflow, from diagnosis to treatment
optimization [75]. The COVID-19 pandemic demonstrated that rapid, accurate pathogen
detection constitutes a critical determinant of effective epidemic control [76]. Contemporary
integration of artificial intelligence with cutting-edge biotechnologies—including synthetic
biology platforms, transcriptomic profiling, high-throughput mass spectrometry, and ad-
vanced imaging modalities—has significantly enhanced both diagnostic precision and
antimicrobial resistance prediction capabilities [77]. In addition to assisting in diagnosis,
AI systems are also being deployed across multiple dimensions of epidemic management,
including outbreak early warning systems, contact tracing, infection diagnostics, drug dis-
covery, and pharmaceutical design [78]. Contact tracing is the process of tracing potential
routes of transmission of an infection in a population, with the aim of isolating people who
may have been exposed and reducing further transmission, and has been used for several
diseases such as tuberculosis and Ebola [79]. Harnessing artificial intelligence models
enables the identification of novel behavioral patterns to enhance social distancing com-
pliance monitoring, improve infection risk assessment accuracy, and optimize COVID-19
transmission mitigation strategies [80,81]. Leading pharmaceutical companies are lever-
aging AI to accelerate vaccine development pipelines. Moderna, a pioneer in mRNA
COVID-19 vaccines, has implemented AI-driven robotic platforms capable of generating
over 1000 mRNA sequences monthly [82].
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The COVID-19 pandemic has unequivocally demonstrated the critical role of artificial
intelligence in epidemiological early warning systems. AI technologies provide three
fundamental advantages: earlier outbreak detection through predictive modeling prior to
laboratory confirmation, more precise intervention via data-driven containment strategies,
and improved healthcare efficiency by automating surveillance tasks to reduce clinician
workload. The integration of AI into global health infrastructure facilitates the creation of
proactive intelligence-based infectious disease warning systems. As an essential element of
future pandemic preparedness, AI’s comprehensive contributions to both prevention and
response highlight its vital role in protecting global public health. It is worth noting that
the digital surveillance of infectious diseases may undermine the fundamental rights of
individuals, especially with regard to privacy protection and data confidentiality [83]. To
balance public health benefits with individual rights, the deployment of AI in infectious
disease monitoring must be guided by integrated medical standards, ethical principles,
and legal regulations [84].

4.3. Advancing Infectious Disease Early Warning: Implementing the
Human–Animal-Environment Monitoring System

Our bibliometric analysis reveals wastewater-based epidemiology and AI to be emer-
gent research frontiers through the timeline view of keywords (Figure 7), keyword burst
analysis (Figure 8), and top 10 cited references (Table 3).

WBE’s core principle lies in the fact that human excreta and domestic sewage contain
pathogens or biomarkers, which can be quantitatively detected using technologies such as
RT-qPCR and metagenomic sequencing, thereby inferring the epidemic trends of infectious
diseases within communities [85]. The top-cited references [14,17] demonstrate WBE’s
utility in community-level SARS-CoV-2 surveillance, validated by its cost-effectiveness.
Compared to traditional monitoring methods, WBE has significant advantages, as it does
not rely on individual proactive medical treatment or testing, especially suitable for sce-
narios with a high proportion of asymptomatic infected individuals, such as COVID-19
and norovirus, effectively filling gaps in clinical data [86]. For instance, as mentioned
earlier, Japan and Israel have applied WBE to monitor poliovirus and hepatitis viruses.
Additionally, single wastewater detection costs are relatively low, making it suitable for
large-scale and long-term monitoring [16]. The timeline (Figure 7) shows WBE’s rise
post-2020, reflecting its adoption for real-time pathogen tracking.

AI-driven predictive models leverage algorithms such as machine learning and deep
learning, utilizing big data to achieve the dynamic simulation and prediction of infectious
disease transmission [87]. Keywords such as “machine learning” (Cluster #4) and “artificial
intelligence” (Figure 8) highlight AI’s integration into predictive modeling. Infectious
disease transmission involves data such as climate and human mobility, which are difficult
to handle with traditional statistical methods. The cited studies emphasize AI’s capacity
to analyze complex datasets for early outbreak detection. As mentioned earlier, AI can
detect outbreaks earlier by using modeling, enable more precise interventions, and improve
medical efficiency through automated monitoring, significantly reducing the human burden
on public health. Integrating AI into global health infrastructure helps create intelligence-
based infectious disease early warning systems.

Over the past three decades, the frequency of emerging and re-emerging infectious
diseases has increased globally, with escalated threats from infectious diseases and height-
ened transmission risks due to globalization [88]. Traditional surveillance systems struggle
to capture signals in the early stages of cross-species pathogen transmission, whereas
real-time monitoring infrastructure, such as WBE networks and AI-driven early warning
models, can detect complex systemic risks [89]. For example, WBE can simultaneously
monitor zoonotic viruses, such as avian influenza viruses, providing data support for the
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“One Health” framework [90]. Governments’ prioritization of investments in real-time
monitoring infrastructure essentially embodies the public health philosophy of “prevention
as the priority”. As the COVID-19 pandemic has revealed the fragility of global health,
only by prioritizing investments in real-time monitoring infrastructure can we take the
initiative in future infectious disease challenges and safeguard population health and
socioeconomic stability.

However, in the face of compound risks such as the cross-species transmission of
pathogens and ecological environmental changes, single technical measures are difficult
to fully cover monitoring needs, and the above technologies need to be embedded in
a more holistic public health governance framework. Within the “One Health” frame-
work, implementing a “human–animal–environment monitoring system” to strengthen
infectious disease early warning requires establishing a cross-dimensional collaborative
monitoring network.

Firstly, for human monitoring, active detection should be enhanced by setting up
infectious disease surveillance sentinel sites in medical institutions such as sentinel hospitals
and communities. These sites should use electronic medical record systems to capture
and analyze case data such as influenza-like illnesses. Wastewater epidemiology can
be employed to detect pathogen nucleic acids in sewage, assessing population infection
trends, particularly for asymptomatic cases. Secondly, for animal monitoring, efforts
should focus on both wild animals and domestic livestock/poultry. Monitoring stations
should be established in high-risk zones for zoonotic diseases to detect pathogens such
as avian influenza viruses through fecal and blood samples, with special attention to
viral strains with high cross-species transmission risks. Regular sampling and testing
of large-scale farms can help with the early warning of animal-borne disease outbreaks.
Thirdly, for environmental monitoring, data on temperature, humidity, precipitation, and
air pollution should be collected to analyze their correlations with pathogen survival and
vector breeding cycles.

Furthermore, a unified data management platform must be developed to integrate
human clinical data, animal disease reports, and environmental monitoring data, ensuring
standardized and real-time data sharing. Departments such as health, agriculture, and
ecology should jointly formulate unified monitoring standards, data-sharing protocols, and
emergency response procedures, clarifying the roles of different stakeholders. Artificial
intelligence, such as deep learning algorithms, can analyze historical data to build predictive
models of infectious disease transmission risks, enabling early warning. The core of the
“human–animal–environment monitoring system” lies in treating human health, animal
health, and ecosystem health as an inseparable whole. Through cross-dimensional data
integration and collaborative mechanisms, it achieves the early identification and warning
of infectious diseases, safeguarding public health security.

4.4. Limitations and Future Research Perspectives

Our study has several significant limitations that warrant careful consideration when
interpreting the results. On the one hand, the exclusive reliance on English-language
articles within the Web of Science core database may have led to the omission of valuable
research published in other languages. This is particularly relevant given our finding that
China ranked second in research productivity; studies published in Chinese could poten-
tially alter our conclusions. On the other hand, by focusing solely on journal articles, we
excluded important gray literature sources, including WHO technical reports, government
surveillance data, and conference proceedings. These documents often contain timely and
policy-relevant insights that could influence the understanding of the research field.
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To mitigate these limitations in future investigations, we propose three strategies:
(1) broadening database searches to incorporate regional repositories such as CNKI;
(2) leveraging machine translation tools to include non-English publications; and (3) sys-
tematically retrieving gray literature through platforms like Google Scholar and organiza-
tional databases.

5. Conclusions
This bibliometric analysis provides an updated, global, and contextualized perspective

of the infectious disease early warning system as of September 2024. The number of articles
published peaked in 2021, and the importance of early warning systems for infectious
disease has been highlighted due to COVID-19. Research related to the role of early warning
systems in detecting and responding to infectious disease outbreaks over the past two
decades focused on climate change, influenza, SARS, virus, machine learning, warning
signals and systems, artificial intelligence, and so on. Current research hotspots include
wastewater-based epidemiology, sewage, One Health, and artificial intelligence, as well
as the early warning and monitoring of COVID-19. In conclusion, research foci in this
area have evolved from focusing on climate–disease interactions to pathogen monitoring
systems and ultimately to the “One Health” integrated framework. Our research findings
underscore the imperative for public health policymakers to prioritize investments in
real-time surveillance infrastructure, particularly wastewater-based epidemiology and
AI-driven predictive models, and strengthen interdisciplinary collaboration frameworks
under the One Health paradigm. Developing an integrated human–animal–environment
monitoring system will serve as a critical development direction for early warning systems
for epidemics.
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