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Conserved long-range base pairings are associated
with pre-mRNA processing of human genes
Svetlana Kalmykova1, Marina Kalinina 1, Stepan Denisov1, Alexey Mironov1, Dmitry Skvortsov2,

Roderic Guigó 3 & Dmitri Pervouchine1✉

The ability of nucleic acids to form double-stranded structures is essential for all living

systems on Earth. Current knowledge on functional RNA structures is focused on locally-

occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated

that long-range RNA structures are highly abundant. Here, we present the most complete to-

date catalog of conserved complementary regions (PCCRs) in human protein-coding genes.

PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and

inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE

nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of

forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to

RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA

folding. The enrichment of 3’-ends within PCCRs raises the intriguing hypothesis that cou-

pling between RNA folding and splicing could mediate co-transcriptional suppression of

premature pre-mRNA cleavage and polyadenylation.
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A double-stranded structure is a key feature of nucleic acids
that enables replicating the genomic information and
underlies fundamental cellular processes1,2. Many RNAs

adopt functional secondary structures, and messenger RNAs
(mRNAs) are no exception, although their main role is to encode
proteins3–6. In eukaryotes, RNA structure affects gene expression
through modulating all steps of pre-mRNA processing including
splicing7, cleavage and polyadenylation8, and RNA editing9. The
loss of functional RNA structure has been increasingly reported
as implicated in human disease10–13.

To date, a few dozens of functional RNA structures have been
characterized in the human genome (Table 1 and Fig. S1). Many
of them are formed between evolutionarily conserved regions that
are located in introns of protein-coding genes and consist of base
pairings spanning thousands of nucleotides. Computational
identification of such distant base pairings by de novo RNA
folding is not feasible due to a number of technical limitations14.
However, recent progress in high-throughput sequencing tech-
niques enabled novel experimental strategies to determine
RNA structure in vivo15–19. In particular, photo-inducible RNA
cross-linking and proximity ligation assays revealed that
long-range base pairings are highly abundant in the human
transcriptome20–24. Currently, the applicability of these assays for
large-scale profiling of RNA structure is still limited, and com-
putational identification of long-range RNA structure remains a
great challenge in RNA biology.

Comparative genomics provides a powerful alternative to de
novo RNA folding by detecting signatures of evolutionary
conservation25,26. Previous reports presented complex meth-
odologies that implement simultaneous alignment and folding to
detect RNA elements with divergent sequences that are never-
theless conserved at the secondary structure level27–30. However,
a substantial fraction (3.4%) of intronic nucleotides in the human
genome are highly conserved at the sequence level, which raises a
compelling question of whether their function may be related to
RNA structure. This motivated us to revisit this problem with the
“first-align-then-fold” approach14, one which finds pairs of con-
served complementary regions (PCCRs) in pre-aligned evolutio-
narily conserved regions. In this study, we developed a method
named PrePH (PREdiction of PanHandles) to efficiently find
long, nearly perfect complementary matches in a pair of input
sequences, and applied it to all pairwise combinations of CIRs
located at a certain distance limit from each other. Subsequently,
we analyzed MSAs that had a sufficient amount of variation to
detect compensatory substitutions within PCCRs.

Multiple lines of evidence indicate that a large proportion of
PCCRs indeed have a double-stranded structure, for example,
significant decrease of icSHAPE nucleotide accessibility, high
abundance of adenosine-to-inosine (A-to-I) RNA-editing sites,
significant overlap with long-range RNA contacts identified by
proximity ligation assays, and frequent co-occurrence of the so-
called forked enhanced cross-linking and immunoprecipitation

(eCLIP) peaks (see below). They also have other characteristic
features such as occurrence within introns proximally to splice
sites, avoidance of branch points, and obstructive effect on cryptic
and inactive splice sites. At the same time, the method has a
substantial false-positive rate, which, as we show, cannot be
reduced without losing sensitivity to bona fide validated RNA
structures (Table 1). The catalog of PCCRs is provided as a
reference dataset that is conveniently visualized through a UCSC
Genome Browser track hub31. We additionally provide a
transcriptome-wide characterization of RNA bridges32 and exon
loop-outs33, two particular mechanisms of alternative splicing
regulation by long-range RNA structures.

Results
Conserved complementary regions. To identify conserved
complementary regions (CCRs), we considered nucleotide
sequences of human protein-coding genes excluding all con-
stitutive and alternative exons, repeats, noncoding genes residing
in introns, and other regions with selective constraints that may
not be related to base pairings (Fig. 1A). The remaining intronic
regions were extended by 10 nts (nucleotides) to within flanking
exons to allow for base pairings that overlap splice sites. The
resulting set of 236,332 intronic regions was intersected with the
phastConsElements track of the UCSC Genome Browser34,
which defines genomic intervals that are highly conserved
between 100 vertebrates (major species Pan troglodytes, Mus
musculus, Sus scrofa, Gallus gallus, Xenopus tropicalis, Dani rerio;
the shortest and the longest phylogenetic distances 0.01 and 2.40,
respectively). This resulted in a set of 1,931,116 short fragments
with the median length 17 nts, which will be referred to as con-
served intronic regions (CIRs).

PCCRs were identified in all pairwise combinations of CIR that
are located not more than L nucleotides apart from each other
and belong to the same gene using PrePH, a k-mer-based method
(Fig. 1B) that efficiently predicts long, nearly perfect stretches of
complementary nucleotides in a pair of input sequences (see
“Methods”). A search for at least 10-nt-long sequences with the
hybridization free energy ΔG ≤−15 kcal/mol, minimum helix
length k ≥ 5, and distance limit L ≤ 10, 000 yielded 916,360
PCCRs, on average 75 PCCR per gene, with 95% of genes having
not more than 295 PCCRs (Supplementary Data Files 1 and 2).
The median free energy of hybridization (ΔG) and the median
length of CCRs were −17.2 kcal/mol and 13 nts, respectively, with
the frequency distribution decaying towards longer and more
stable structures (Fig. 1C and Fig. S1A). As expected, longer
structures had larger absolute values of ΔG; however, the energy
and the length of a PCCR are not directly proportional and the
relationship between them depends on the GC content (Fig. S1B,
S1C). In what follows, PCCRs are classified into four energy
groups, group I from −15 to −20 kcal/mol, group II from −20 to
−25 kcal/mol, group III from −25 to −30 kcal/mol, and group IV

Table 1 Experimentally validated (bona fide) RNA structures in human genes that satisfied PrePH search criteria.

PCCR i.d. Gene Exon ΔG l d E value s1 s2 s3 Ref.

98636 ENAH Exon 11a −19.80 11 1728 0.4090 0.43 0.49 0.28 32

178925 SF1 Exon 10 −25.70 14 109 0.0002 0.45 0.49 0.64 28

739752 DST Exons 46–52 −25.00 15 9431 0.9998 0.39 0.56 0.45 29

883328 DNM1 Exons 10a and b −25.90 13 8864 0.2517 0.48 0.46 0.24 141

918502 PLP1 Exon 3 −15.80 20 638 0.3871 0.24 0.71 0.36 35

148879 ATE1 Exon 7b −33.2 17 51 0.6504 0.21 0.75 0.38 36

148881 ATE1 Exon 7a −35.9 13 952 0.5877 0.32 0.64 0.31 36

ΔG predicted free energy (kcal/mol), l average length of the two CCRs (nts), d spread (distance between complementary regions, nts), E value E value from R-scape after correction for multiple testing, s1,
s2, s3 nucleotide conservation metrics (see “Compensatory substitutions” section).
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below −30 kcal/mol, which are represented throughout the paper
by a uniform color scheme shown in Fig. 1C.

To assess the sensitivity of the method with respect to known
RNA structures, we collected evidence of functional base pairings
in human genes from the literature. All bona fide structures that
satisfied the search criteria were successfully found (Table 1 and
Fig. S2), while others either did not pass the free energy cutoff,
were shorter than 10 nts, located outside of CIR, or did not belong
to protein-coding genes (Table S1). Notably, the long-distance
intronic interaction that regulates PLP1/DM20 splicing35 and the
RNA bridge in ENAH32 were both assigned to group I (ΔG=
−15.8 and −19.4 kcal/mol, respectively), indicating that less
stable structures are not less functional or less interesting than the
others. For the purpose of presentation here, we chose the

distance limit L= 10,000, which by the order of magnitude
corresponds to long-range RNA structures listed in Table 1.
However, our recent study of the human ATE1 gene demon-
strated that functional RNA structures may spread over much
longer distances36. We, therefore, additionally explored how the
number of PCCRs changes with increasing the distance limit and
found that it grows approximately fourfold with increasing L up
to 100,000 nts (Fig. S3A).

The frequency distribution of the distances between two CCRs
in a pair, here referred to as spread, peaks at short distances,
decaying towards a non-zero baseline (Fig. S3B). This baseline
originates from the distribution of pairwise distances between
CIR that were passed to PrePH as an input, which decays towards
the same baseline. We next asked whether PCCRs were

Fig. 1 Pairs of conserved complementary regions (PCCRs). A PCCRs are identified in conserved intronic regions (CIRs) that are <10,000 nts apart
from each other. B PrePH computes the dynamic programming matrix based on the precomputed helix energies for all k-mers (inset) and energies
of short internal loops and bulges (see Supplementary Methods for details). C The distribution of PCCR energies consists of four energy groups: group
I (−20 <ΔG≤−15 kcal/mol), group II (−25 <ΔG≤−20 kcal/mol), group III (−30 <ΔG≤−25 kcal/mol), and group IV (ΔG≤−30 kcal/mol). D The
distribution of p, relative position of a PCCR in the gene. E Multiple independent compensatory substitutions support long-range RNA structure in the
phosphatidylinositol glycan anchor biosynthesis class L (PIGL) gene. F PCCRs with significant nucleotide covariations (E value < 0.05, n= 3204) are
on average less spread and more stable than PCCRs with insignificant nucleotide covariations (E value≥ 0.05, n= 905942); two-sided Mann–Whitney
test; *** denotes a statistically discernible difference at the 0.1% significance level.
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distributed uniformly along the gene, or they tend to accumulate
in certain gene parts. To quantify the position of a PCCR within a
gene, we introduced p, a measure of relative position, which
changes from 0% for the regions located in the very 5′ end of the
gene to 100% for the regions located in the very 3′ end. The
metric p can be computed for a PCCR as a whole to represent its
relative position, or for each of its CCR separately. The location of
PCCR as a whole was not uniform, with two pronounced modes
at the 5′ and 3′ end (Fig. 1D). This enrichment was also
prominent in the distribution of single CCRs (Fig. S3C), which
could be due to stronger evolutionary constraints on the
nucleotide sequences at gene ends. Indeed, we found that CCRs
exhibit a higher degree of evolutionary conservation than their
adjacent regions within CIR (the difference of the average
phastCons scores, MW (Mann–Whitney sum of ranks test) test,
p value < 2.2 × 10−16) and thus tend to occur in more constrained
regions. Gene ontology (GO) terms associated with genes that
have PCCRs were enriched with terms related to morphogenesis
and development of the central nervous system as compared to
genes of the same length, but without PCCRs (Fig. S4).

Compensatory substitutions. Compensatory mutations, that is,
pairs of nucleotide substitutions that individually disrupt base
pairings, but restore them when introduced in combination, play
a central role in the evolution of RNA structure37–39. To analyze
compensatory mutations in PCCRs, we applied the R-scape
program40, which scores independent occurrence of com-
plementary substitutions on different branches of the phyloge-
netic tree, to pairs of multiple sequence alignments (MSAs) that
were cut out from the MSA of 100 vertebrates34 by PCCRs (see
“Methods”). The deviation from the null hypothesis that pairwise
covariations in a PCCR are not due to conservation of RNA
structure was estimated as a product of E values reported by R-
scape for all base pairs within the PCCR. These products were
adjusted using Benjamini–Hochberg correction.

Out of 916,360 PCCR, for which this computation was
possible, only 909,146 had a sufficient number of substitutions
to estimate the E value, and only 3204 of them had E value below
5% (Fig. S5). The PCCRs with E value < 0.05 were on average
more stable and less spread than PCCRs with E value ≥ 0.05
(Fig. 1F). In some cases, structural alignments were strongly
supported by covariations, that is, a highly stable PCCR (ΔG=
−31 kcal/mol) spanning 700 nts in the first intron of PIGL gene
(Fig. 1E) and PCCRs in the QRICH2 andMRPL42 genes (Fig. S6).
However, E values of bona fide RNA structures from Table 1
ranged from 0.0002 for the PCCR responsible for splicing of the
intron between exons 9 and 10 in SF1 to 0.9998 for the PCCR
associated with exons 46–52 skipping in DST, suggesting that the
amount of variation in the nucleotide sequences of PCCRs is
generally not sufficient to estimate their statistical significance
through compensatory substitutions.

A remarkable feature of standalone RNA regulatory elements is
their high level of conservation, as opposed to that of their
flanking sequences14. We introduced three additional metrics to
capture the nucleotide conservation rate within CCR as compared
to the background: s1 is the difference between the average
phastCons scores within CCR and within 300 nts flanking regions
(the larger, the more significant); s2 is the average phastCons
score within CCR and 300 nts around it (the smaller, the more
significant); s3 is the length of a CCR relative to the length of its
parent CIR (the larger, the more significant). However, neither of
the three metrics reached extreme values for the base pairings
listed in Table 1 (Fig. S7), which indicates that functional PCCRs
are not necessarily located in isolated conserved regions and may
well occur in a relatively conserved background.

Support by high-throughput structural assays. PCCRs represent
regions in the pre-mRNA that have an increased capacity to base
pair. The propensity of individual nucleotides to base pair was
assessed at the transcriptome-wide level by measuring the
nucleotide flexibility score with icSHAPE method41. We com-
pared the average icSHAPE reactivity within CCR with that in a
control set of intervals located nearby (Fig. 2A). Indeed, the
average icSHAPE reactivity of nucleotides within CCR was sig-
nificantly lower as compared to the control (Wilcoxon’s test, P <
10−60), and the difference increased by the absolute value with
the increase in the structure free energy (jβ̂1j ¼ 0:03 ± 0:01).
However, the icSHAPE reactivity scores were available only for
4551 PCCRs representing 0.5% of the full set. We, therefore,
sought for PCCR support in other experimental datasets.

Chemical RNA structure probing can reveal which bases are
single- or double-stranded, but it cannot determine which
nucleotides form base pairs15–19. We, therefore, validated PCCRs
against the long-range RNA–RNA interactions that were assessed
experimentally by psoralen analysis of RNA interactions and
structures (PARIS)22 (n= 15,036), ligation of interacting RNA
followed by high-throughput sequencing (LIGR-seq)23 (n=
551,926), and RNA in situ conformation sequencing (RIC-
seq)24 (n= 501,144). Towards this end, we considered the
interacting pairs in the experimental data that were located
intramolecularly within CIR not >10,000 nts apart from each
other, and restricted the set of PCCRs to the underlying CIRs that
overlap the experimental dataset (see “Methods”). The precision
(P) and recall (R) metrics were defined as the proportion of
PCCRs supported by the experimental method and the propor-
tion of experimental interactions supported by PCCRs, respec-
tively. In addition, we computed π, the conditional probability of
predicting the interacting CCR partner correctly given that
another CCRs in a pair has been predicted correctly (Table 2).
The best agreement was with respect to the RIC-seq dataset, with
precision increasing up to 92% at the expense of decreasing recall
when structure stability increased. The π metric confirmed that
PCCRs tend to correctly identify the interacting partner given
that one of the CCRs has been predicted correctly. In addition,
we found that free energies of PCCRs supported by RIC-seq
and PARIS were significantly lower than those of PCCRs
without experimental support (MW test, ΔΔG≃ 1.2 kcal/mol,
p value < 10−19). However, the breadth of these findings is limited
by small sizes of the true-positive sets (n= 1903 for RIC-seq, n=
777 for LIGR-seq, and n= 969 for PARIS), because structural
assays sparsely cover the transcriptome at cell line-specific
conditions and focus on intermolecular interactions.

Finally, we explored how the set of predicted PCCRs relates to
a similar list that was reported previously by IRBIS29. Unlike
PrePH, IRBIS follows the “first-fold-then-align” strategy to
simultaneously detect conserved complementarity and sequence
homology, but at stricter conditions. Overall, the predictions of
the two programs had a large intersection relative to IRBIS
predictions indicating that the current method generally outputs
a superset of IRBIS predictions both in terms of the number of
nucleotides and the number of base pairs (Fig. 2B). The free
energies of PCCRs supported by IRBIS were significantly lower
than those of other PCCRs (MW test, ΔΔG≃ 2.7 kcal/mol,
p value < 10−30) reflecting the fact that, unlike IRBIS, PrePH
allows for short internal loops and bulges. Nevertheless, a small
fraction of IRBIS predictions is missing from the list of PCCRs
presented here, which relies on the conserved regions from
phastConsElements track of the UCSC Genome Browser34.
Without this limitation, however, the current approach would be
impractical from the computational standpoint, and it was our
intention to limit the search to conserved regions at the expense
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of losing some structures that are misaligned by structure-
agnostic phylogenetic analysis.

False discovery rate. One way to estimate the rate of false-
positive predictions is to apply the same pipeline that was used to
identify PCCRs to a control set of sequences that should not base
pair. In the previous work, it was described as the so-called “re-
wiring” approach29. Here, we used the same strategy by running
the pipeline on chimeric sets of sequences that were sampled
randomly from different genes while controlling for nucleotide
composition and length, which confound this comparison
(Fig. 2C). The false discovery rate (FDR), defined as the number
of predictions in the control set as a fraction of the total number
of predictions, depends on PCCR energy, spread, GC content,
and E value, ranging from 10% in the most strict to over 50% in
the most relaxed conditions (Fig. 2D). As expected, FDR drops
with increasing PCCR energy and GC content and with
decreasing PCCR spread and E value.

Many PCCRs listed in Table 1 belong to group I indicating that
folding energy alone cannot be used as a threshold to control
FDR. To check whether FDR can be improved by simultaneous
application of several filters, we applied the most stringent

thresholds that preserve PCCRs listed in Table 1 (ΔG ≤−15.8, E
value < 0.998, GC ≥ 33.3%, s1 ≥ 0.24, s2 ≤ 0.71, and s3 ≥ 0.24).
The resulting FDR figure of 47% indicates that FDR cannot
be improved without loss of sensitivity with respect to bona fide
structures. On the one hand, it implies that more than half of the
group I predictions could be false positives. On the other hand,
this is a pessimistic estimate since the re-wiring method is known
to greatly overestimate the FDR29. We, therefore, interpret 47% as
an excessively conservative FDR estimate and proceed to the
statistical characterization of the full PCCR set with the mindset
that at least half of the predictions are true positives.

Splicing. Previous reports indicate that long-range base pairings
are positioned nonrandomly with respect to splicing signals27–29.
To elaborate on this, we used the classification shown in Fig. 3A.
If a PCCR overlaps an intron, it can be located either entirely
within the intron (inside) or the intron can be located entirely
within PCCR (outside), or the two intervals intersect (crossing).
The tendency of RNA structure to prefer one of these categories is
measured by the enrichment metric, defined as the number of
PCCRs in the given category relative to the number of PCCR-like
intervals in it, computed for a certain control set (each PCCR may

Table 2 Precision and recall at different free energy cutoffs (ΔG).

ΔG RIC-seq, n= 1804 LIGR-seq, n= 586 PARIS, n= 907

PrePH P (%) R (%) π (%) PrePH P (%) R (%) π (%) PrePH P (%) R (%) π (%)

−15 1611 42 53 43 362 54 49 56 5901 50 60 51
−20 364 66 26 67 88 57 17 58 1725 60 33 60
−25 84 86 9 86 21 48 3 48 545 65 14 65
−30 23 91 3 91 5 40 1 40 160 72 6 73

The precision (P) and recall (R) are the proportion of PCCRs supported by the experimental method and the proportion of experimental interactions supported by PCCRs, respectively. π is the conditional
probability of predicting the interacting CCR partner correctly given that another CCR in a pair has been predicted correctly. The column “PrePH” shows the number of PCCRs that satisfy the criteria for
comparison. The number of structures in each experimental method is denoted by n.

Fig. 2 Validation and false discovery rate (FDR). A The difference between icSHAPE reactivity of nucleotides within CCR and the average reactivity of
nearby nucleotides in energy groups I–IV (color code as in Fig. 1C). The linear model Δreactivity= β0+ β1ΔG group is represented by the slanted line;
β̂1 ¼ �0:03±0:01. B Venn diagram for the number of common nucleotides (left), number of common base pairs (middle), and the number of common
base pairs among common nucleotides (right) for the predictions of PrePH and IRBIS. C Estimation of the false-positive rate (FDR) by re-wiring, that is,
creating a control set that consists of chimeric non-cognate sequences sampled from different genes. D FDR as a function of energy cutoff ΔG (top left),
maximum distance between CIR (top right), E value (bottom left), and GC content (bottom right). Solid lines represent the fitted average over n= 16
randomizations; shaded areas represent 95% confidence intervals obtained by the locally estimated scatterplot smoothing (LOESS) regression.
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be counted more than once if it is located inside one intron and
crosses another). In the first control set, referred to as random
shift, each PCCR was shifted randomly within its gene. The
resulting pseudo-PCCR had the same spread and belonged to the
same gene as the original PCCR. In the second control set,
referred to as random gene, for each gene and a PCCR in it, we
created a pseudo-PCCR at the same relative position as the ori-
ginal PCCR, but in a randomly chosen gene of the same length.
The resulting pseudo-PCCR had the same spread and the same
relative position as the original PCCR, but belonged to a different

gene. Repeated sampling of these sets allowed estimation of sta-
tistical significance.

In comparison with the set of annotated introns by random
shifts, PCCRs showed a pronounced enrichment in the inside
category and depletion in the outside and crossing categories,
with the magnitude of depletion increasing for more stable
structures (Fig. 3B, top). To rule out a possibility that preferential
PCCR positioning within introns originates from uneven
distribution of longer introns along the gene, with 5′ introns
being on average longer27,28, we repeated the same analysis using

Fig. 3 Splicing. A Control procedures. In the random shift control, a PCCR is shifted within the gene. In the random gene control, a pseudo-PCCR is created
in the same relative position of a different gene chosen at random. The number of PCCRs inside, outside, and crossing the reference set of intervals
(e.g., introns) are counted. B PCCRs are enriched inside introns and depleted in outside and crossing configurations. C PCCRs looping out exons are
depleted. D The cumulative distribution of the average exon inclusion rate (Ψ) in HepG2 cell line for exons looped out by PCCRs of the four energy groups
vs. exons not looped out by PCCRs (Ctrl). KS denotes the two-sample Kolmogorov–Smirnov test. Sample sizes for energy groups I–IV and control are n=
73,366, 13,974, 1877, 374, and 161,947, respectively. E The distribution of distances from intronic PCCRs to intron ends (bin size 75 nts). Group I PCCRs
are enriched, while group IV PCCRs are depleted in 75-nt windows immediately adjacent to splice sites. In all panels, boxplots (represented by the median,
upper and lower quartiles, upper and lower fences; outliers are not shown) correspond to n= 40 randomizations; * and *** denote a statistically discernible
difference at the 5% and 0.1% significance level, respectively (in panels B and C for a two-tailed Wilcoxon’s test with H0: enrichment= 1).
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random gene control, and the enrichment and depletion
remained significant (Fig. 3B, bottom). A similar comparison
with the set of annotated exons revealed a substantial depletion of
PCCRs that loop out exons, which also became stronger as PCCR
stability increased (Fig. 3C). The average inclusion rate of exons
that were looped out by PCCR was lower than that of exons that
are not surrounded by PCCR, with the magnitude of the
difference increasing for more stable structures (Fig. 3D). These
results reconfirm that PCCRs generally tend to avoid placing
exons in a loop, which promotes exon skipping.

The frequency of intronic PCCRs decays with increasing the
distance to intron ends in all four energy groups partially
reflecting the decrease of sequence conservation (Fig. 3E).
However, weaker structures occur more frequently in 75-nt
windows adjacent to splice sites, while stronger structures tend to
occupy more distant positions. The ends of PCCRs tend to be
closer to exon boundaries than would be expected by chance from
random shifts (Fig. S8). Contrary to what was reported earlier for
Drosophila melanogaster, there is no substantial depletion of CCR
in polypyrimidine tracts (PPTs). This indicates a large regulatory
potential for splicing since a large fraction of CCR that overlaps
PPT (43.2%) also blocks the acceptor splice site. In addition, there
were on average 20% fewer overlaps of CCR with intronic branch
points42 than would be expected from random shift control, that
is, CCRs tend not to overlap intronic branch points.

To test whether PCCRs interfere with splicing signals, we
identified intronic motifs with high similarity to donor and
acceptor site consensus sequences (cryptic splice sites) and
analyzed the expression of splice sites in a large compendium of
RNA-sequencing (RNA-seq) samples from the Genotype Tissue
Expression Project (GTEx)43. CCRs overlapping highly expressed
(active) splice sites were depleted, while CCRs overlapping splice
sites with low read support (inactive) were enriched (Fig. 4A).
CCRs overlapping non-expressed cryptic splice sites were also
enriched with the exception of highly stable structures, which are
likely devoid of cryptic splice sites due to high GC content. We
also found that the largest enrichment of CCRs overlapping
candidate cryptic splice sites was among PCCR with small spread
(MW test, p value= 0.004), in agreement with the previous
findings that cryptic splice sites tend to be suppressed by local
RNA secondary structure44,45.

RNA secondary structure has been suggested to be a defining
feature that leads to backsplicing and formation of circular RNAs
(circRNA)46. A comparison with the set of circRNAs from the
tissue-specific circRNA database (TCSD)47 by random shift and
random gene controls revealed a pattern opposite to that of linear
introns, in which PCCRs were enriched outside circRNAs and
depleted inside circRNAs (Fig. 4B). This supports the hypothesis
that circRNAs originate from loop-out sequences that are formed
by stable double-stranded RNA structures46.

RNA editing. A widespread form of post-transcriptional RNA
modification is the enzymatic conversion of adenosine nucleo-
sides to inosine, a process called A-to-I editing, which is mediated
by the adenosine deaminase acting on RNA (ADAR) family of
enzymes48,49. Since ADAR editing occurs in double-stranded
RNA substrates50,51, we asked whether A-to-I editing sites are
enriched among CCRs (Fig. 4C). We observed a strong enrich-
ment of ADAR-edited sites that are documented in the
RADAR database (2,576,459 sites) within CCR as compared to
non-CCR parts of CIRs (odds ratio (OR)= 2.1 ± 0.2). While
the OR was nearly the same for PCCR with energy from −15 to
−30 kcal/mol, it dramatically increased for PCCR with the energy
<−30 kcal/mol (2.1 ± 0.2 vs. 13.2 ± 5.0), reconfirming previous
observations that ADAR targets are long double-stranded

RNAs52. The OR was also significantly greater (1.7 ± 0.2 vs.
22.2 ± 13.1) for PCCR with higher evidence of compensatory
mutations, but it did not depend significantly on the PCCR
spread. These results were concordant with each other for the
datasets of A-to-I editing sites from RADAR and REDIportal
databases53,54 and can be regarded as an additional support for
double-stranded structure of PCCRs.

5′-end and 3′-end processing. Recent reports indicate that RNA
structure is important for the 3′-end processing of human mRNAs8,
and that competing RNA base pairings could be involved in
alternative splicing and polyadenylation in the 3′-variable region55.
In this section, we characterize the relationship between PCCRs,
5′-end, and 3′-end mRNA processing using the data from transcript
annotation databases56 and clusters of poly(A)-seq and cap analysis
of gene expression (CAGE) tags57,58.

First, we estimated the number of transcripts that start or end
within CCRs, including all incomplete and aberrant isoforms that
are annotated in GENCODE (Fig. 4D). Both 5′- and 3′ ends were
enriched inside CCRs, suggesting that double-stranded structures
are associated with the suppression of aberrant transcripts. Next,
we asked whether the annotated 5′ and 3′ ends of transcripts were
enriched in the inner part of PCCRs, that is, in the regions
between paired CCRs. Indeed, both were significantly enriched,
and the magnitude of the enrichment increased with increasing
PCCR stability (Fig. 4E). The random gene control confirmed
that the effect was not due to nonuniform distribution of PCCRs.
To rule out the possibility that non-expressed isoforms contribute
to the observed enrichment, we additionally examined the
expressed CAGE tags and poly(A)-seq clusters and found that
they were also significantly enriched within PCCR (Fig. S9). Since
PCCRs are, in turn, enriched inside introns, this motivated us to
analyze triple associations between RNA structure, splicing, and
end processing.

Thus, we asked whether the annotated transcript ends, CAGE
tags, and poly(A)-seq clusters occur more frequently in introns
that contain PCCRs. However, introns with PCCRs tend to be
also longer than introns without PCCRs, which may affect the
above frequencies. Hence, we subdivided all annotated introns
into two groups, introns with PCCR (IWP) and introns without
PCCR (IWO), and selected two samples from IWP and IWO,
38,119 introns each, with matching intron lengths (Fig. S10). Of
these, 12,782 (33.5%) IWP contained at least one annotated 3′
end, while only 9,575 (25.1%) IWO did so (OR= 1.50 ± 0.05).
Similarly, 12,042 (31.6%) IWP contained at least one annotated 5′
end, compared to 8,978 (23.6%) for IWO (OR= 1.50 ± 0.05). The
enrichment of both 5′ and 3′ ends in IWP raises an intriguing
hypothesis that there could be an RNA structure-mediated
coupling between splicing and end processing (see “Discussion”).

Mutations. Mutations generally lower the stability of RNA sec-
ondary structure, and some of them are under evolutionary
selection owing to their effects on the thermodynamic stability of
pre-mRNA59. In order to estimate the impact of human popu-
lation polymorphisms on PCCRs, we analyzed single-nucleotide
polymorphisms (SNPs) from the 1000 Genomes project60 and
compared SNP density in CCR with that in the remaining parts of
CIR. Germline SNPs were significantly underrepresented in CCR
(0.0196 vs. 0.0207 SNPs per nt, one-tailed Poisson test, p value <
0.01). Next, for each SNP that occurs in a PCCR, we calculated
the free energy change caused by the mutation and compared it to
the free energy change that would have been observed if the same
mutation occurred at a different position of the same CCR
(Fig. S11A). It turned out that actual SNPs destabilized
PCCRs less than it would be expected by chance (Wilcoxon’s test,
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p value < 0.001), suggesting that SNPs generally tend to minimize
their destabilizing impact on RNA structure.

Compensatory mutations may also occur in the human
population, but at a substantially lower frequency. To estimate
the frequency of compensatory population polymorphisms, we
identified PCCRs that contain SNPs with an allele frequency of
1% and higher. Out of 64,074 bp in PCCRs that were affected by
SNPs, only 12 showed sufficient support for compensatory
mutations. After randomization, in which the pairs of comple-
mentary nucleotides were randomly switched, the respective
average values were 64,132 and 0.06 (see “Methods,” Fig. S11B).
The density of compensatory mutations normalized to the
number of base pairs with mutations were 0.019% for the actual
base pairs and (9.0 ± 7.3) × 10−5% for the randomized set. From
this we conclude that, despite compensatory mutations within
PCCR are quite rare in the human population, they are
significantly enriched (one-tailed Poisson’s test, P < 0.01).

RBP binding sites. Multiple lines of evidence indicate that
binding of RNA-binding proteins (RBPs), which is crucial for co-
and post-transcriptional RNA processing, depends on RNA
structural context61–63. To assess the association between long-
range RNA structure represented by PCCRs and RBP binding, we
computed eCLIP peak frequencies64,65 in the vicinity of CCRs
and compared them to the background eCLIP peak frequencies in
CIRs surrounding CCRs. Among factors that showed a sub-
stantial enrichment, there were RBPs that are known to exert
their function in conjunction with RNA structure such as
RBFOX232 and factors that favor increased structure over their
motifs such as SRSF9 and SFPQ66,67 (Fig. 5A). For RBPs with
single-stranded RNA-binding activity such as ILF3 and
hnRNPA1, we observed a significant depletion of binding sites
within CCRs (Fig. S12)68,69.

One of the features of the eCLIP protocol is that an RBP
can crosslink with either RNA strand that is adjacent to the

Fig. 4 Splicing, RNA editing, and end processing. A CCRs are depleted around actively expressed splice sites and enriched around inactive and cryptic
splice sites. B PCCRs are enriched outside back-spliced introns (circular RNAs from TCSD, ref. 47) and depleted in inside and crossing configurations.
C CCRs are enriched with A-to-I RNA-editing sites (RADAR REDIportal53,54); OR denotes the odds ratio (see “Methods”); error bars represent the 95%
confidence intervals. D CCRs are enriched with 5′ and 3′ ends of transcripts annotated in GENCODE database (including all aberrant and incomplete
transcripts). That is, transcript ends frequently occur in double-stranded parts of PCCRs. E PCCRs are also strongly enriched with 5′ and 3′ ends of
transcripts, that is, the annotated transcript ends frequently occur in the loop between double-stranded parts of PCCRs. In all panels, boxplots (represented
by the median, upper and lower quartiles, upper and lower fences; outliers are not shown) correspond to n= 40 randomizations; *, **, and *** denote a
statistically discernible difference at the 5%, 1%, and 0.1% significance level, respectively, for a two-tailed Wilcoxon’s test with H0: enrichment= 1.
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double-stranded region. Hence, we expect a higher chance of
observing an eCLIP peak near the CCR given that the other CCR
in the pair contains a nearby peak, a situation that will be referred
to as forked eCLIP peak. To estimate the magnitude of this
association, we computed the respective OR and found that the
vast majority of RBPs (64 out of 74, p value <10−12) indeed have
a substantially higher likelihood of binding close to a CCR given
that they bind the other CCR in a pair (Fig. 5B). This can be
regarded as independent evidence for double-stranded structure
of PCCRs. Interestingly, the largest OR was observed for TAF15, a
TBP-associated factor 15, which is not a double-stranded RNA
(dsRNA)-binding protein itself, but interacts with FUS, which is
capable of binding dsRNA70. Similarly, ILF3, which showed a
depleted RNA binding within CCRs, nevertheless is positively
associated with forked eCLIP peaks, suggesting its binding at

single-stranded regions adjacent to PCCRs. This indicates, on the
one hand, that RBP binding is inseparable from the surrounding
RNA structure and, on the other hand, that eCLIP peaks may not
correctly reflect the actual binding positions of RBPs since they
are affected by intramolecular base pairings and interactions with
other players.

RNA Pol II elongation speed. The kinetic model of co-
transcriptional splicing suggests that RNA Pol II elongation
slowdown expands the "window of opportunity” for the recog-
nition of weak splice sites, thereby increasing the rate of inclusion
of upstream exons71,72. Besides this direct impact on splice site
recognition, slow RNA Pol II elongation may also affect the way
the transcript folds, which is another important determinant of

Fig. 5 RNA-binding proteins (RBP). A According to eCLIP profiles, CCRs are enriched within binding sites of some RBPs (top 20 RBPs are shown). The
RBPs that show depletion of CCRs are listed in Fig. S12. Boxplots represent n= 40 random shifts of CCR within CIR. B The odds ratios (OR) of RBP binding
near both CCR in PCCR given that RBP binds near at least one CCR indicate that PCCRs are enriched with forked eCLIP peaks. Error bars represent the 95%
confidence intervals. C The change of inclusion rate (ΔΨ) of exons following short introns (n= 2844, 2650, and 4032 for 1 μg/mL, 2 μg/mL, and R749H
mutant, respectively) vs. exons following long introns (n= 2931, 2762, and 3807 for 1 μg/mL, 2 μg/mL, and R749H mutant, respectively) in response to
RNA Pol II slowdown with α-amanitin and in the slow RNA Pol II mutant R749H71. D The difference between the inclusion rate change of exons following
introns with a PCCR (ΔΨPCCR) and the inclusion rate change of exons following introns of the same length, but without PCCRs (ΔΨnoPCCR) in response
to RNA Pol II slowdown (n= 191, 184, and 156 for 1 μg/mL, 2 μg/mL, and R749H mutant, respectively). In all panels, boxplots are represented by the
median, upper and lower quartiles, upper and lower fences without outliers; *, **, and *** denote a statistically discernible difference at the 5%, 1%, and
0.1% significance level, respectively (two-tailed Mann–Whitney and Wilcoxon’s tests, in panel D with respect to H0: ΔΨPCCR−ΔΨnoPCCR= 0).
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how the transcript will be processed by the splicing machinery73.
To investigate the role of long-range RNA structure in co-
transcriptional splicing, we performed RNA-seq experiments, in
which we used α-amanitin to slow down the RNA Pol II elon-
gation speed74, and additionally analyzed publicly available data
on the impact of RNA Pol II elongation speed on splicing71.

The expected consequence of the RNA Pol II slowdown is that
the inclusion rate of exons that follow short introns will increase,
and the inclusion rate of exons that follow long introns will
decrease. Indeed, this trend was observed both when RNA Pol II
elongation speed was decreased by α-amanitin and in the slow
RNA Pol II mutant R749H (Fig. 5C)71. To check whether RNA
Pol II slowdown differently affects introns with and without
PCCRs, we matched each exon that follows an intron containing
a PCCR with a randomly chosen exon that follows an intron of
the same length, but without PCCRs. The difference in inclusion
rates of these matched exons showed that exons that follow an
intron with a PCCR tend to be more included than exons
following an intron without PCCRs at both concentrations of the
inhibitor and in R749H RNA Pol II mutant (Fig. 5D). This can be
considered as evidence for RNA Pol II slowdown to affect exon
inclusion through pre-mRNA folding, in addition to modulation
of splice site recognition. Namely, slower RNA Pol II elongation
speed may not only facilitate the processing of upstream splice
sites by the spliceosome but also allow sufficient time for the
intronic RNA structure to fold, thus promoting exon inclusion. A
particular example of such a kinetic mechanism linked to RNA
structure was reported for the Ate1 gene, in which a long-range
base pairing dynamically regulates the ratio of mutually exclusive
exons36.

Case studies. In this section, we focus on the association of long-
range base pairings with RBP binding in the context of two
particular splicing-related mechanisms, RNA bridges32, and exon
loop-outs33.

To identify potential RNA bridges, that is, long-range RNA
structures that bring an RBP binding site closer to the regulated
exon32, we searched for candidate binding sites of RBPs profiled by
eCLIP that were located within 50 nts from a CCR, on the one
hand, and exons located within 50 nts from its mate CCR, on the
other hand. To detect regulation, we additionally required that exon
inclusion rate significantly respond to shRNA knockdown (shRNA-
KD) of the same factor using the data on RBP KDs produced by the
ENCODE Consortium (see “Methods”)65. This procedure yielded a
set of 296 candidate RNA bridges (Supplementary Data File 3),
including the RNA bridge that controls the inclusion of exon 12 of
ENAH gene (Fig. 6A). A PCCR with the hybridization energy
−19.8 kcal/mol coincides with the core part of the RNA stem that
was reported earlier32. We reconfirm that it is surrounded by forked
eCLIP peaks of RBFOX2, which reflects cross-linking next to the
double-stranded region, and that the inclusion of exon 12 drops by
43% (ΔΨ=−0.43) upon RBFOX2 KD. However, we also find a
nested PCCR with the hybridization energy −20.4 kcal/mol, which
suggests that the RNA bridge extends much further than it was
reported originally. As a novel example, we describe a candidate
RNA bridge in the 3′ end of RALGAPA1 gene, which encodes the
major subunit of the RAL-GTPase-activating protein75. In this gene,
a group of nested PCCRs approximates binding sites of RBFOX2
and QKI to the penultimate exon (Fig. 6B). The KD of each of these
factors promotes exon skipping, which indicates that exon inclusion
depends on the binding of RBFOX2 and QKI through an RNA
bridge.

In a similar way, we identified candidate base pairings that loop
out exons by searching for PCCRs that surround an exon and
contain an RBP binding site within one of the CCRs. In addition,

we required that the exon significantly respond to RBP KD. This
procedure yielded a set of 1135 candidate exon loop-outs
(Supplementary Data File 4). Among them, there were two
nested RNA structures looping out exon 24 of GPR126, the
human G protein-coupled receptor 126, in which one of the
CCRs overlaps a RBFOX2 binding site, and the exon responds to
RBFOX2 KD (Fig. 6C). Another example is the alternative 3′-end
exon in FGFR1OP2, fibroblast growth factor receptor 1 oncogene
partner 2, which is suppressed by QKI KD and, at the same time,
is looped out by a PCCR that overlaps a QKI binding site
(Fig. 6D).

Data visualization and availability. The tables listing PCCRs for
GRCh37 and GRCh38 human genome assemblies are available in
BED format as Supplementary Data Files 1 and 2, respectively.
These predictions are visualized through a track hub for the
UCSC Genome Browser31. In order to connect the track hub, the
following link https://raw.githubusercontent.com/kalmSveta/
PCCR/master/hub.txt can be copied and pasted into the form
https://genome.ucsc.edu/cgi-bin/hgHubConnect#unlistedHubs.
The PCCR tracks are grouped by the energy groups, spread,
and E value. Along with PCCRs, we additionally report the
response of exons to RNA Pol II elongation slowdown, icSHAPE
reactivity scores, and RIC-seq predictions. The tables listing the
predicted RNA bridges and looping-out PCCRs are available as
Supplementary Data Files 3 and 4, respectively. They are visua-
lized through https://raw.githubusercontent.com/kalmSveta/
RNA-bridges/master/hub.txt, along with eCLIP data and exon
responses to shRNA KDs. Supplementary Data Files are available
online through ZENODO repository https://zenodo.org/record/
4603132 (also see https://doi.org/10.5281/zenodo.4603132) and
via http://arkuda.skoltech.ru/~dp/shared/PrePH/.

Discussion
It has been increasingly acknowledged that RNA structure plays a
critical role in the regulation of eukaryotic gene expression at all
steps from transcription to translation, but little attention has
been paid to long-range RNA structure. From the thermo-
dynamic standpoint, long-range base pairings contribute to the
enthalpy of RNA folding as much as local base pairings do, and
the corresponding energy figures exceed by an order of magni-
tude the typical folding energies of globular protein domains76.
However, since RNA structure affects, and is itself strongly
affected by RBP binding, a reliable prediction of long-range RNA
structure in full-length eukaryotic transcripts does not seem
feasible at the current state of the art. Instead of the detailed
structure, here we consider as a proxy for RNA structure the core
of highly stable and evolutionarily conserved double-stranded
regions, different combinations of which may represent one or
several physiologically relevant folds.

The existence of associations between long-range RNA structure
and splicing has been noted in the previous studies7, including our
earlier reports27–29. The trends that were proposed for smaller sets
also hold for the extended catalog of PCCRs presented here,
namely, the preference of PCCRs to be positioned within introns
proximally to splice sites27, lower inclusion rate of looped out
exons33,77, circumscription of circRNAs78, avoidance of intronic
branch points79,80, and generally obstructive effect on splice sites
that are implicated in double-stranded structure81–83. We addi-
tionally observed a remarkable overlap of PCCRs with A-to-I RNA-
editing sites and multiple associations with forked eCLIP peaks,
which reveal traces of multimolecular complexes with patterns that
are specific to double-stranded regions. These findings reconfirm
the well-known mechanism of ADAR-mediated pathway84 and
show the importance of RNA structure for the assembly of
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RNA–protein complexes, with a preference for some RBPs and
avoidance for the others65,66. At the same time, they may also be
regarded as independent support for double-stranded structure of
PCCRs in addition to the evidence from experimental RNA
structure profiling and compensatory substitutions.

The components of RNA-processing machinery operate in a
strict coordination not only in space but also in time. The kinetic
profile of RNA Pol II elongation has a significant impact on
alternative splicing85. Slow RNA Pol II elongation generally opens
a window of opportunity for weak splice sites to be recognized,
leading to higher inclusion of alternative exons, although in some
cases the effect can be quite opposite86,87. Slow RNA Pol II
elongation may also influence poly(A) site choice by enhancing

the recognition of suboptimal polyadenylation signals (PASs)88.
Consistent with this, we observe an increased inclusion of exons
that are preceded by shorter introns. However, we also observe an
additional component to this general trend, one in which struc-
tured and unstructured RNAs respond differently to RNA Pol II
slowdown. This observation indicates that long-range RNA
structure could coordinate the interaction between spatial and
temporal components of splicing regulation. The example of
long-range RNA structure in the Ate1 gene demonstrates that
mechanisms similar to bacterial attenuation may also take place
in eukaryotic cells36,89,90.

RNA structure is implicated in the recognition of PASs by
cleavage and polyadenylation specificity factor (CPSF) and

Fig. 6 Case studies. A An RNA bridge in ENAH gene brings a distant RBFOX2 binding site into proximity of the regulated cassette exon32. The exon
inclusion rate substantially decreases under RBFOX2 depletion (ΔΨ=−0.43). B The predicted RNA bridge in RALGAPA1 brings distant binding sites of
RBFOX2 and QKI to the regulated exon. The exon significantly responds to the depletion of these two factors (ΔΨ=−0.28 and ΔΨ=−0.75, respectively).
C A cassette exon in GPR126 is looped out by a PCCR overlapping an eCLIP peak of RBFOX2 and significantly responds to RBFOX2 depletion (ΔΨ=−0.56).
D An alternative terminal exon in FGFR1OP2 is looped out by a PCCR overlapping an eCLIP peak of QKI and significantly responds to QKI depletion (ΔΨ=
−0.48). In all panels, exon inclusion rate changes are statistically significant (q value < 0.01).
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facilitates the 3′-end processing by juxtaposing PAS and cleavage
sites that are otherwise too far apart8,91. Functional RNA struc-
tures in 5′-untranslated regions are also implicated in the reg-
ulation of translation11. While these reports mostly concern local
RNA structure, an intriguing finding of this work is the link
between long-range RNA structure and pre-mRNA 3′-end pro-
cessing, which is manifested by the enrichment of poly(A)-seq
clusters in the inner part of PCCRs. It indicates that mechanisms
other than sequestration or spatial convergence of PAS and
cleavage sites may be involved92,93. In fact, human genes contain
thousands of dormant intronic PASs that are suppressed, at
least in part, by U1 small nuclear ribonucleoproteins in a process
called telescripting94. While the exact mechanism of this sup-
pression is not known, many intronic PASs were found to
be associated with CstF64, a ubiquitous pre-mRNA 3′-processing
factor95, suggesting that cleavage and polyadenylation machinery
may actually operate in all introns constitutively. Could it be
that RNA structure helps to suppress premature intronic
polyadenylation?

Figure 7 illustrates a hypothetical mechanism of suppression of
intronic polyadenylation by co-transcriptional splicing, which
explains the enrichment of poly(A)-seq clusters in the inner parts
of PCCRs. Indeed, the cleavage and polyadenylation of a struc-
tured pre-mRNA could be rescued by co-transcriptional excision
of the intron, while RNA structure stabilizes the molecule
through intramolecular base pairings despite the disruption of the
backbone (Fig. 7A). However, such a rescue would not happen in
unstructured RNAs when splicing has a delay relative to cleavage
and polyadenylation (Fig. 7B). This scenario is further supported
by a conspicuous association between transcript 5′ and 3′ ends in
exhaustive transcriptome annotations, a typical example of which
is an intron that contains a 3′ end of protein-coding transcript
and a 5′ end of another, usually noncoding transcript (Fig. S7). It
is 2.86 ± 0.10 times more likely to see a 5′ end in an intron that
contains a 3′ end, and hence the enrichment of poly(A)-seq
clusters within PCCRs also implies the enrichment of 5′ ends and
CAGE clusters. The described mechanism could be responsible
for the generation of transcripts with alternative 3′ ends, for
example, for the RNA structure-mediated switch between splicing
and polyadenylation in the Nmnat gene in D. melanogaster27.

RNA structure probing by icSHAPE and the assessment of
long-range RNA–RNA interactions by photo-inducible RNA

cross-linking are the most current techniques for global analysis
of RNA structure in vivo18,22–24. However, these data reflect gene
expression patterns that are specific to cell lines, in which they
were generated, and have strong undercoverage bias in intronic
regions, which are spliced out and degraded. The reduction of the
intronic signal is also a common problem for RNA cross-linking
and immunoprecipitation experiments96. In addition, it was
meaningful to compare PCCRs only to intramolecular RNA
contacts that belong to CIRs and do not exceed the distance limit
of 10,000 nts. Consequently, the validation with respect to these
assays was possible only for a small number of PCCRs, on which
the comparison, however, showed a concordant result (Table 2).
On the other hand, the fact that 2961 out of 916,360 PCCRs
were supported by RIC-seq is highly significant compared to the
expected intersection of 381 structures for two interval sets of the
same size obtained by random shifts.

The major problem of the current method is the high number
of false-positive predictions. On the one hand, the procedure for
the estimation of FDR is based on the assumption that pre-
mRNAs of different genes do not interact with each other, and
that regulatory sequences in different genes evolve independently.
However, psoralen cross-linking and proximity RNA ligation
assays have demonstrated that this assumption may not be
completely true because RNA–RNA interactions in trans are
highly abundant20–23. Therefore, the re-wiring control over-
estimates FDR, as it did in previous works29. On the other hand,
the amount of random complementarity in CIRs is, indeed, quite
large. For instance, two intronic binding sites of a transcription
factor that occur on opposite DNA strands will be detected as a
PCCR, and they may even be supported by spurious compensa-
tory substitutions that result not from selective constraints on
RNA structure, but from evolving specificity of the binding site.
An example of this is the RP11-439A17.4 lncRNA, a part of which
is complementary to conserved sequences in 22 mammalian
histone genes, but the complementary elements are, in fact, the
binding sites of MEF-2A, a myocyte-specific transcription
factor29. Evolution maintains them conserved and technically
complementary for reasons other than base pairing, which makes
this situation in principle indistinguishable from evolutionary
selection acting on true RNA structures. To reduce FDR, a sig-
nificant improvement could be achieved by combining the
methodology presented here with the emerging experimental

Fig. 7 RNA folding and splicing could mediate co-transcriptional suppression of premature cleavage and polyadenylation (a hypothesis). A The
cleavage and polyadenylation of a structured pre-mRNA is rescued by the co-transcriptional splicing of the intron, while RNA structure stabilizes the
molecule through intramolecular base pairings. B In the absence of RNA structure, such a rescue would not happen when splicing has a delay relative to
cleavage and polyadenylation. Switching between (A) and (B) depends on the rates of splicing, folding, and RNA Pol II elongation.
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strategies for profiling of RNA–RNA contacts such as RIC-seq24.
This appears to be the most promising direction for future
research.

In sum, eukaryotic pre-mRNAs are structured macromolecules
with base pairings that span long distances, and RNA secondary
structure plays a critical role in their processing. Here, we pre-
sented the most complete up-to-date catalog of CCRs in human
protein-coding genes and provide their extensive characteriza-
tion. In spite of the high false-positive rate, the predicted double-
stranded RNA structures show significant associations with vir-
tually all steps of pre-mRNA processing. We offer this catalog for
common use as a reference set and provide its convenient
visualization through a UCSC Genome Browser track hub.

Methods
Genomes and transcript annotations. February 2009 (hg19, GRCh37) and
December 2013 (hg38, GRCh38) assemblies of the human genome were down-
loaded from Genome Reference Consortium97. These assemblies were used with
GENCODE transcript annotations v19 and v33, respectively98. Only genes labeled
“protein coding” were analyzed. Transcript annotations were parsed by custom
scripts to extract the coordinates of exons and introns. The results for GRCh37
assembly are reported throughout the paper; however, Genome Browser track hubs
(see below) contain tracks for both GRCh37 and GRCh38 assemblies.

Filtration of intronic regions. The intronic regions were defined as the longest
continuous segments within genes that do not overlap any annotated exons
(including exons of other genes). The intronic regions were extended by 10 nts into
the flanking exons to enable the identification of CCRs that overlap splice sites such
as regions R1–R5 in the human Ate1 gene36. Next, these regions were intersected
with the set of conserved RNA elements (phastConsElements track for the
alignment of 99 vertebrates genomes to the human genome99) using bedtools100.
We additionally excluded genomic regions that overlap intervals from the UCSC
Genome Browser tRNA track101–105, sno/miRNA track106–112, TFBS Conserved
track, which consists of Conserved Transcription Factor Binding Sites generated
using the Transfac Matrix and Factor databases113, RepeatMasker track114 (all
categories including SINE (short interspersed nuclear elements) and LINE (long
interspersed nuclear elements)), SimpleTandemRepeats located by Tandem
Repeats Finder115, and Human Nuclear mitochondrial sequences116–118. Genomic
regions marked as “snRNA,” “miRNA,” “miscRNA,” “snoRNA,” “rRNA,” and
“tRNA” in GENCODE genome annotation were also excluded. The resulting set of
CIRs was used as an input for the next step, which is described below.

PrePH. The first reference to long-range RNA structure appeared in the literature
under the term “panhandle structure,” which was coined in by virologists in the
1980s to refer to a complementary base pairing between the 5′ end and 3′ end of
the RNA genome of several segmented negative-stranded viruses119.

The PrePH utility uses a k-mer-based technique, which is similar to previously
published IRBIS method29, to identify all pairs of nearly perfect complementary
regions in a given pair of sequences. At the preparatory step, PrePH pre-computes
a 4k × 4k table containing helix hybridization energies for all pairs of k-mers
(default k= 5) that are either Watson–Crick complementary or contain a few GT
base pairs (by default at most two) using energy tables from Vienna RNA
package120. The dynamic programming matrix is computed by local
Smith–Waterman algorithm using a limited set of structural rules: initiating a k-nt-
long helix, extending a helix by a stacking base pair, and adding to a helix a short
internal loop or bulge with up to m nucleotides in each strand (default m= 2),
followed by another helix. To speed up back-tracking, PrePH uses auxiliary
matrices to store intermediate structures, and reports nonintersecting pairs of
complementary regions passing the energy threshold (by default −15 kcal/mol).
Here, two pairs of complementary regions, x1 complementary to y1 and x2
complementary to y2, are referred to as intersecting if x1 has common nucleotides
with x2 and also y1 has common nucleotides with y2. That is, two pairs of
complementary regions may intersect by only one, not both interacting strands.
The reduced scoring scheme, optimized back-tracking, and indexing of the initial
sequences by k-mers result in a great improvement of computation speed. The
detailed description of PrePH is exempt to Supplementary Methods. PrePH
software is available at github (https://github.com/kalmSveta/PrePH) (codes are
available at: https://doi.org/10.5281/zenodo.4601044).

Benchmark. We compared the accuracy and runtime of PrePH to those of other
programs such as IntaRNA2.0121, RIsearch2122, RNAplex123, DuplexFold124, and
bifold124. PrePH was run with the following parameters: k-mer length is 5 nts,
maximal distance between complementary regions is 10,000 nts, the minimal
length of the aligned regions is 10 nts, the energy threshold is −15 kcal/mol, and
the maximal number of Wobble pairs in a k-mer is 2. The parameters for the other
programs are listed below.

To benchmark the time efficiency, we use a set of 1000 pairs of randomly
chosen conserved intronic sequences from the human genome. The sequences were
50 to 500 nts long and contained nearly perfect sequence complementarity. All the
programs were run with the energy threshold set to −15 kcal/mol. IntaRNA2:0
outOverlap parameter was set to B, which allowed overlap for interacting
subsequences for both target and query; n parameter was set to 100 to limit the
maximal number of suboptimal structures; qAcc and tAcc were set to N to omit the
computation of accessibility. RIsearch2 seed length was set to 5, the length of
flanking sequences considered for seed extension was set to 50. RNAplex fast-
folding parameter was set to f2 to allow the structure to be computed based on the
approximated model. DuplexFold and bifold maximum loop/bulge size was
set to two. All other parameters were left at their default values. The computations
were carried out on Intel R Core TM i5-8250U CPU with 1.60 GHz. PrePH showed
the quickest result compared to the other programs (191.4 s) (Table S2A). At that,
the equilibrium free energies of the predictions by PrePH correlated reasonably
well with those of RNAplex, IntaRNA, and Duplexfold (Fig. S13).

For the comparison of MFE between different methods, we used simulated data
with 1000 pairs of nearly perfect sequence complementarity, which were from 10 to
50 nts. All the programs were run with the energy threshold set to −15 kcal/mol.
The other parameters were as before. Pearson’s correlation coefficients were
computed between energies of the predicted optimal structures. To compare the
predictions of PrePH with predictions of other programs at the level of individual
base pairs, we computed the following metric

Score ¼ jS1 \ S2j
jS1j

;

where S1 is the set of base pairs predicted by PrePH, S2 is the set of base pairs
predicted by the other program, and S1 ∩ S2 is the common set of base pairs (∣S∣
denotes the cardinality of a set). The number of base pairs that were common
between PrePH and each of the other programs as a fraction of the number of base
pairs predicted by PrePH alone was used as a measure of specificity (Table S2B).
PrePH showed specificity >80% with respect to all other programs except bifold;
however, the latter was not in agreement with all other programs.

We conclude that PrePH allows for computationally efficient detection of
PCCRs without significant loss of accuracy compared to other methods. The
computation time of PrePH on the complete dataset of CIRs was 4 h (15 threads,
1200MHz CPUs each).

Relative position within the gene. The relative position of a genomic interval [x,
y] in the containing gene [a, b], where x, y, a, and b are genomic coordinates on the
plus strand, was calculated as p ¼ x�a

ðy�xÞ�ðb�aÞþ1 for the genes on the positive strand.

For the genes on the negative strand the value of 1− p was used instead.

GO enrichment analysis. GO enrichment analysis was performed by controlling
for the gene length since genes with PCCRs tend to be longer than genes without
PCCRs. We randomly matched each gene with PCCRs to a gene without PCCR of
approximately the same length. The enrichment of GO terms125,126 between these
two gene sets was calculated with clusterProfiler R package127.

Experimental RNA structure data. The icSHAPE reactivity scores128 were
mapped from GRCh38 to GRCh37 human genome assembly by LiftOver129. The
reactivity score of a CCR was calculated as the average reactivity of its base-paired
nucleotides, for which the icSHAPE reactivity score was available. The background
reactivity was calculated as the average reactivity of the same number of nucleo-
tides chosen at random outside the CCR, but in the same CIR. Wilcoxon’s signed-
rank test was applied to matched samples of reactivity score differences to test for
departures from zero.

The coordinates of base-paired regions from PARIS experiments22 (15,036
pairs) were mapped from GRCh38 to GRCh37 by Liftover129. The coordinates of
base-paired regions from LIGR-seq data (551,926 pairs) were used in the GRCh37
human genome assembly23. The coordinates of intramolecular base-paired regions
from RIC-seq data24 (501,144 pairs) were kindly provided by Prof. Xue by request
(Supplementary Data File 5). In all three datasets, we selected the interacting pairs
that were located intramolecularly within CIR of protein-coding genes from 1 to
10,000 nts apart from each other. This resulted in 907 such pairs for PARIS, 586 for
LIGR-seq, and 1804 for RIC-seq. In order to evaluate the precision and recall, we
selected CIR with at least one nucleotide overlapping the experimentally validated
structures and confined our analysis to PCCRs located in these regions. A CCR was
classified as a true positive if it had at least one common nucleotide with an
experimentally validated structure. A PCCR was classified as a true positive if both
its CCRs intersected by at least one nucleotide with an experimentally validated
such pair.

Cell culture, treatments, and RNA purification. A549 cell line (kindly gifted by
Dr. Ilya Terenin, Moscow State University) was maintained in Dulbecco’s modified
Eagle’s medium/Nutrient Mixture F-12 medium containing 10% fetal bovine
serum, 50 U/ml penicillin, and 0.05 mg/ml streptomycin (all products from
Thermo Fisher Scientific) at 37 °C in 5% CO2. Cell line authentication was con-
firmed using short tandem repeat analysis. The cell line was tested for the absence

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22549-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2300 | https://doi.org/10.1038/s41467-021-22549-7 | www.nature.com/naturecommunications 13

https://github.com/kalmSveta/PrePH
https://doi.org/10.5281/zenodo.4601044
www.nature.com/naturecommunications
www.nature.com/naturecommunications


of mycoplasma using MycoReport kit (EuroGene). For α-amanitin (Sigma) treat-
ments, 1 and 2 μg/mL of α-amanitin was added to cells at 50–70% confluency.
After 24 h of treatment, cells were harvested, total RNA was isolated using Pure-
Link RNA Mini Kit (Thermo Fisher Scientific). Poly(A)+ mRNA was purified
using Dynabeads Oligo(dT) 25 (Thermo Fisher Scientific) following the manu-
facturer’s instructions.

Library preparation and RNA-seq. Illumina cDNA libraries were constructed
using NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (New
England BioLabs) following the manufacturer’s protocol with the only modifica-
tion: the change of fragmentation time from 15 to 10 min. Complementary DNA
libraries were sequenced using the NextSeq500 (Illumina, San Diego, CA, USA)
instrument; 33–41 million raw reads were obtained for each sample with a 75 bp
read length. The results of RNA-seq have been deposited at Gene Expression
Omnibus under the accession number GSE153303.

Splicing quantification. RNA-seq data of poly(A)+ RNA for the HepG2 cell line
(accession numbers ENCFF670LIE and ENCFF074BOV) were downloaded in
BAM format from the ENCODE Consortium website130. Short-hairpin shRNA-
KD of 250 RBPs followed by RNA-seq data65 were downloaded in BAM format
from ENCODE data repository130,131 (Table S3). Poly(A)+ RNA from wild-type
Amr and Rpb1 C4/R749H mutant HEK293 cells treated with α-amanitin for 42 h
were downloaded from the Gene Expression Omnibus (GSE63375)71. RNA-seq
data of poly(A)+ RNA data from the A549 cell line treated with α-amanitin were
obtained as explained below and mapped to the GRCh37 human genome assembly
using STAR aligner v2.3.1z with the default settings132. The coordinates of cir-
cRNAs expressed in liver tissue and their associated SRPTM metrics (the number
of circular reads per number of mapped reads per read length) were obtained from
the TCSD database47. The genomic coordinates of adenine branch point nucleo-
tides were selected from the validated set of branch points expressed in K562
cells42.

RNA-seq experiments were processed by IPSA pipeline to obtain split read
counts supporting splice junctions133. Split read counts were filtered by the entropy
content of the offset distribution, annotation status, and canonical GT/AG
dinucleotides at splice sites with the default settings, and pooled between
bioreplicates. The exon inclusion rate (Ψ, PSI, or Percent-Spliced-In) was
calculated according to the equation

Ψ ¼ inc
incþ 2 ´ exc

;

where inc is the number of reads supporting exon inclusion and exc is the number
of reads supporting exon exclusion. Ψ values with the denominator <10 were
considered unreliable and discarded. Differential exon inclusion between a pair of
conditions (shRNA-KD vs. non-specific control and α-amanitin vs. untreated
control) was assessed as described previously134.

Cryptic and actively expressed splices sites in the human transcriptome were
identified using genomic alignments of RNA-seq samples from the GTEx
Consortium43. Splice sites with the canonical GT/AG dinucleotides were called
from split read alignments and ranked by the total number of supporting split
reads pooled across all 8551 samples. The top 2% (respectively, bottom 2%) of
splice sites among those supported by at least three split reads were referred to as
active (respectively, inactive). In order to identify cryptic splice sites, we applied the
same strategy as in ref. 135 by scanning the intron sequences for any sites that have
a MaxEntScan score >800 for donor sites and >950 for acceptor sites136 and
excluding splice sites that were detected in GTEx or present in the genome
annotation. MaxEntScan score thresholds were chosen to have a comparable
number of splice sites as in active and inactive sets above.

5′-end and 3′-end RNA processing. The genomic coordinates of human poly(A)
sites profiled by high-throughput sequencing of 3′ ends of polyadenylated tran-
scripts (poly(A)-seq) that were supported by 20 or more reads and intersected with
the annotated transcript ends in GENCODE database were used57. Similarly,
clusters of human CAGE tags expressed in the HepG2 cell line that were supported
by RPKM of at least 10 and intersected with the annotated transcript starts in
GENCODE database were used137.

RNA editing. A-to-I RNA-editing sites were obtained from RADAR53 and
REDIportal54 databases. To compare the density of RNA editing sites in CCR and
that in the adjacent conserved regions, we computed the number of adenosine
residues that are RNA-editing sites within CCR and compared it to the respective
figures for CIRs of the same length outside of CCR. OR was calculated for the
contingency table of the number of adenosine residues that are/are not RNA-
editing sites within/outside CCR.

eCLIP. eCLIP peaks for 74 RBPs assayed in HepG2 human cell line were down-
loaded from the ENCODE data repository in bed format65,130,131 (Table S4). The
peaks were filtered by the conditions log FC ≥ 3 and p value < 0.001. Since the
agreement between two replicates was moderate, we use the pooled set of eCLIP
peaks. To quantify the association between RBP binding and individual CCR, we

calculated for each RBP the number of CCRs that intersected with its eCLIP peaks
by at least 50% of the CCR length. This number was compared to the respective
number of intersections obtained in the random shift control. To quantify the
association of RBP binding with both CCRs in a PCCR, we constructed a con-
tingency table for the number of PCCRs that had/did not have eCLIP peaks in left/
right CCR for each RBP, and computed the respective OR. The 95% confidence
interval for the OR was calculated by Fisher’s test.

Population polymorphisms. To evaluate the enrichment of population poly-
morphisms in CCR, we used genotyping data from phase 3 of the 1000 Genomes
Project for 2504 individuals60 and computed the density of SNPs (single-nucleotide
variants (SNVs) present in >0.1% of individuals) in stacked nucleotide pairs of
CCR and compared it to the density of SNPs in conserved regions outside CCRs
(regions of each type were merged with bedtools merge138 before calculating
the densities).

To assess the impact of SNPs on RNA structure stability, we calculated PCCR
energy for the mutated sequence using energy parameters120 and compared it to
the respective energy of the structure with SNPs of the same substitution type as
observed originally, but introduced at a different position. We selected PCCRs with
the free energy change >2 kcal/mol by absolute value and compared the two energy
sets using Wilcoxon’s signed-rank test.

To evaluate the enrichment of compensatory mutations in PCCRs, we selected
SNVs that occur in >1% of donors in the 1000 Genome Project and intersected
their list with the list of base pairs in PCCRs. Among them, we estimated the
number of base pairs, in which a compensatory mutation occurred in >1% of
donors. To estimate the expected number of base pairs with compensatory
mutations, we first subdivided base pairs into groups composed of the same base
pair types (AT, TA, CG, GC, TG, GT) located on the same chromosome with the
same number of SNP donors. Then, we randomly interchanged (“re-wired”) base
pairs within each group, for example, A1T1 and A2T2 were replaced by A1T2 and
A2T1 and applied the same procedure again, that is, estimated the number of base
pairs, in which compensatory mutations defined by SNVs occurred in >1% of
donors (Fig. S6A). This randomization procedure was repeated 100 times.

Sequence conservation and complementary substitutions. To assess the degree
of evolutionary conservation of a CCR, we computed the difference between the
average PhastCons conservation score99 of all its nucleotides and the average
PhastCons conservation score of the same number of nucleotides in its flanking
regions within the same phastConsElements interval.

To assess the number of complementary substitutions in PCCRs and their
statistical significance, we used global MSAs of 99 vertebrate genomes with human
genome139. For each PCCR, we extracted two parts of the MSA corresponding to
two CCRs using Bio.AlignIO.MafIO module from biopython library140. The
organisms that had indels compared to the reference organism (hg19) in any of the
two CCRs were removed. The number of orthologous sequences for each PCCR
ranged from 15 to 99. The two alignment blocks were merged through an
additional spacer containing ten adenine nucleotides, resulting in an MSA
STOCKHOLM format with a secondary RNA structure generated by PrePH. Next,
we restrict the phylogenetic tree for the original MSA139 to have only the organisms
available for the given PCCR and pass the tree and MSA to R-scape v1.2.340 with
the following parameters: -E 1 -s –samplewc –nofigures. The output .out files of R-
scape were parsed by custom scripts to extract E values of individual base pairs.
The E value of the PCCR was defined to be equal to the product of E values of the
base pairs that were marked as having significant covariations by R-scape. As a
result of this procedure, E values were obtained for 909,146 PCCRs; 539,264 E
values for PCCRs that were <1 were adjusted using Benjamini–Hochberg
correction. MSA and the phylogenetic trees were downloaded from the UCSC
Genome Browser website (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
multiz100way/). Structural alignments were visualized using tableGrob function
from gridExtra R package.

Statistical analysis. The data were analyzed and visualized using R statistics
software version 3.4.1 and ggplot2 package. Nonparametric tests were performed
by built-in R functions using normal approximation with continuity correction.
MW denotes Mann–Whitney sum of ranks test. Boxplots in all figures are repre-
sented by the median, upper and lower quartiles, and upper and lower fences;
outliers are not shown. Error bars in all figures and the numbers after the ± sign
represent 95% confidence intervals. Two-sided p values are reported throughout
the manuscript unless the contrary is specified. The levels of significance 5%, 1%,
and 0.1% in all figures are denoted by *, **, and ***, respectively.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq data generated in this study are available through GEO repository under
the accession code GSE153303. Public data that were analyzed in this study are available
via accession codes listed in “Methods” and Supplementary information. Supplementary
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Data Files are available online through a repository at https://zenodo.org/record/4603132
(also see https://doi.org/10.5281/zenodo.4603132). All relevant intermediate data files are
available from the authors upon request.

Code availability
The software developed in this study is available at https://github.com/kalmSveta/PrePH
(codes are available at: https://doi.org/10.5281/zenodo.4601044).
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