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Brain-computer interfaces (BCIs), a new type of rehabilitation technology, pick up nerve cell signals, identify and classify their
activities, and convert them into computer-recognized instructions. This technique has been widely used in the rehabilitation
of stroke patients in recent years and appears to promote motor function recovery after stroke. At present, the application of
BCI in poststroke cognitive impairment is increasing, which is a common complication that also affects the rehabilitation
process. This paper reviews the promise and potential drawbacks of using BCI to treat poststroke cognitive impairment,
providing a solid theoretical basis for the application of BCI in this area.

1. Introduction

Strokes rank first among long-term disabling diseases [1].
Poststroke cognitive impairment (PSCI) is one of the most
common residual symptoms of strokes. In a recent review
and meta-analysis of hospital-based studies, PSCI is reported
to be 53.4% after stroke. Results from the STROKOG con-
sortium showed different domains of cognitive impairment
in 30-35% of patients a short time after a stroke [2]. It not
only affects the quality of life of stroke patients but also
places a heavy burden on society and the economy. An
important feature of PSCI is that it is preventable and treat-
able [3], so it is important to explore how to improve cogni-
tive function after strokes using modern neurorehabilitation
techniques. Brain-computer interface (BCI), as a new reha-
bilitation technology, not only can be used to evaluate the
efficacy of cognitive impairment after strokes [4] but may
also be applied to the rehabilitation of cognitive ability. This

is of great significance for the early diagnosis and treatment
of cognitive impairment after stroke, and for preventing
mild cognitive impairment from developing into vascular
dementia or other diseases.

2. Overview of PSCI

Poststroke cognitive impairment (PSCI) is one of the major
complications of strokes and refers to a series of syndromes
from mild cognitive impairment to dementia caused by
strokes [5]. PSCI is common in all stroke subtypes, and even
patients with transient ischemic attacks (TTA) are at risk of
developing cognitive impairments and dementia [6]. PSCI
can affect multiple cognitive domains, including executive
functioning, memory, attention, language, and visuospatial
abilities [7], although executive dysfunction and memory
impairment are the most common [8]. Recent studies have
found that within a year after stroke occurrence, as many


https://orcid.org/0000-0002-8067-822X
https://orcid.org/0000-0003-0793-911X
https://orcid.org/0000-0002-5867-0301
https://orcid.org/0000-0002-6821-6284
https://orcid.org/0000-0002-4008-702X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9935192

as 53.4% of patients could show cognitive impairments [9],
and the proportion of mild cognitive impairment could be
as high as 80%. Additionally, more than 7% of PSCI patients
could develop dementia [10].

The type of stroke lesions, reperfusion status, brain com-
pliance, and nutritional status of stroke patients are all
related to the rehabilitation of stroke-related cognitive
impairment [11]. Additionally, in recent years, functional
neuroimaging studies have found that cognitive impairment
after stroke is also associated with lesions in distal brain
regions and changes in brain network connectivity [12].
Dacosta-Aguayo et al. used the resting-state functional mag-
netic resonance imaging (RS-fMRI) technology to study
these phenomena and found that PSCI patients had reduced
functional connectivity [13]. Another large study of hetero-
geneous stroke patients also found that damage to certain
brain regions may lead to disturbances in brain networks
and a variety of cognitive symptoms [14]. Through neuro-
imaging studies, Jaywant et al. found that poststroke execu-
tive dysfunction was related to changes in resting-state
functional connectivity. Overconnectivity of the cognitive
control network and reduced connectivity of the transhemi-
spheric frontal and parietal networks were closely related to
poststroke executive function. Therefore, cognitive training
that targets brain networks is also helpful for treating execu-
tive dysfunction following stroke [15]. In addition, nonver-
bal cognitive impairment in patients with aphasia after
stroke has been shown to be associated with extensive
destruction of white matter microstructure integrity,
wherein uncinate fascicle (UF) damage is closely related to
spatial perception (SP) and motor practice (MP) deficits [16].

PSCI evaluation usually employs neuropsychological
tests such as the Montreal Cognitive Assessment (MoCA)
and Mini-Mental State Examination (MMSE). However,
these scales usually rely on subjective judgment and do not
contain domain-specific cognitive assessment information
(i.e., they do not measure reading or writing abilities). As a
result, test results may not be accurate for PSCI patients
[17]. Additionally, there is no effective treatment strategy
for PSCI-related cognitive decline. Currently, drug therapy
and rehabilitation therapy are the main clinical treatments
for PSCI. The purpose of drug therapy is mainly to control
the risk factors related to cerebrovascular disease, to improve
the main symptoms of cognitive impairment and accompa-
nying mental symptoms such as depression and anxiety,
and to delay the progression of the disease [18]. However,
there are many side effects associated with drug therapy.
Acupuncture has also been used as a complementary and
alternative therapy for patients who do not respond well to
drug therapy [19]. Acupuncture can also improve the cogni-
tive functioning of patients with poststroke cognitive impair-
ment but no dementia (PSCIND) and reduce the chance of
developing PSD [20].

Rehabilitation treatment mainly involves cognitive reha-
bilitation, including relearning previously learned knowl-
edge or gaining new knowledge—which causes functional
changes and enhances cognitive functioning. Cognitive
rehabilitation mainly includes traditional cognitive retrain-
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ing and cognitive enhancement with the application of
high-tech equipment. Noninvasive brain stimulation (NIBS)
has been used for the treatment of PSCI, but the selection of
stimulation site, stimulation parameters, and mechanisms
need further study [21]. In addition, adaptive conjunctive cog-
nitive training (ACCT) also has positive effects on PSCI
patients’ attention and spatial awareness and reduces depres-
sion symptoms [22]. Finally, artificial intelligence, including
neurocognitive robots [23], and computer-assisted cognitive
training have also been employed to improve cognitive
impairment in stroke patients [24]. Current cognitive rehabil-
itation treatments are often only used for defects in cognitive
field training, and PSCI patients tend to show higher rates of
cognitive defects. Further, the patient’s mental health also
plays a role in reducing cognitive impairment [25], so multi-
modal assessment and rehabilitation should be used for PSCI
patients. As an emerging technology, BCI uses brain neural
activity as input, employs mathematical algorithms to decode
neural signals, and converts intentions or decisions into com-
mands for external machines such as computers. These com-
puters can then be used to monitor subjects’ mental state or
to improve cognitive abilities. In recent years, BCI has been
employed to treat a variety of neurological diseases. Further,
researchers have applied different BCI schemes to improve
PSCI, which is of great importance for treating PSCI-related
cognitive impairments, and for the prevention of vascular
dementia and other diseases.

3. Overview of BCI

3.1. Development of BCI. As early as 1969, Rosenfeld et al. [26]
detected modulated visual and auditory responses in animals.
Later, inspired by the adjustable nature of brain activity, Pro-
fessor Vidal from the University of California, Los Angeles,
created BCI to realize a technology for reading brain signals
[27] and first proposed the idea of using operant conditioning
to control computers. It was not until 1977 that Pfurtscheller
and Aranibar found through experiments that subjects could
change the frequency band power of EEG alpha (8-12Hz)
and beta (12-25Hz) signals in the motor region of the brain
by moving or imaginatively moving certain body parts and
that changes would occur both at the beginning of movement
and during the migration process. This marked the formation
of the first human biofeedback BCI [28].

3.2. Construction of BCI System. In contrast to the conven-
tional brain information output pathway, BCI is a new com-
munication and control system that connects the brain or
nervous system to any device capable of processing or com-
puting. BCI can be controlled by various signals sent by the
brain. These electrical, magnetic, or metabolic activity sig-
nals can then be further amplified, filtered, decoded, and
translated into signals to control external devices. A com-
plete BCI system usually consists of signal acquisition, signal
processing, feature extraction and selection, signal classifica-
tion, external control, and user feedback. Each of these parts
has a variety of developed methods, and a heterogeneous
combination of different approaches allows the BCI to be
customized to meet specific disease needs (Figure 1).



BioMed Research International

Signal acquisition ]—[Signal processing ]—( Fezﬂgz:lt zjzzon]—( Classification ]7

Assessment, monitoring,
training, treatment

|

Brain activity

Computer

devices

<«+——| Device commands

F1GURE 1: Basic layout and process of a BCI system.

3.2.1. Signal Acquisition and Processing. BCI can be divided
into two types—noninvasive and invasive—depending on
signal acquisition mode. Noninvasive BCI is a safer, more
convenient, and noninvasive technique to obtain human
brain signals directly from the scalp. Among noninvasive
BCIs, EEG is the most commonly used signal acquisition
method. These BCI systems are divided into exogenous
BCI and endogenous BCI according to the source of EEG
stimulation. Exogenous BCI refers to EEG signal patterns
induced by external stimuli, such as event-related potentials
(ERPs) [29], auditory steady-state responses (ASSR) [30],
steady-state visual evoked potentials (SSVEPs), and P300
[31]. Hwang et al. introduced a novel BCI mode based on
ERP-BCI for patients with complex eye dysfunction, which
does not rely on gaze function and can complete visual stim-
ulation under closed eyes [32]. Hill et al. are developing new
BCI systems to make previously employed ASSR stimula-
tions more natural and intuitive [33]. Jiang et al. developed
new BCI systems based on EEG of the event-related poten-
tial-neurofeedback-brain-computer  interface =~ (ERP-NF-
BCI) platform used for training. During the training process,
subjects’ brain electrical signals were captured using a wire-
less EEG headset. At any given time, subjects were instructed
to direct their attention to tasks related to a stimulus or to
ignore an irrelevant stimulus. Patients trained the EPR-NF-
BCI system to provide positive feedback and improve target
visual stimulus attention abilities [34]. Among all of these
systems, BCI based on P300 is the most popular because it
has high classification accuracy and a fast information trans-
fer rate (ITR). In addition, the hold-release function devel-
oped by Alcaide-Aguirre et al. allows for faster (6-16
times) and more continuous control of P300-BCI [35], and
changes in patients’ visual and auditory senses affect its per-
formance [36]. However, when SSVEP-BC-based visual
stimulation is applied in elderly patients, eye fatigue is com-
mon, and epileptic seizures are sometimes induced. Another
BCI system is based on the endogenous BCI paradigm,
which uses self-modulating EEG signal patterns without
external stimulation, such as sensorimotor rhythms (SMRs)
[37], slow cortical potentials (SCPs) [38], and signals gener-

ated by imagining motor movements without the need for
actual muscle movement.

Magnetoencephalography (MEG) has many advantages
over electroencephalography, such as its ability to record
gamma signals from the cortical sulcus and from higher
wavelengths. However, MEG is rarely applied because it
needs to use expensive superconducting materials [39].
Functional magnetic resonance imaging (fMRI) can also
reflect the activity of neurons by measuring blood flow sig-
nals. Sulzer et al. found that subjects were able to control
blood oxygenation level-dependent (BOLD) signals in spe-
cific brain regions and that the BOLD signals were related
to low and high-frequency field potentials in BCIs [40].
However, real-time fMRI has poor temporal resolution and
a high price, so it is not applicable to BCIs. Functional
near-infrared spectroscopy (FNIRS), by contrast, is cheaper
and more portable. However, the signal-to-noise ratio
(SNR) and spatiotemporal resolution of ENIRS are also lim-
ited, and the communication rate is even lower than that of
EEG-based BCI [41]. For invasive signals, signals on the pia
mater surface (also known as electrocorticogram (ECoG)),
signals on the dura mater surface (epidural field potentials
(EFPs)), or signals in the cortex (sharp waves or local field
potentials (LFPs)) are usually used [42]. For example, Van-
steensel et al. designed an ECoG-BClI-based cortical intra-
cortical brain-computer interface (IBCI) for typing and
playing games [43]. Moses et al. used a high-density cortical
electrogram to realize real-time decoding of the superior
temporal gyrus during an auditory exercise [44]. Research
by Pandarinath et al. further showed that IBCI could provide
high communication rates [45]. In addition, biofeedback
BClIs based on LFPs may also be able to obtain more reliable
neural signals for corresponding regulation [46]. Compared
with noninvasive signals, invasive signals have a higher SNR,
higher communication rate, and higher temporal and spatial
resolution. In order to improve BCI performance, a series of
problems must be overcome—including low classification
accuracy, small degrees of freedom, and a steep learning
curve for understanding how to operate BCI. Hybrid
brain-computer interfaces (hBCls) and multimode BCIs



have been developed for rehabilitation that attempt to solve
these problems—including P300 and SSVEP, P300 and
motor imagery (MI), EEG and eye movement (EOG), EEG
and electromyography (EMG), and EEG and electrocardio-
gram (ECG) setups [47]. For example, Fazli et al. [48] devel-
oped a multimodal BCI that combined EEG and near-
infrared spectroscopy (NIRS) and improved the signal clas-
sification accuracy for 90% of participants. In addition,
Wang and Jung also proposed a collaborative BCI that inte-
grates information from multiple users. Compared with
single-user BClISs, this system effectively integrates the brain
activities of a group of people, which vastly improves the
overall performance [49]. Multimodal BCI has high sensitiv-
ity and specificity and is resistant to ambient noise. The era
started with noninvasive brain-computer interfaces (BCIs),
based on electroencephalography (EEG) [50]. Noninvasive
BCI systems have one advantage over the invasive methods,
as they do not require any surgical intervention, and their
implementation is neither difficult nor risky [51]. Their
nature of being noninvasive has made this technique popu-
lar. The application potential is vast and ranges from clinical
to home-entertainment applications, such as the popular
and inexpensive customer-grade EEG headsets [52]. There
is still a drive toward a more cost-effective, smaller, portable,
and efficient device in medicine especially in the neurosci-
ence field [53, 54]. The future direction also involves a com-
bination of noninvasive BCIs, coupled with augmented
reality (AR) systems. Future trends in the development of
the BCI systems are probably strongly correlated with the
development of intelligent algorithms for the analysis of bio-
medical data and the systems with a reduced number of
channels [55]. Therefore, noninvasive BCIs and hBCIs based
on EEG show the most promise for application in neurolog-
ical rehabilitation (Table 1).

3.2.2. Feature Extraction and Feature Classification. Fre-
quency bands recorded by EEG can be identified and used
to express the patient’s intention after signal transformation
and classification. Therefore, effective extraction of EEG sig-
nal characteristics and accurate classification are two of the
important steps for any BCI system. Kober et al. used an
EEG Fast-Fourier Transform (FFT) feature extraction
method to detect the effects of neurofeedback (NF) training
on memory improvement following stroke [56]. Ieracitano
et al. used the continuous wavelet transform (CWT) to
develop a new automatic classification method of EEG
records based on multimodal machine learning for the
detection of patients with mild cognitive impairment
(MCI) or Alzheimer’s disease (AD) [57]. Based on P300-
BCI, Onishi and Natsume improved the linear discriminant
analysis (LDA) feature classifier into an integrated stepwise
linear discriminant analysis (SWLDA) classifier with over-
lapping partitions, which significantly improved BCI perfor-
mance [58]. Chen et al. [59] proposed a BCI based on the
SSVEP innovative coding method, which uses a relatively
large frequency flicker (10, 12, and 15Hz) stimulation of
brightness, and low-frequency alternating (0.5, 1 Hz) color
modulation, to induce intermodulation frequencies at the
same time. This increases the number of single frequency
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flashes and allows the system to have a classification accuracy
rate of 93.83% and ITR of 33.90 bits/minute. Some new EEG
feature extraction and classification have also recently
emerged. For example, the sparse Bayesian learning [60] has
been used to predict the behavior or cognitive state of subjects.
Deep learning algorithms [61] are also used to extract multi-
source EEG signals and carry out high-precision classification.
In addition, the use of complex networks is a new method
which can be used to analyze the structural changes of brain
networks in patients with nervous system diseases and to
reveal the relationship between brain functional patterns and
disease progression. In addition, the Granger causality
methods are also used to evaluate brain connectivity [62].
These newly optimized feature extraction and classification
methods continue to improve BCI performance, which pro-
vides a good technical foundation for the rehabilitation of cog-
nitive impairment after stroke.

3.2.3. External Control and User Feedback. External control
involves the processing of collected signals into digital com-
mands using a combination of filtering, transformation, and
classification algorithms, and then receipt of those signals by
effectors. Any device that can be programmed to receive func-
tional commands can be used in the rehabilitation of cognitive
impairment after stroke. However, fully functional BCI systems
provide feedback only online to the user after the effectors
receive instructions. Feedback methods include visual, auditory,
and tactile sources, among which visual feedback is most com-
mon [63]. There is also neurofeedback (NF), which is a special
form of feedback based on EEG-BCI. During NF, the applica-
tion interface displays brain activity intuitively and in real time
to the user. The user can then self-regulate brain functioning
according to the feedback and make it return to a normal state.
NF techniques are usually based on EEG or RT-fMRI. NF train-
ing based on EEG signals involves repeated tasks and has been
shown to improve attention, executive function, and memory
[64]. Robineau et al. showed that, in six stroke patients, RT-
fMRI-based NF improved visual stimulation awareness [65].
In addition, NF training can also regulate sensory motor
rhythm (SMR) in stroke patients and healthy elderly people
and is associated with significant improvements in behavior
and memory during nonverbal learning tasks [66]. In addition,
some BCI systems synchronize neural activity with feedback
devices to create closed-loop multimodal feedback, enhance
the Hebbian plasticity, and help restore motor function. Fur-
ther, closed-loop BCI systems can also be used as biofeedback
platforms to improve and enhance individual cognitive ability.
New settings, including multiplayer collaboration and EEG-
NF in virtual environments and videogames, are also constantly
being developed in order to make BCI more powerful, exciting,
and challenging [67].

3.3. The Mechanism of BCI Promoting Cognitive
Rehabilitation after Stroke

3.3.1. Promote Neural Remodeling. The human brain per-
forms complex cognitive functions such as learning, mem-
ory, and emotion processing through the normal activity of
nerve cells. When the body’s normal neural pathways are
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injured, BCI can serve as part of the injury “bypass.” BCI
connected directly to an external control device, or BCI used
in tandem with other techniques (i.e., functional electrical
stimulation (FES) and virtual reality (VR)), has been shown
to promote functional recovery [68-70]. Nie and Yang
showed that MI promoted functional neuron remodeling,
increased the expression of scaffold proteins and regulatory
proteins, enhanced synaptic plasticity, and promoted learn-
ing and memory-related cognitive functions [71]. Ortiz
et al. also confirmed that a new type of BCI based on gamma
bands could enhance neuroplasticity, promote cognitive and
motor rehabilitation, improve the operating accuracy of exo-
skeleton control, and improve attention levels during gait
walking [72]. Kleih et al. also proposed that BCI could
enhance the plasticity of neurons by activating language cir-
cuits and thus promote the recovery of language functions in
patients with aphasia after stroke [73]. fMRI and diffusion
tensor imaging further confirmed the neuroplasticity of
stroke patients after BCI therapy [74]. On this basis, Zuo
et al. [75] proposed a hybrid BCI system that involves both
MI and P300. In this program, 12 healthy subjects were
asked to imagine writing Chinese characters in a specific
order. Results showed that the recognition accuracy of
patients exposed to mixed BCI was significantly higher than
that of those exposed to single P300 (P <0.05) or MI
(P <0.01) BCI alone.

3.3.2. Promote Neural Network Recovery and Enhance Brain
Connectivity. Changes in brain network connectivity pat-
terns are highly predictive of cognitive performance. Cassidy
and Cramer have argued that all cognitive rehabilitation-
related neuronal remodeling phenomena are related to
changes in brain network structures [76]. Fodor et al. used
128-channel EEG to study event-related synchronic poten-
tials (ERS) in 17 patients with mild cognitive impairment
(MCI) and 21 healthy controls during the Sternberg working
memory task and found that event-related synchronic (ERS)
potentials in « and 8 bands were significantly reduced in
patients with MCI, indicating early impairment of neural
networks related to working memory [77]. Toppi et al. also
estimated the brain connectivity of patients with memory
deficiencies after stroke based on the EG-BCI-NF training
method and found that improvement of memory function
was associated with increases in the predensity index of
brain connectivity and the left temporal alpha band, indicat-
ing that memory improvements are related to brain network
functioning [78]. Taken together, all of these studies provide
strong evidence for the utility of BCI for clinical treatment.
Zhang et al. also found changes in brain connectivity related
to the use of a motor imagination brain-computer interface
(MI-BCI) in the field of poststroke rehabilitation. The results
showed that right ventral internal parietal sulcus degree cen-
trality (DC), left parietal lobe eigenvector centrality (EC) and
cortical thickness (CT), and right dorsolateral prefrontal
cortex CT were significantly correlated with MI-BCI. In
addition, analysis of subjects’ working characteristics and
machine learning classification found that the EC and CT
could effectively predict the low intelligent users from the
high intelligent users with an accuracy of 83.3%, indicating
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that BCI based on brain connectivity can also be used for
cognitive assessments [79].

4. Application of BCI in PSCI

BCI was first used in stroke rehabilitation treatment in 2009
[80].BCI can not only detect brain activity—it can also be
used for cognitive assessment and training for patients with
cognitive impairment, help patients express their intentions,
address cognitive and memory impairments, and promote
communication. BCI technology has broad development
prospects for improving cognitive functioning, patient
autonomy, and quality of life. The range of applications of
BCI in PSCI is shown in Table 2.

Table 2 contains a total of 16 articles, of which 2 articles
are on BCI assessment, 4 articles focus on the training of
cognitive function by BCI, and 8 articles about the treatment
of cognitive impairment by BCI. Park et al. [82] used BCI to
assess cognitive engagement after stroke, while Shukin et al.
[90] used BCI to evaluate the efficacy of poststroke rehabili-
tation training with BCIL. Through different methods of BCI
cognitive training [81, 83, 85, 91], there are significant
improvements in multiple domains of cognitive impairment,
including executive ability [83, 89], language ability [84],
attention [87, 92], visuospatial ability [91, 93], and memory
[85, 94-96]. One of the other two articles showed that men-
tal fatigue state influenced the assessment and performance
of BCI [88], while the others showed that brain-computer
interface rehabilitation training was ineffective in patients
after stroke. See the application below for specific analysis.

4.1. Assessment of BCI for PSCI. With the development of
new intelligent rehabilitation technologies, BCI systems can
also provide more objective and accurate neuropsychological
assessments for PSCI patients. Zhang et al. designed a cogni-
tive functioning system for MCI screening using BCI tech-
nology. The results from the new functional assessment
system were highly correlated with the traditional Montreal
cognitive assessment system (r =0.83) [79].

Park et al. used EEG to evaluate the cognitive engage-
ment of 11 patients with chronic stroke while performing
motor tasks and observed that active motor tasks induced
greater event-related desynchronization (ERD) in the bilat-
eral motor cortices and supplementary motor area (SMA)
than did passive motor tasks [82]. In addition, Lyukmanov
et al. used a BCI-based system to conduct neuropsychologi-
cal tests on 55 patients with motor disorders after their first
stroke who were undergoing rehabilitation training. The
Fugl-Meyer assessment (FMA) and action research arm test
(ARAT) were used to detect the severity of motor impair-
ment and arm paralysis after stroke in the control group.
The BCI group received BCI-based neuropsychological tests
and motor imagination training that incorporated exoskele-
ton feedback under the control of BCI. At the end of the
evaluation, both groups showed improvements in ARAT
and FMA (parts A-D, H, and I), but only the BCI group
showed improvements in ARAT’s grasp score (P =0.012),
pinch score (P =0.012), gross movement score (P =0.002).
Certain neuropsychological tests (i.e., the Taylor figure test,
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TABLE 2: Summary of articles on BCI-based applications for poststroke cognitive impairment.

Publications Title Signals Sample Tasks Positive?
Cognitive Alterations in Event-related potential 11 ischemic Yes (cortical activation was
Yan et al. Motor Imagery Process after ~ (ERP), event-related stroke Motor imagery (MI)  altered differently in each
[81] Left Hemispheric Ischemic ~ synchronization (ERD/ atients training cognitive substage of motor
Stroke ERS), P200, P300 p imagery)
Assessment of Cognitive
Park et al. Eftgagement " Stroke. Electroencephalography 11 chronic Cognitive function
[82] Patients from Single-Trial (EEG); ERD stroke assessment Yes
EEG during Motor ’ patients
Rehabilitation
Investzgatmg the Effects of a ) 10 sessions ' '
Toppi et al Sensorimotor Rhythm-Based hemisphere  SMR-based brain- A: yes (spatial attention and
pp " BCI Training on the Cortical ~ Sensorimotor (SMR) p . memory)
[78] . °, stroke computer interface-
Activity Elicited by Mental . L B: no
Imagery patients (BCI-) NF training
The Effect of Neurofeedback
Cho et al. on a Brain Wave and Visual Electroencephalography 27 stroke Neurofeedback  Yes (concentration and visual
[64] Perception in Stroke: A (EEG) patients (NFB) training perception)
Randomized Control Trial
Yes (FMA score (P < 0.03).
. EEG sensorimotor power
Pichiorri B’g;z;zo;}g Z)t:rlrin;eg ace High-density 28 subacute BCLsupported-MJ  SPECtr occurred with greater
: : sery electroencephalographic stroke PPO involvement of the
et al. [83] Practice during Stroke . training . . .
Recover (EEG) patients ipsilesional hemisphere in
Y response to MI of the
paralyzed trained hand)
Specific Effects of EEG-Based EEG-based
Kober et al.  Neurofeedback Training on SMR. upper alpha 17 stroke neurofeedback 70%: yes (verbal short- and
[56] Memory Functions in > UPP P patients trainin long-term memory)
Poststroke Victims &
Shutting Down Sensorimotor Multichannel Sigsiisii;(z)lzr
Reichert Interferences after Stroke: A electroencephalography 1 stroke thythm (SMR) Yes (short- and long-term
et al. [66] Proof-of-Principle SMR (EEG), sensorimotor patient ne)tlltro feedback memory)
Neurofeedback Study rhythm (SMR) -
training
Toward a P300-Based Brain-
Computer Interface for .
Kleih et al.  Aphasia Rehabilitation after P300. EPR 5 stroke Vls;aclif;?)(;i)liﬁased Yes (attention, accuracy in
[84] Stroke: Presentation of ’ patients traigin 8 spelling, and reading)
Theoretical Considerations &
and a Pilot Feasibility Study
Upper Alpha-Based
Kober et al Neurofeedback Training in Multichannel 2 chronic ~ Upper alpha-based
[85] ' Chronic Stroke: Brain electroencephalogram stroke neurofeedback Yes (memory functions)
Plasticity Processes and (EEG) patients training
Cognitive Effects
Behavioral and Cortical
Effects during Attention- . .
. . . Covert visuospatial
Tonin et al. Driven Bram—Corﬁp uter EEG 3 st'roke attention- (CVSA-) Yes (visuospatial)
(86] Interface Operations in patients 4 . BCI trainin
Spatial Neglect: A Feasibility J
Case Study
P;:;Si’;:?: : 115;};1“5 llléizl;lno—n > 12 sessions Yes (the Taylor figure test,
Lyukmanov Com ufer Interface: A Electroencephalography  hemiplegic BCLsupported choice reaction test, head
et al. [82] P .. ’ (EEG) stroke pport test, and online accuracy
Clinical and . mental training
patients rate)

Neuropsychological Study
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TaBLE 2: Continued.
Publications Title Signals Sample Tasks Positive?
Posts.tr(.)ke R?habzlztat‘zon 140 chronic
Shukin et al Training with a Brain- cerebral  Neuropsychological
' Computer Interface: A P300-evoked potentials . . - Yes
[4] .. ischemia testing
Clinical and atients
Neuropsychological Study b
Usage of Brain-Computer
Interface + Exoskeleton .
Neural interface .
Technology as a Part of . Yes (memory, attention,
Kotov et al. . . . . 44 stroke  brain-computer + . .
Complex Multimodal Multimodal stimulation . visual, and constructive
[87] . L patients exoskeleton (BCI) .
Stimulation in the trainin skills)
Rehabilitation of Patients &
with Stroke
Assessment of the Efficacy of
EEG—Based MI-BCI with EEG-based MI-BCI
Foong et al.  Visual Feedback and EEG 11 stroke . . o
) EEG . visual feedback Yes (fatigue-monitoring)
[88] Correlates of Mental Fatigue patients trainin
for Upper-Limb Stroke &
Rehabilitation
Therapeutic Effects of Brain-
Computer Interface-
Controlled Functional . 25chronic BC.I —controllec.l Yes (executive capacity: gait
; . . Sensorimotor rhythm . . functional electrical .
Chung et al. Electrical Stimulation . hemiparetic . . velocity and cadence
L. .. (SMR), midbeta, and stimulation (BCI-
[89] Training on Balance and Gait stroke (P =0.020), step length
theta . FES) feedback
Performance for Stroke: A patients trainin (P=0.031))
Pilot Randomized Controlled &
Trial
Brain-Computer Interface
Sebastidn- Treat'n?enff or Motor Electroencephalography 51 stroke 25 sessions
Romagosa Rehabilitation of Upper sienals atients MILBCI trainin No
et al. [70] Extremity of Stroke & P &

Patients—A Feasibility Study

choice response test, and head test) were significantly corre-
lated with online accuracy. These results suggest that
increasing the level of BCI control in exoskeleton-assisted
physical therapy can significantly improve rehabilitation
effects after stroke [97]. At the same time, BCI can also mon-
itor the global attention level related to task processes, and
monitoring the changes in attention during BCI training
can ensure better focus on the current task [98].

BCI can also be used to evaluate efficacy. Shukin et al.
[90] used cognitive P300-evoked potentials and a diagnostic
scale to evaluate treatment dynamics in patients with cogni-
tive impairment of chronic cerebral ischemia. Patients with
chronic cerebral ischemia aged were divided into a treatment
group and a control group and were treated with cytoflavin
and methyl succinate hydroxypyridine, respectively. During
the treatment period, the neurophysiological parameters of
both groups improved, especially in the patients treated with
cytoflavin. The amplitude of P300 in the left hemisphere was
9.21 (8.36, 10.11)~12.41 (10.23, 13.37) uV, which was a 1.3-
fold increase. The right hemisphere amplitude was 6.48
(5.26, 7.35) to 11.04 (9.29, 12.18) uV, a 1.7-fold increase.

BCI can also be used to monitor physiological changes in
stroke patients. ] Wilson et al. [99] reported that a platform
based on BCI COSBID-M3 multimode monitoring for
stroke and other neurological diseases could monitor corti-

cal functioning and pathology in real time during surgeries.
In summary, BCI has been widely applied to assess cognitive
functioning, but the single mode BCI also has some draw-
backs, including unreliable data, long length of assessments,
and fatigue. Therefore, the application of multimodal BCI
and modified BCI for multiple cognitive tests may be more
effective for comprehensive clinical assessments.

4.2. Training of BCI for PSCI. The application of BCI train-
ing for the rehabilitation of limb motor function after stroke
is developing rapidly. Cognitive training is another focus of
neurorehabilitation research. Kruse et al. conducted a
meta-analysis on the influence of BCI training on the recov-
ery of brain function in patients with strokes and concluded
that BCI training could enhance recovery [100]. Lee et al.
have also shown that BCI training can improve attention,
visuospatial abilities, and memory in older adults. They are
also developing a larger BCI cognitive training intervention
trial for the cognitive assessment of patients with early
dementia [101].

Neurofeedback training (NFT) and motor imagination
(MI) training are two common methods of BCI cognitive
function training. Cho et al. [91] found that NFT showed a
significant increase in attention and visual perception over
traditional rehabilitation training. They also showed
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significant changes in EEG-detected beta values, indicating
that NFT can actually improve cognitive performance. BCI
devices also can monitor NFT influences on memory func-
tion. One example is the work of Silvia Erika Kober, on
memory defects in stroke patients. Before NFT, EEGs
showed that the left brain artery ischemic stroke patients’
hemispheres had pathological delta (0.5-4Hz) and highest
alpha (10-12Hz) frequencies. After NFT, the EEG showed
more standard frequency topography on both sides. Mem-
ory tests on patients with bilateral subarachnoid hemorrhage
revealed significant improvement in both short-term and
long-term memory and slight improvement in working
memory, following NFT. Patients with left cerebral artery
ischemic strokes had significant improvements in long-
term memory after NFT [85]. Ruiz et al. [102] found that
conscious control of the anterior insula increased cognitive
flexibility in a facial emotion recognition task in healthy
elderly people through real-time BCI-NFT, further demon-
strating the effectiveness of BCI in cognitive enhancement
and training.

Gomez-Pilar et al. [103] showed that NFT based on MI-
BCI could enhance cognitive function in elderly patients. In
this study, 63 subjects were recruited—31 in the NFT group
and 32 in a control group that did not receive training. Sub-
jects were asked to practice five tasks of increasing difficulty
over and over again before giving neural feedback through a
motion visual-controlled, moving-on-screen program. Cog-
nitive test results showed that, after five NFT sessions, four
measures of cognitive function (visuospatial, language,
memory, and intelligence) improved significantly (P < 0.01
). Thus, repeated BCI training may promote neural plasticity
by repeatedly stimulating the parts of the brain involved in
cognitive processing. In addition, studies have shown that
MI can promote neural plasticity [104]. Yan et al. [81] used
EEG to study 11 patients with left hemisphere ischemic cere-
bral apoplexy and found that, after MI training, cognitive
changes occurred. MI training has been widely used to pro-
mote functional rehabilitation after stroke. In addition, BCI
can provide real-time, quantitative monitoring of brain
function in conjunction with MI training. Pichiorri et al.
[83] studied 28 patients with subacute severe cerebral apo-
plexy dyskinesia and used BCI to support MI training. They
found that, compared with patients who underwent unsup-
ported MI training, the BCI training upper-limb Fugl-
Meyer assessments improved significantly (P < 0.03), senso-
rimotor alpha and beta bands were more highly synchro-
nized, and resting ipsilateral brain connectivity within the
same bands increased significantly (P < 0.05).

BCI training is also affected by language, gender, and
other conditions. BCI versions and language settings may
also be different. However, even when employed in patients
who speak different languages, there appear to be no signif-
icant differences in BCI effectiveness. Lee et al. [105] used
EEG-based BCI in 32 English-speaking and 39 Chinese-
speaking elderly patients and found that cognitive abilities
were improved in both groups. However, gender has a mod-
erating effect on BCI. For example, Yeo et al. [106] applied a
BRAINMEM training system to improve cognitive func-
tions, such as attention, working memory, and delayed recall

in the elderly, and found that there was no significant differ-
ence in overall cognitive performance between the training
group and the nontraining group after treatment. In men,
however, the intervention group performed better than the
control group (P =0.046).

4.3. Treatment of PSCI by BCIL The treatment of PSCI by
BCI mainly manifests in improved executive function, atten-
tion, memory, language, and visuospatial abilities.

4.3.1. Executive Function. Due to executive dysfunction after
stroke, patients may be uncoordinated and/or experience
judgment errors while driving. However, BCI may remedy
these problems [107]. Chung et al. used brain-computer
interface-controlled functional electrical stimulation (BCI-
FES) rehabilitation techniques in patients with chronic
hemiplegic stroke and found that the training significantly
approved their ability to walk after stroke and that these dif-
ferences were also significantly increased compared to
patients who experienced FES rehabilitation only [89].

4.3.2. Memory Function. Memory is a cortical function that
preserves information and past experiences and helps people
acquire new skills and learn new information. Memory can
also be divided into short-term and long-term memory.
Due to severe functional damages and memory loss in stroke
patients, early memory deficit intervention may help prevent
the disease from progressing to Alzheimer’s disease or vas-
cular dementia [108].

BCI technology has been shown to improve memory,
attention, and consciousness in older people with cognitive
impairments. Lee et al. [109] used EEG-BCI in 31 healthy
elderly patients and measured cognitive improvements using
cognitive ability tests, card matching games, and other mem-
ory and attention tasks. The results showed significant
improvements in immediate memory (P =0.038), delayed
memory (P <0.001), and concentration (P =0.039) scores.
In addition, NF therapy based on EEG can also regulate
the brain activity of stroke patients and help restore memory
functions. Reichert et al. [94] applied NFT to basilar artery
thrombosis stroke patients and found that sensorimotor
rhythm neurofeedback (SMR-NF) training positively
affected memory functioning. Prior to starting NFT, patients
presented with short- and long-term memory deficits
(T — scores < 40). After SMR-NF, the performance of vari-
ous memory functions was better than expected.

Toppi et al. [95] studied the effects of a BCI closed-loop
neurofeedback intervention scheme. Two stroke patients
(patient A, female, 70 years, right hemisphere stroke lesion;
and patient B, male, 20 years old, left hemisphere stroke)
underwent 10 sessions of SMR-NF training to attempt to
address memory impairments. Neuropsychological tests
showed that, after NF training, one of the patients’ perfor-
mance accuracy on the Sternberg memory task was signifi-
cantly increased and reaction time was significantly
decreased (P <0.05). Auditory memory and visuospatial
short-term memory impairments were also significantly
improved after training (P < 0.05). Finally, the Rey auditory
verbal learning test (RAVLT) and Corsi block tapping test



10

(CBTT) equivalent scores increased from 1 to 3 and 4, respec-
tively. In addition, in an attempt to enhance memory function,
Burke et al. [110] used intracranial electroencephalography
(iEEG) in neurosurgery patients to detect 6 wave and o wave
oscillations associated with optimal memory encoding. They
aimed to trigger the occurrence of relevant memory encoding
waveforms during the process of recall. This was the first time
that iEEG was used to enhance episodic memory in BCL
Kober et al. [96] studied the SMR of 17 stroke patients (11
experienced 12 to 15Hz and 6 experienced upper alpha fre-
quencies of 10-12 Hz). Results demonstrated that patients in
the SMR group showed improvements in short-term memory
performance, and working memory performance improved in
patients in the upper frequency group. Thus, the effects of
NFT in stroke patients were better than those of traditional
cognitive training.

4.3.3. Attention. Attention is the core component of cogni-
tive ability. Inattention damages memory and behavioral
performances. Most cognitive training therefore seeks to
improve attention abilities. Attention is controlled by a net-
work of interconnected cortical regions, including the fron-
tal visual field, the parietal area, some subcortical
structures, the superior colliculus, and oculomotor muscles
[111]. The frontal cortex region, which plays a key role in
attentional control, can be detected by EEG or LFPs as an
attention marker due to synchronous neuronal activity
[112]. Using EEG-NF-BCI, which measures neural signals
and is used to enhance attention and cognitive performance,
patients can observe a graphical representation of their brain
activity, which is also self-regulated by computer processing
into an optimal state. This method has been used to treat a
variety of neuropsychological disorders, including PSCI
[92]. Foong et al. [88] conducted EEG-based MI-BCI in 11
stroke patients (mean age 55.2+11.0 years) using visual
feedback and found significant changes in fB-power and
EEG signals in frontal and central brain regions when fatigue
occurred during the test, indicating that mental fatigue may
affect BCI performance to a certain extent. In addition, BCI
rehabilitation requires the ability to focus on screens for a
long time, so cognitive impairments such as attention defi-
cits in stroke patients may also have an impact on BCI per-
formance. For example, in the P300-BCI system, decreased
attention levels and the high working memory loads can
result in the ERP signal within the P300 system having low
amplitude and long latency period. However, in the nonvi-
sual BCI mode that is based on P300, increases in P300
amplitude may indicate the improvement of attention after
training [113]. In recent years, because of new developments
in brain imaging and BCI technology, real-time fMRI
closed-loop training has successfully improved visual atten-
tion and behavioral performance [114]. Thus, while BCI
can improve attention, the degree of attention can also affect
the performance of BCL

4.3.4. Language Ability. Another important application of
BClI in the recovery of cognitive function is the rehabilitation
of speech ability in stroke patients. Flowers et al. reported
that more than 30% of all stroke survivors are affected by
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speech impediments [115]. Compared with stroke patients
without aphasia, poststroke aphasia (PSA) patients tend to
have more extensive and severe nonverbal cognitive impair-
ments. Among these patients, patients with nonfluent apha-
sia tend to have more severe disorientation and spatial
perception impairments than patients with fluent aphasia
[116]. Nolfe et al. [117] suggested that P300 may predict
aphasia recovery, and studies have found that the amplitude
of P300 decreases in aphasia patients. On this basis, Kleih
[84] used the P300-BCI spelling system to assess language
functioning in patients with poststroke aphasia. The experi-
ment included five patients with aphasia after stroke. The
researchers applied EEG-P300, and ERP during spelling
and reading practice, and found that four patients with
aphasia after stroke who were initially unable to use the
visual P300 could successfully communicate using the
P300-based BCI speller with 100% accuracy. One patient
who was dyslexic following a stroke was able to read 14-
letter words, up from 9-letter words, after BCI training. In
addition, the accuracy of spelling and reading improved
when attention was focused. The P300 amplitude and atten-
tion performance test (German: Testbatterie zur Aufmerk-
samkeitspriifung (TAP)) was improved after training in
two patients with aphasia after stroke, suggesting that the
visual P300-BCI spelling system could be used for language
training and could be used to judge cognitive abilities after
stroke. However, unlike English words, Chinese characters
are usually written with two-dimensional structures. Thus,
Han et al. [118] developed a novel Chinese character writing
robot controlled by BCI, which used the mixed features of
P300 and SSVEP to effectively encode a large instruction
set, decode the combined features using take related compo-
nent analysis, and generate efficient writing of both Chinese
characters and English letters. The average accuracy was
87.23%, and the maximum accuracy was 100%. The corre-
sponding information transmission rates were 56.85 bit/
min and 71.10 bit/min, respectively. In addition, BCI can
also identify EEG signals sent through the BCI and then
transmit them to the corresponding receptive brain region
as new incoming information. Thus, BCI can facilitate
two-way dialogue between two people who cannot commu-
nicate [119, 120]. All these factors suggest promise for the
application of BCI to improve language abilities in stroke
patients.

4.3.5. Visuospatial Ability. BCI can also be used to improve
visuospatial abilities. Tonin et al. [86] have shown that BCI
can improve laterally dominant attentional visuospatial def-
icits. By using covert visual spatial attention- (CVSA-) BCI
in three patients with left spatial neglect (SN) stroke, they
found that the patients could control CVSA-BCI with accu-
racy rates above 50%. Behavioral RTs were also decreased in
two patients (P < 0.01). Further, the a-peak loss ratio was
significantly decreased (P <0.01), and the asymmetry
between hemispheres in the parietooccipital region showed
significant improvements (P < 0.05). In stroke patients, FC
between the right hemispheres was significantly increased,
suggesting that CVSA-BCI may help enhance neuroplasti-
city, reduce the imbalance between hemispheres, increase
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the connectivity between hemispheres, improve attention,
and remedy visuospatial defects.

The BCI multimodal analysis can also predict the cogni-
tive processing depth of visual imagination, memory, lan-
guage, and other task domains [93]. Hreha et al. [121]
followed 1439 stroke patients and used a regression model
to observe the relationship between visual acuity and
changes in cognitive function. They found that overall visual
acuity was associated with a significant decrease in baseline
cognitive function. Further, visual impairment (VI) was
not associated with rates of cognitive decline.

Kotov et al. [87] studied the effects of multimode BCI
stimulation on cognitive function recovery in patients with
strokes. A total of 44 patients were examined and treated
between 2 months and 2 years after stroke. After treatment,
memory, attention, and visual spatial abilities of patients in
the treatment group showed significant improvements
compared with those in the control group. Thus, multi-
mode and multichannel BCI may help activate neural
plasticity, improve the relationship between hemispheres,
and promote the recovery of cognitive function in patients
with stroke.

In conclusion, BCI has been shown to have many posi-
tive effects on PSCI patients, but its long-term efficacy may
need to be further verified. It is also worth noting that some
studies have shown that BCI is ineffective in improving
PSCI. Sebastidn-Romagosa et al. [70] recruited 51 stroke
patients with upper-limb hemiplegia for 25 rounds of MI-
BCI treatment. The Stroop color-word test (SCWT) and
MCA were used to evaluate cognitive function before and
after treatment, and there were no significant differences in
memory and thinking scores, or scores on a self-reported
questionnaire.

5. Safety and Stability of BCI

5.1. Signal Security. Sebastidn-Romagosa et al. [70] tested the
safety and availability of the BCI system in healthy elderly
people using a memory training game. They reported no
adverse events in any participants during any of the sessions.
Immediate memory (P=0.038), visuospatial/structure
(P=0.014), attention (P=0.039), and delayed memory
(P <0.001) scores were significantly improved. Another
BCI training designed to improve cognitive performance
found that 10 participants (30.3%) reported a total of 16
adverse events, but all of them were “mild” (except for 1
“moderate” adverse event [105]). Overall, security and
usability measures are high, and no serious adverse events
have been reported when BCI is used in stroke rehabilita-
tion. However, common treatment-related side effects such
as transient nausea, fatigue, and headache may occur. There-
fore, there is still a long way to go before BCI technology can
really be applied on a large scale.

5.2. Signal Stability. Due to different BCI signal sources, BCI
signal stability differs, but it can also be used to evaluate sig-
nal stability. Any information gathered in the first few hours
of a single unit spike is considered erratic. Multiunit spikes
(MSPs) are more stable and last longer than single unit
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peaks. Bionic BCIs that use MSPs can provide stable perfor-
mance for about 6 months without recalibration, while
bionic BCIs using LFPs remain stable for over a year [122].
Another study showed that MSP-BCI performance
remained stable for up to 22 months in one monkey but
was only stable for several weeks in another monkey [123],
which may also point to individual heterogeneity in BCI
application.

Milekovic et al. [124] found that LFP-BCI communica-
tion in a brainstem stroke-induced lockout syndrome and
in a quadriplegic patients who had amyotrophic lateral scle-
rosis (ALS) was stable for 76 and 138 days without recalibra-
tion, respectively. BCI spelling rates of 3.07 and 6.88 correct
characters per minute allow participants to type and write
emails. Patients with locked-in syndrome can communicate
daily using LFP-BCI without the need for intervention by a
technician or caregiver. Quadriplegic patients were treated
with repeated intracortical BCI for up to four and a half
months. The method uses local field potentials (LFPs),
which are more stable than neuronal action potentials, to
decode the commands of the participants.

Natural environmental factors also have an impact on
BCI signal stability. Iscan and Nikulin [125] examined
many factors (i.e., psychology, speech, and audio interfer-
ence) that might influence signal stability and the ability
of patients to finish designated tasks. The experiment
involved four conditions: the control group (which had
no interference), the speaking group (who were instructed
to loudly count from one to ten), the thinking group (who
counted from one to ten in their head), and the listening
group (who listened to someone else counting from one
to ten). The results showed that the average classification
accuracy for the speech and thinking groups decreased
slightly, while the average classification accuracy of the
hearing and the control group was not significantly differ-
ent. The results indicated that decreases in BCI perfor-
mance were related to changes in EEG signal quality and
increased cognitive load, suggesting signal stability
depends on many factors.

6. Difficulties and Challenges

There are several difficulties in the application of BCI in
PSCI: (1) improving signal processing algorithms, exploring
neural active patterns, quickly and accurately identifying
task-related EEG signals, and eliminating interfering EEG
signals are the most challenging tasks for the application of
BCI systems in stroke-related cognitive impairment. (2)
BCI needs to be adaptive to gender-based differences, needs
to avoid differences in EEG signals, and needs to be cali-
brated to subject-specific needs. (3) The efficiency of BCI
needs to be improved. (4) The development of a noninva-
sive, low-cost, easy-to-install BCI system suitable for stroke
patients is also critical. In conclusion, BCI technology
appears to enhance existing treatments for cognitive impair-
ment after stroke. At present, BCI technology is developing
rapidly, but there is still a long way to go before BCI is more
widely applied.
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7. Summary and Prospects

Cognitive decline after stroke is a major problem. Up to 30%
of patients may develop dementia within three months after
the occurrence of a cerebrovascular event. If TIA can be
applied early and timely, then intervention against cognitive
decline in stroke patients can be implemented, and patient
prognosis can be improved. The application of BCI technol-
ogy in poststroke cognitive impairment is a new direction
for neurorehabilitation and has already been used in the
assessment, training, rehabilitation, and treatment of PSCI.
Studies have shown that the BCI can help improve PSCI.
BCI can identify neuronal activity, classify and extract infor-
mation, decode the subjects’ intention, through NF and MI
and repeated training, promote interneuronal interactions,
change synapse potentials, improve brain compliance,
improve brain network functional connectivity, adjust the
balance between the hemispheres, promote neural
plasticity-induced cortical reorganization, and improve cog-
nitive function. Although BCI has shown some improve-
ments for PSCI patients, more studies need to be carried
out. Most current studies mainly focus on small samples
and short-term observations of efficacy, and there is still a
lack of large-scale randomized controlled trials that could
verify its effectiveness and long-term efficacy. In addition,
animal models cannot fully reflect the complexity of human
cognition, which makes the project more challenging. How-
ever, with the continuous maturity of modern medical
equipment and other technologies, and the application of
hybrid BCI that combines multiple modes, BCI will become
an even more practical and powerful way to treat PSCI in the
future.
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