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Abstract
Background: Understanding the relationship between gene expression changes, enzyme activity
shifts, and the corresponding physiological adaptive response of organisms to environmental cues
is crucial in explaining how cells cope with stress. For example, adaptation of yeast to heat shock
involves a characteristic profile of changes to the expression levels of genes coding for enzymes of
the glycolytic pathway and some of its branches. The experimental determination of changes in
gene expression profiles provides a descriptive picture of the adaptive response to stress.
However, it does not explain why a particular profile is selected for any given response.

Results: We used mathematical models and analysis of in silico gene expression profiles (GEPs) to
understand how changes in gene expression correlate to an efficient response of yeast cells to heat
shock. An exhaustive set of GEPs, matched with the corresponding set of enzyme activities, was
simulated and analyzed. The effectiveness of each profile in the response to heat shock was
evaluated according to relevant physiological and functional criteria. The small subset of GEPs that
lead to effective physiological responses after heat shock was identified as the result of the tuning
of several evolutionary criteria. The experimentally observed transcriptional changes in response
to heat shock belong to this set and can be explained by quantitative design principles at the
physiological level that ultimately constrain changes in gene expression.

Conclusion: Our theoretical approach suggests a method for understanding the combined effect
of changes in the expression of multiple genes on the activity of metabolic pathways, and
consequently on the adaptation of cellular metabolism to heat shock. This method identifies
quantitative design principles that facilitate understating the response of the cell to stress.

Background
Cells mount adaptive responses that involve changes in
gene expression in order to survive environmental stress.
These changes lead to shifts in the activity of the corre-
sponding proteins and often to observable phenotypes. In
each stress condition, the effectiveness of the cellular
responses is subordinated to a variety of functional con-
straints. Ultimately, any change in gene expression and

protein activity must allow the cell to survive the stress
and to maintain a metabolism that allows reproduction
(or at least survival until stress no longer exists and nor-
mal reproduction can occur). Out of the wealth of physi-
cally possible gene expression changes, only a small set of
patterns allows the cell to effectively survive a given type
of stress. For instance, a complex and well-defined pro-
gram of gene expression changes is activated when yeast is
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exposed to a mild heat shock caused by a temperature
shift from 25°C to 37°C [1,2]. Changes in gene expres-
sion as a consequence of this environmental stress are
mostly transient. The highest number of transcriptional
changes is observed between 10 and 20 minutes after the
shock. Even when heat shock is maintained, after this ini-
tial period the overall gene expression returns to a pattern
almost identical to that under basal conditions [3-5].
These transient changes are necessary to shift the metabo-
lism of the cell to a new steady state that is adapted to the
stress conditions.

Metabolic states induced by different types of stress share
common features. For example, heat shock also induces
adaptation responses to other stresses [6]. Cells that are
adapted to a mild heat shock become resistant to larger
temperatures shifts [7], to oxidative stress [8], to osmotic
stress and to freezing [9,10]. Physiological events that are
common to the different types of stress responses include
cell cycle arrest [11,12], changes in cell wall architecture
[13,14], increase in the synthesis of heat shock proteins
(most of them chaperones), and increase in the concen-
tration of small protective molecules (glycerol and treha-
lose) [6,15,16]. Trehalose acts in synergy with chaperones
in stress resistance. Moreover, trehalose preserves the
structure of membranes, protects proteins against dena-
turation and aggregation [17], and is required for confor-
mational repair of heat-damaged glycoproteins [18].
Trehalose also apparently protects DNA and lipids [19].

An adjustment of cellular energy metabolism is also
required in response to stress. A higher energy supply is
needed, for example, to guarantee the functionality of
chaperones and of the plasma membrane H+-ATPase [16].
This leads to an increase in the rate of oxygen respiration,
which promotes up-regulation of the mechanisms for
protection against oxidative damage [20]. There is also an
increase in the production rate of reducing equivalents in
the form of NADPH, as they are necessary to balance the
redox state of the cell. This balance is challenged due to an
increased utilization rate of NADPH within several redox
cycles that protect cellular components against oxidation
(for example the glutathione and thioredoxine cycles
[21]). Additionally, NADPH is needed to produce new
saturated lipids that reduce cell membrane fluidity
[16,22].

The core of the glycolytic pathway and its main branches
capture most of the physiological changes previously
described (Fig. 1). This is a relatively simple and well char-
acterized metabolic system [23,28] that offers an ideal sce-
nario to explore the yet unidentified underlying
functional rules that shape the transcriptional changes.
Furthermore, one should expect that biological insights
obtained from the analysis of the response to a given type
of stress may help in understanding the response to other
types of stress. Evolving an adaptive response to environ-
mental stress is a multiobjective optimization problem
that involves metabolic changes at different levels such as
fine-tuning of fluxes, of protein activities, of metabolite
concentrations [29], and of the dynamic of the time
responses [25]. Ultimately, the stress response is both
constrained by the network structure of gene and protein
interactions and by the need to assure the metabolic
homeostasis responsible for the survival of the cell under
different conditions. Consequently, adaptation to a given

Scheme of the modelled pathways and ranges used for gener-ation of the in silico GEPsFigure 1
Scheme of the modelled pathways and ranges used 
for generation of the in silico GEPs. Our model includes 
the core of the glycolytic pathway and the first step of the 
pentose phosphate pathway, It also accounts for the synthe-
sis of glycogen, trehalose and glycerol. Glcout: Extracellular 
Glucose; Glcin: Intracellular Glucose; G6P: Glucose-6-phos-
phate; F16P: Fructose-1,6-biphosphate; PEP: Phosphoe-
nolpyruvate; PYR: Pyruvate; HXT: Hexose transporters 
(HXT1–4, HXT6–8, HXT12); GLK: Glucokinase/Hexokinase 
(GLK1, HXK1, HXK2); PFK: Phosphofructokinase (PFK1, 
PFK2); TDH: Glyceraldehyde-3-phosphate dehydrogenase 
(TDH1, TDH2, TDH3); PYK: Pyruvate kynase (PYK1, PYK2); 
GLY: Production glycogen; TPS: Trehalose 6-phosphate syn-
tase complex (TPS1, TPS2, TPS3); G6PDH: Glucose 6-phos-
phate dehydrogenase (ZWF1). Range of fold changes 
expression explored in the simulations: (a) Gene allowed to 
increase its expression by up to ten times its basal level; 10 
uniformly spaced samples. (b) Gene allowed increasing its 
expression by up to nineteen times its basal level; 13 uni-
formly spaced samples (c) Gene expression allowed to 
change between ¼ and four times the basal value; 7 samples 
taken, at levels of expression that are 4×, 3×, 2×, 1×, 1/2×, 1/
3× and 1/4× that of its basal level. (d) Gene allowed increas-
ing its expression by up to eight times its basal level; 8 uni-
formly spaced samples.
Page 2 of 19
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:184 http://www.biomedcentral.com/1471-2105/7/184
type of stress should not compromise the response to
other types of stress.

Although the core metabolic response to different types of
stress is similar, adaptation to each stress is achieved
through different quantitative strategies. There is extensive
overlap among the sets of genes that help the cell survive
to different types of stress, although the quantitative
changes in the expression for the common genes are not
the same in each type of adaptive response [3-5]. This sug-
gests diverse adaptive solutions to the various types of
stress.

Due to the complexity involved in the cellular response to
stress, understanding the physiological principles that
explain the observed changes in enzyme/protein levels
requires an integrated approach that focuses on the sys-
temic behaviour of cellular pathways [30,32]. This analy-
sis must be based on a sound understanding of the
metabolism involved and it must be tested in front of
experimental data. In this context, microarray data pro-
vide basic semi-quantitative information about gene
expression changes that help characterizing the gene pat-
tern corresponding to a given cellular response. For exam-
ple, when yeast is exposed to heat shock the gene expression
profiles (GEPs) from three different experimental data-
bases [3,5] show high values of over-expression for the
hexose transporters (HXT), the glucokinase/hexokinase
(GLK) and the trehalose syntase complex (TPS). The glu-
cose-6-phosphate dehydrogenase (G6PDH) and the glyc-
eraldehydes-3-phosphate dehydrogenase (TDH) are also
slightly over-expressed. On the other hand, phosphofruc-
tokinase (PFK) and pyruvate kinase (PYK) do not seem to
be affected under heat shock conditions.

Although these experiments provide a general picture of
the required gene expression changes, evaluation of the
effects of these changes on the metabolic state of the cell
is not straightforward. Therefore, understanding GEPs in
terms of physiological changes requires a systemic
approach. Mathematical models of the pathways involved
in the physiological response provide a helpful tool for
investigating this problem [27,28,32-36]. A critical point
in this analysis is the appropriate evaluation of the cellular
consequences resulting from gene expression shifts that
are caused by a given environmental change. This com-
posite analysis must always be put in the context of the
existing biological knowledge about cellular physiology.

In this work we identify and test functional constraints
that shape the naturally evolved physiological response of
Saccharomyces cerevisiae to heat shock. First, we investigate
the correspondence between perturbation of enzyme
activities and physiological adaptive changes using a
mathematical model. Then we show that the observed

pattern of gene expression changes that characterizes the
response of S. cerevisiae to heat shock can be explained by
a defined set of functional principles. These include con-
straints on the changes in the fluxes and the concentration
of metabolites, on the cost associated with the changes in
gene expression, and on the synergistic effects between
changes in different parts of the system. Our work under-
lines the importance of mathematical models in identify-
ing relevant functionality criteria and evaluating their
importance in molecular systems biology.

Results
A method for evaluating quantitative design principles for 
gene expression in yeast adaptation to heat shock
The observed GEPs in response to heat shock are a result
of evolution and should correspond to design principles
leading to an appropriate adaptive response. For example,
understanding the increase in gene expression for the HXT
is intuitive because glucose is required for an increase in
ATP synthesis and other related changes. However, under-
standing why the experimentally observed change in gene
expression is of about 6- to 8-fold [27,34] instead of some
other value is not as intuitive. Moreover, while explaining
this observation one must take into account the changes
in the expression of genes that code for other enzymes. For
example, GLK should compensate the increased uptake of
glucose, avoiding an accumulation of this metabolite that
could compromise viability of the cell. A systemic analysis
of the metabolic pathways involved in the response is
required to properly evaluate the possible changes in gene
expression and their impact on physiological fitness.

Previous work has shown the optimality of an experimen-
tally observed GEP when compared to a small set of alter-
native theoretical GEPs [27]. This analysis provided a
preliminary insight into the metabolic changes that allow
yeast to adapt to heat shock. Taking those results as a start-
ing point, we suggest a more general modelling based
approach to investigate this problem in further detail. In
our in silico approach we use a mathematical model to
exhaustively scan the gene expression space. We evaluate
the effect of gene expression changes, according to a pre-
defined set of functionality criteria that expand and gener-
alize those of Voit & Radivoyevich [27]. We then identify,
from several millions of alternative GEPs, the set that,
according to the functionality criteria, lead to an appropri-
ate physiological response. At this stage we validate the
selected set of profiles by comparison with the data from
available microarray experiments. This approach provides
a more general insight into the underlying quantitative
design principles that lead to the experimentally observed
GEP. Our approach can be applied to analyze different
stress responses. In this paper we focus on heat shock
response in yeast as a benchmark problem for the
approach because of the following:
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i) A valid mathematical model that describes most of the
relevant processes exists [27,37-39].

ii) Comparison with previous work is possible and can
help in defining the set of functional criteria [27].

iii) There are experimentally determined GEPs from dif-
ferent microarray experiments performed under very sim-
ilar heat shock conditions that help validate our
predictions [3-5].

iv) The method can provide further insight into the bio-
logical response.

In detail, the suggested approach, applicable to other
types of adaptive response and in other organisms, con-
sists of the following steps:

1) Build a mathematical model that includes the main
metabolic pathways involved in the response to the
considered environmental change. These must be iden-
tified from the literature and from a gene ontology analy-
sis of the available microarray data. The model will be
used to investigate the effect of changes in gene expression
(seen as changes in enzyme activity) on precise metabolic
characteristics (fluxes, metabolite levels, cost of over-
expression, etc.).

2) Define physiological criteria that should be met after
adaptive response to heat shock. These criteria must be
established based on available information on the physi-
ology of the relevant problem. In the case of heat shock in
yeast, there is abundant information in the literature that
helps in defining such criteria. Ideally, one should be able
to use experimental data in order to estimate the cut-off
values for each criterion. This estimation should take into
account both the observed experimental measurements
and the biological and experimental variability. To make
sure that results do not fundamentally change and are
qualitatively robust we should also check how sensitive
the final result is to this variability. If available informa-
tion does not help in estimating cut-off values for some
criteria, one can use internal standards of the in silico pop-
ulation of profiles under study (see next point). One way
to implement these internal standards is by selecting a
fraction of profiles that are the best performers according
to the relevant criterion.

3) Generate an exhaustive set of alternative GEPs in sil-
ico and test the metabolic changes induced by each pro-
file. In silico GEPs are generated by combining different
values for each gene. Then, fold-changes in gene expres-
sion are translated into changes in enzyme activities.
These activities are parameters in the model and will
induce a new steady-state with the corresponding fluxes

and metabolite levels. In our case, we have simulated
more that 4 million GEPs. For each GEP, the systemic
response of the model in terms of fluxes and concentra-
tions is computed.

4) Select those GEPs that fulfil the physiological crite-
ria. Clearly, not all the considered changes generated in 3)
will produce the appropriate response, defined as in 2).
For example, as we discussed in the Introduction, heat
shock response increases ATP consumption. If the gene
expression for glucose transporters is not increased appro-
priately, the cell may be compromised, as it will not pro-
duce enough ATP to match the increased consumption
rate. But an increase in glucose leads to side effects that
can compromise the overall response. Thus, as it happens
in the actual response of yeast to heat shock, compensa-
tion for undesired effects would require additional modi-
fications. The criteria defined in 2) constrain the possible
changes by checking its effects at the physiological level.
Overall, only GEPs that simultaneously match all physio-
logical effectiveness criteria defined in 2) are selected.

5) Analyze the characteristics of the selected GEPs. Dif-
ferent pictures can emerge from this analysis. First, it may
occur that the final set of predicted GEPs is tightly clus-
tered in expression space and includes the experimental
GEPs. This would suggest that most of the functional cri-
teria that are important in defining design principles for
an adaptive response to that stress have been identified, at
least for the set of genes under consideration. A second
possibility is that the predicted GEPs are randomly spread
out through expression space or that, although they clus-
ter in a well-defined region, the experimental GEPs are not
included in that region. This would suggest that either the
criteria that have been used for selection or the genes that
are being considered are not important for the stress
response. A third situation that may happen is that, with
some exceptions, most of the genes being considered clus-
ter in the predicted gene expression region and that these
are well matched to the corresponding genes in the exper-
imental GEPs. This would suggest that some physiological
criteria for effectiveness of the response have yet to be
identified. The set of genes whose changes are not clus-
tered in expression space provides guidelines towards
identifying new physiological criteria. Once these have
been tentatively identified and points 2) through 5) have
been repeated, the analysis will tell if the newly identified
criteria are relevant. Finally, it may happen that groups of
predicted GEPs cluster into discrete orthogonal regions of
the gene expression space. Assume that the response to the
relevant stress in closely related organisms has been stud-
ied and that the experimental GEPs for these responses do
not overlap and are found in two or more of the clusters.
This suggests a situation with different and equally well
adapted types of response, where the selection between
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the different GEPs may be a consequence of the organ-
ism's life history throughout evolution. Whatever the case
is, the analysis proposed here will help in understanding
biological adaptation in stress response.

Mathematical model and prediction of the physiological 
performance for a GEP
The theoretical analysis of biological systems using math-
ematical models led to the inference of general biological
design rules for different classes of biological systems,
including gene circuits [40-42], metabolic pathways [43-
55], signal transduction networks [56], and whole
genomes [33,34,57-60]. Mathematical models are espe-
cially useful in this type of analysis because they allow for
an exhaustive and systematic analysis of responses given
by alternative models to the same stimulus. This provides
a tool for testing hypothesis about the underlying design
of systems [25,28], as some specific designs will not
exhibit certain types of behaviour. Recently, some of the
hypothesis about design principles in biological circuits
have been experimentally tested and confirmed [57,61-
63]. This provides a strong support to the further develop-
ment of the many research programs that use mathemati-
cal models to analyze biological design principles.

In order to appropriately analyze the effect of changes in
enzyme activities on metabolism, a mathematical model
that allows the calculation of changes on fluxes and con-
centrations is required. Ideally and for accuracy's sake,
one would like to build a model using the exact non-lin-
ear mathematical functions that describes the mechanism
of each individual enzyme process. However, often this
mechanism is unknown. When it is known, in most cases
there is not enough reliable information to estimate real-
istic parameter values. An option is to use functional for-
malisms that, applying theoretically well supported
mathematical approximations allow the determination of
parameter values from semi-quantitative estimations of
concentrations and fluxes. Among other possibilities,
there is a long tradition of using linear mathematical
approximations (e.g. [64,65]). These are mathematically
tractable but lose the non-linear character of the processes
they seek to represent. As an alternative that overcomes
these limitations, the power-law representation
[34,44,66,73] is a formalism that is tractable at steady
state while retaining some of the non-linearity of the proc-
esses themselves. This is of special interest in application
to the analysis of biochemical systems. In our work we use
a model build using the power-law formalism. This model
considers glycolysis, the biosynthesis of glycerol, treha-
lose, and glycogen and the first step of the pentose phos-
phate pathway (Fig. 1). This is a well established minimal
model [27,37,39,74] that has been previously used to
explore adaptation to heat shock and to aid in the search
for functional constraints on gene expression during

adaptation [27]. Technical details on model definition
and parameter values are given in the Methods section
and in the literature [27,37,39].

In our analysis we assumed that any change in the expres-
sion of a gene leads to an equivalent change in the activity
of the enzyme coded by the gene [27]. This is justified by
the fact that response to heat shock is generally regulated
at the level of transcription [75-78]. Additional evidence
for this type of regulation comes from the strong correla-
tion that is found between transcriptional changes,
amount of protein [79,80] and mRNA stability [81]. This
correlation is particularly strong for glycolytic enzymes
[82-84]. TDH and PYK are exceptions to this one-to-one
correspondence between gene expression changes and
enzyme activity changes. Post-transcriptional activation of
TDH [85] and PYK [86] occurs in heat shock response.
This activation was taken into account by considering that
TDH enzyme activity changed by 1.5-fold with respect to
the changes in TDH gene expression. Similarly, PYK
enzyme activity was considered to change 5-fold more
than PYK gene expression as suggested by Voit & Radi-
voyevitch [27]. Using the same approach suggested by
these authors, if a reaction was catalyzed by a single
enzyme, the change in enzyme activity was matched to the
change of gene expression measured by the microarray; if
the reaction was catalyzed by several enzymes or isoen-
zymes, microarray values were weighted by the number of
mRNA copies per cell of each isoform obtained from
Genome-Wide Expression Page [87,88].

Deleterious gene expression profiles
A systemic analysis of the in silico generated GEPs reveals
0.57% of cases in which no stable steady state exists after
the change in gene expression. Most of these profiles
result in low activity for the enzymes of glycolysis's first
steps and in high activity for the enzymes of the lower part
of the glycolytic pathway. A biological interpretation of
why these cases would be deleterious can be as follows.
This pattern of enzyme activities excessively depletes the
concentration of intermediate metabolites and thus pre-
vents an adequate heat shock response because not
enough material flows through the pathway. An analysis
of the Saccharomyces Genome Database (SGD) [89] shows
that deletion mutants in the early enzymes of glycolysis
have phenotypes that are almost always severe and usu-
ally lethal. Deletion mutants in the enzymes of the lower
part of glycolysis have defective growth but are rarely
lethal. The difference is especially noticeable under stress
conditions (data not shown). This suggests that a decrease
in the activity of these early enzymes is deleterious even
under normal conditions, which supports our interpreta-
tion.
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Flux-based criteria for functional effectiveness that 
evaluate physiological adequacy of the response to heat 
shock
Since a given GEP results in changes at the metabolic level
both in fluxes and in concentrations, we can evaluate the
appropriateness of each pattern by defining functional cri-
teria that correspond to observed metabolic changes after
heat shock. Based on the analysis of the literature and on
a preliminary analysis of the model, we considered the
following functional criteria based on flux constraints to
evaluate the performance of each GEP:

C1. Changes in gene expression must allow for an
increase in the rate of ATP production. This is so because
the response to heat shock increases the activity of pro-
teins that use large amounts of ATP, such as chaperones
and the plasma membrane H+-ATPase [16]. The rate of
ATP production after heat shock has been measured to be
about five times that of the basal state of the cell [90,92].
Because of biological variability and the noise typical of
experiments, we have allowed for a 40% variability on this
value and select GEPs that have an ATP production flux
that is at least three times higher than that of the basal
steady state.

C2. The rate of trehalose synthesis must increase after
heat shock. As mentioned in the introduction, trehalose
needs to be synthesized by the cell in response to heat
shock in order to protect lipids, proteins and DNA
[15,17]. The concentration of trehalose after heat shock
has been experimentally determined to range from less
than ten times to about one hundred times that of the pre-
stress steady state in one hour [19,91-93]. At 37°C there is
an increase in the net productive flux of trehalose of
approximately forty times with respect to the pre-stress
steady state [93]. We allow a 40% variability to this esti-
mation and select as cut-off value a rate of trehalose pro-
duction that is twenty five times higher than that of the
basal steady state. If a GEP allows an increase in the flux
of trehalose synthesis that is more than twenty five times
that of the basal steady state, we select the GEP as produc-
ing enough trehalose.

C3. Changes in gene expression must allow for an
increase in the flux of NADPH production after heat
shock. As previously described, this increase is fundamen-
tal because more NADPH is needed for the biosynthesis
and redox protection of cellular components. There are no
experimentally determined values for the increase in this
flux during heat shock. In oxidative stress, a 2.1-fold
induction of NAD(P)H dehydrogenase is observed [94].
Because NADP response in oxidative stress is known to be
similar to that in heat shock [94,98], we chose a cut-off
value for the increase in the productive flux of NADPH of
twice the basal steady state flux.

Constraints on gene expression caused by flux-based 
criteria for functional effectiveness
Criteria C1-C3 consider the need for an increased synthe-
sis of trehalose, ATP and NADPH. When the criterion C1
was used as a filter, 45.13% of all tested GEPs were
selected. The criterion C2 selected 60.95% of all tested
GEPs. Finally, 85.86% of all tested GEPs were selected by
the criterion C3. Simultaneous application of all three
functional criteria C1-C3 selected 1,290,454 (27.83%)
GEPs (Table 2).

In the past, constraints to metabolic fluxes have been used
as the main physiological criteria for deciding about the
appropriateness of gene expression changes in response to
different types of stress. Different mathematical formal-
isms, such as Flux Balance Analysis (see e.g. [99] for a
review), linear formalisms [48] and Michaelis-Menten
like formalisms [26] are the basis of the mathematical
models that are used to evaluate those constraints. How-
ever, there is an accumulating body of work showing that
aspects other than flux, such as concentrations and toler-
ances, play an important role in explaining the system's
adaptation to environmental changes (e.g. [29,100]). Our
analysis also shows that flux based functionality criteria
can not fully explain the pattern of changes in gene expres-
sion that are observed after heat shock. The flux criteria
only constrain the expression of genes that directly
increase the flux of ATP synthesis (HXT), trehalose synthe-
sis (TPS) and NADPH (G6PDH) synthesis (Fig. 2A). Thus,
specific changes in the expression of other genes must be
explained using additional physiological criteria that are
not flux based.

Additional criteria for functional effectiveness in response 
to heat shock
The first three criteria discussed above place metabolic
flux-based constraints on the changes in gene expression
that yeast uses to adapt to heat shock. However, although
these constraints are clearly important and necessary, they
are by no means sufficient to account for all the GEPs
changes observed in response to heat shock. Other physi-
ological constraints must be considered in order to under-
stand the design principles of the GEP response to heat
shock. Because these additional constraints are not explic-
itly flux dependent, they can not be analyzed using tools
such as flux balance analysis in its present forms. Our
approach, based on a GMA mathematical model provides
a practical tool for evaluating such complementary crite-
ria. Based on preliminary work about the identification of
design principles in metabolic systems (see e.g. [101] and
references therein), we have considered three additional
criteria that regard metabolite accumulation of metabo-
lites and economy of gene expression and protein synthe-
sis:
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C4. Changes in gene expression should allow cells to
avoid needless increases in the concentration of inter-
mediates upon heat shock. Buffering the concentration
of different intermediates is needed to limit cross-reactiv-
ity, avoid cell solubility problems, and prevent metabolic
waste (see e.g [102,105]). Although a minimal increase in
the concentration of intermediates is an appropriate crite-
rion, some key metabolites are not just intermediates;
they have a function. The concentration of these "func-
tional" metabolites must change to accommodate the
changes in metabolic functions. The cut-off values for the
different metabolites considered by our model are set
according to the following criteria:

a. ATP concentration should increase to meet energy
demands. Although we found no accurate measurements
for ATP concentrations after heat shock, indirect observa-
tions can be used to define a reasonable cut-off value.
Heat shock chaperone proteins are needed to fight protein
denaturation and aggregation after heat shock (see
[106,107] for reviews). Heat shock specific chaperones are
active at high ATP concentrations [108]. In vitro studies
show that chaperones are active at more than 90% of their
maximal specific activity under ATP concentrations of 5
mM or more [108,109], which are at least 5 times higher
than concentrations at the basal steady state. Allowing for
an additional one fold increases in ATP concentration due
to other processes such as an increase in energy demand,

Table 1: Values of criteria for functional effectiveness calculated using the GEPs derived from the published experimental datasets.

Experimental Dataset

Basal DB1 10' a DB2 15' b DB3 10' c DB3 15' c DB3 20' c

Gene 
expression fold-

change with 
respect to pre-
stress situation

HXT 1 8 6 5.6 8.6 5.8

GLK 1 4.8 5.2 5.7 10.5 7.2
PFK 1 1 0.9 0.5 0.8 0.9
TDH 1 1.8 1.3 1.7 2.2 1.4
PYK 1 1.1 1.2 1 1 1
TPS 1 5 4 9.9 15.6 15.7

G6PDH 1 3.8 1.8 2.4 5 3.9

Fluxesd VATP 60.2 263.8 222.4 175.0 262.6 199.4
VTRE 0.0012 0.0535 0.0343 0.1202 0.1830 0.1213

VNADPH 1.8 7.7 3.7 4.9 10.3 7.7

a: BD1 10': data from Eisen's experiments at 10 min. b: BD2 15': data from Causton's experiments at 15'. c: DB3 10', DB3 15' and DB3 20': data 
from Gasch's experiments at 10', 15' and 20', respectively. d: Rate of synthesis (mMmin-1).

Table 2: Selection of GEPs using the criteria for functional effectiveness.

Values for Criteria Percentage of GEPs selected using each criteria

Absolute values Ratio to basal values Individual Accumulated

C1 VATP
a > 180.6 3 45.13e

C2 VTRE
a > 0.03 25 60.95e

C3 VNADPH
a > 3.54 2 85.86e 27.83

C4 GLCb < 0.04 1.2 86.40f

G6Pb < 20.22 20 76.04f

F16Pb < 22.86 2.5 51.91f

PEPb < 0.01 1.2 65.44f

ATPb < 6.77 6 89.32f 2.40
C5 Costc < 12.06 12.06 50 0.59
C6 VGlycerol

a > 0.39 0.22 50 0.25
C7 Ψd < 28.10 0.391 50 0.16
C8 F16Pb > 8.64 0.95 61.93 0.06

(a) Rate of synthesis (mMmin-1). (b) Concentration (mM). (c) Adimensional. (d) mM-1min. (e) Application of C1-C3 selects 27.83% of all GEPs. (f) 
Application of constraints on all concentrations simultaneously selects 24.23% of all GEPs.
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we estimate that a six fold increase in ATP concentration
as sufficient for appropriate heat shock response. Conse-
quently, GEPs that have an increase in the concentration
of ATP higher than six fold are eliminated.

b. After heat shock, Winkler [93] found increases of about
an order of magnitude in the concentrations of both G6P
and UDP-glucose. These metabolites are needed for
energy production. Because, in our model the variable
G6P lumps G6P with UDP-glucose, a cut-off of 20 over
the basal level for this lumped variable seems appropriate
to capture the physiological response. Thus, profiles in
which G6P concentrations increase by more than 20 times
are eliminated.

c. The concentration of fructose-1,6-biphosphate (F16P)
must increase because TPS is less sensitive to activation by
this metabolite under heat stress [110-112]. Given that
TPS is fully active in vitro at F16P concentrations higher

than 10 mM [111] and the basal concentration of F16P in
the model is about 9 mM, the concentration of F16P is
allowed to increase at most 2.5-fold in order to allow for
this activation. Additionally F16P activates several other
fluxes whose up-regulation is critical for an adequate heat
shock adaptation (see also criteria C6 and C8).

d. We have found no estimates for the heat shock concen-
trations of the remaining metabolites. As they have no
known specific role in heat shock response, we choose a
maximum increase of a 20% over the basal concentration
of each remaining metabolite as the cut-off value for the
criteria. This threshold value was found to be small
enough to accommodate unavoidable increases in con-
centration due to increases in flux. Thus any profile in
which the concentration of each of the remaining metab-
olites increases by more than 1.2 times is eliminated.

Cumulative selection of GEPs by sequential application of the functional criteriaFigure 2
Cumulative selection of GEPs by sequential application of the functional criteria. Constraints to gene expression 
resulting from the application of the different criteria. The x-axis represents the fold-change in gene expression with respect to 
the basal levels for the different genes. The y-axis represents the percentage of GEPs that have a given fold-change in gene 
expression. Light grey bars represent the distribution of gene expression in GEPs prior to any selection. This distribution is 
uniform. Green bars represent the distribution of fold change in gene expression in the set of GEPs that obey a given combina-
tion of criteria. This distribution is superimposed to the prior distribution, showing how the criteria constrain the expression 
of different genes. Panels show results of applying several criteria in combination: A - C1-C3,B - C1-C4, C - C1-C5, D - C1-
C6, E -C1-C7, and F - C1-C8. Changes in the levels of expression for each gene from the different experimental datasets are 
represented as discrete points in panel F. Gene expression changes for different genes from the same dataset are shown at the 
same height in each row of individual plots. Black stars – data from Eisen's experiments at 10 min (BD1 10'); White stars – data 
from Causton's experiments at 15' (BD2 15'); White circles – data from Gasch's experiments at 10' (DB3 10'); Grey circles – 
data from Gasch's experiments at 15' (DB3 15'); Black circles – data from Gasch's experiments at 20' (DB3 20').
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C5. Adaptation should be economic. GEPs that allow
adaptation with minimal changes in gene expression
should be favoured [57], among other things because they
minimize protein burden to the cell [113,114]. There is
little quantitative information about metabolic cost of
protein synthesis. Therefore, we choose to use the sim-
plest measure that captures the overall cost of the process.
We use the sum of the logarithmic change of expression
for all enzymes gives a measure of the cost of changing
gene expression [27]. We have also performed some pre-
liminary analysis using different cost functions that,
among other aspects, weight the cost of protein synthesis
with protein length and amino acid metabolic cost. The
preliminary results show that no major differences are
observed in the final results. This will be discussed in
detail in a paper in preparation (unpublished results). We
found no available experimental information to estimate
this criterion's cut off value. As a first approximation for
the cut-off value we used an internal standard to the set of
GEPs. We choose the cut-off value to be the integer value
closest to the fiftieth percentile of the set of profiles, result-
ing in a cut-off value of 12.06.

C6. GEPs with the highest glycerol accumulation after
heat shock are favoured. Glycerol is used to maintain the

integrity of cellular components [115] and the metabolic
cycle responsible for the biosynthesis of glycerol (Fig. 3)
converts NADH into NADPH [116,117]. Most of the
genes coding for enzymes of this cycle are over-expressed
under heat shock conditions (Table 3). Part of the accu-
mulation effect in the glycerol pool during stress condi-
tions is due to down-regulation of glycerol extra cellular
export [118]. Due to lack of kinetic data our model can
not account for the change in export rates. However, we
can use the predicted rate of glycerol synthesis through the
cycle in our model as a proxy for the increase in glycerol
concentration. To define a cut-off value for the proxy we
need to use an internal standard of the GEP population.
We set that value at 0.39 mM min-1, which is the value at
which 50% of GEPS are selected. Any GEP that has a glyc-
erol production flux that is lower that this value is elimi-
nated.

Applying criterion C4 on the GEPs resulting from the first
three criteria reduces by a factor of ten the number of
GEPs that lead to an appropriate cellular response
(111391 selected cases, 2.40%, Fig. 3B). According to this
criterion, GEPs where the gene expression of PFK and PYK
is repressed upon heat shock do not lead to appropriate
cellular adaptation. Repression of PFK mainly cause accu-
mulation of glucose-6-phosphate or insufficient flux of
ATP. Respression of PYK mainly causes accumulation of
phosphoenolpyruvate. This criterion excludes GEPs that
have an increase in the activity of GLK of less than four
times that of the basal state. Under this threshold, glucose
accumulates and no compensation can be achieved by
changing other enzymes. An increase in the gene expres-
sion of TDH that is smaller than two times that of the
basal state is also excluded by this criterion because fruc-
tose-1,6-biphosphate concentrations rise over the cut-off.
Finally, this criterion significantly decreases the maximum
allowable change in activity for HXT. For example, less
than 5% of GEPs that fulfil this criterion have an increase
in HXT activity higher than ten times. This is the most
stringent criteria of all.

Application of criteria C5 on the results of C1-C4 reduces
the number of GEPs that fulfil these physiological criteria
(27227 selected cases, 0.50%). GEPs selected under this
criterion (Fig. 3C) have an average decrease in the over-
expression of all enzymes in comparison to the profiles
selected by the first four criteria.

Criteria C6 applied to the results of C1-C5 further reduce
the number of GEPs by a factor of two (0.25% of all GEPs
are selected, Fig. 2D). Additional selection by this criteria
imposes an upper limit to the gene expression of PYK that
is lower than that observed in GEPs selected based on the
five previous criteria. This occurs because over-expression
of PYK is inversely correlated to the rate of glycerol synthe-

Pathway and genes that are involved in the metabolism of glycerolFigure 3
Pathway and genes that are involved in the metabo-
lism of glycerol. Bold genes are considered to be over-
expressed. Abbreviations: GAP, glyceraldehyde 3-phosphate; 
G3P, glycerol 3-phosphate; DHAP, dihydroxyacetone phos-
phate; DHA, dihydroxyacetone; GUT2, mitochondrial glyc-
erol-3-phosphate dehydrogenase 2; GPD1, glycerol-3-
phosphate dehydrogenase 1; GPD2, glycerol 3-phosphate 
dehydrogenase 2; DAK1, dihydroxyacetone kinase 1; DAK2, 
dihydroxyacetone kinase 2; GPP1, DL-glycerol-3-phos-
phatase 1; GPP2, DL-glycerol-3-phosphatase 2; GUP1, glyc-
erol uptake protein 1; GUP2, glycerol uptake protein 2; 
GUT1, glycerol kinase 1; FPS1, plasma membrane glycerol 
channel; GCY1, putative NADP(+) coupled glycerol dehydro-
genase; YPR1, GCY1 homolog.
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sis (Fig. 4). Thus, GEPs with a large increment in the gene
expression of PYK prevent adequate adaptation to heat
shock because these GEPs prevent the cells from produc-
ing enough glycerol.

Analysis of the GEPs resulting from seleccion by C1-C6
suggests two new functional constraints that refine the
previous set of criteria:

C7. Changes in the activity of the enzymes TPS and PFK
should be co-ordinately balanced after heat shock. Tre-
halose levels are determined mostly by the action of these
two enzymes. TPS catalyzes the reaction that produces tre-

halose, and any increase in the activity of this enzyme is
directly correlated with the level of that metabolite. On
the other hand, PFK drives flux away from trehalose pro-
duction and into the production of ATP, although over-
expression of this enzyme does not directly correlate with
high concentrations of ATP (data not shown). Thus, an
increase in the expression of PFK requires a compensatory
increase in the expression of TPS in order to maintain the
flux of trehalose synthesis (see Fig. 5). Due to this coordi-
nated requirement one expects that an adequate GEP
should have a parsimonious change in the gene expres-
sion for both enzymes coordinated with an increase in the
productive flux of trehalose. We use the index Ψ = (ΔTPS

Table 3: Expression of genes implicated in glycerol metabolism (Fig. 2) as determined from the three experimental datasets. Values of 
the gene expression change fold are given in Log2. Bold genes are considered to be over-expressed.

ORF GEN
E

Fold Change in Gene expression

Time after heat shock (min) in DB3 Time after heat shock (min) in 
DB2

Time after heat shock (min) in 
DB1

5 10 15 20 30 40 60 80 15 30 45 60 120 10 20 40 80 160
YIL1
55C

GUT
2

1.95 2.27 2.06 - 3.54 2.24 1.76 1.08 2.49 1.95 1.22 1.81 1.21 - - - - -

YDL
022
W

GPD
1

2.75 3.19 3.07 2.75 2.28 1.94 1.77 1.68 1.78 1.16 0.67 0.37 0.29 - - - - -

YOL
059
W

GPD
2

0.26 0.41 0.49 -0.2 -0.1 0.19 -0.23 -0.23 -0.45 -0.57 -1.31 -0.16 -0.21 - - - - -

YML
070
W

DA
K1

0.46 0.74 1.98 2.5 2.36 2.23 1.58 - 2.38 2.14 1.56 1.42 1.25 1.32 1.61 1.38 0.81 -0.12

YFL
053
W

DA
K2

1.23 - 2.05 1.23 - - -0.18 - - 0.9 - - 0.89 1.44 0.21 0.72 0.19 0.37

YIL0
53W

GPP
1

0.14 -0.06 -0.11 -0.09 -0.54 -0.12 -0.13 -0.09 0.13 0.51 0.5 0.65 -0.08 - - - - -

YER
062
C

GPP
2

1.4 2.31 2.65 2.06 2.18 - 1.28 1.01 2.96 2.98 2 2.67 2.03 - - - - -

YGL
084
C

GUP
1

-0.14 -0.09 0.76 0.7 0.52 0.62 0.12 0.12 0.59 0.76 0.77 -0.16 -0.36 - - - - -

YPL
189
W

GUP
2

- - -1.84 - -1.6 - -0.58 - - - - - - - - - - -

YHL
032
C

GUT
1

0.46 0.4 1.2 1.11 0.92 0.92 -0.17 -0.07 0.88 0.49 0.7 1.46 0.65 - - - - -

YLL
043
W

FPS1 0.03 0.06 0.2 0.19 -0.38 -0.1 0 -0.07 0.8 1.24 1.26 0.83 0.75 0.7 0.04 0.24 0.24 0.5

YDR
368
W

YPR
1

0.5 0.71 1.01 0.65 - 0.24 0.39 0.38 1.37 1.39 1.16 0.42 0.7 - - - - -

YOR
120
W

GCY
1

0.89 2.22 3.41 3.5 3.23 2.28 1.12 0.97 - - - - - - - - - -
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× ΔPFK)/νtrehalose as a measure for this criterion. In this
index ΔTPS is the change in TPS gene expression, ΔPFK is
the change in PFK gene expression, and νtrehalose is the flux
of trehalose production. All changes are measured with
respect to the basal steady state. A small value for this
index ensures that the changes in TPS and PFK are parsi-
monious and that they provide an appropriate trehalose
production. Thus, only GEPs in which the value for this
index is low are selected as being able to lead to proper
adaptation to heat shock. To be consistent in selecting a
numerical value for this criterion, we used the same
approach described for C6. From the set of GEPs that
numerically fulfil criteria C1-C3, we selected the 50% of
cases with the lowest value for Ψ. The highest value for Ψ
in that set was then used as a cut-off value for C7 through-
out our study. This new criterion may be seen as a refine-
ment complementary to C5.

C8. Changes in gene expression should allow the cells
to avoid depletion of F16P after heat shock. F16P is
needed for the production of glycerol and has a feed-for-
ward activation effect on the enzymes of the lower part of
glycolysis. In vitro, the rate of the reaction catalyzed by
PYK is up to twenty times higher in the presence of F16P
and hexose phosphates at their physiological concentra-
tion ranges than in the absence of these metabolites [119].
This modulation of flux facilitates the flow of material and
avoids accumulation of intermediates. Thus, lack of F16P
may hinder cellular adaptation to heat shock. This suggest
discarding any GEP in which the concentration of F16P
was less than 95% that of the basal state. This criterion is
complementary to C4. While C4 is used to prevent need-
less accumulation of intermediates, C8 ensures that a

needed intermediate (F16P) is not excessively depleted
thus preventing adaptation to stress.

Application of criteria C7 on the results from criteria C1-
C6 reduces the number of GEPs only slightly (7295 cases
0.16%, Fig. 2E). Profiles selected using criterion C7 have
changes in the activity of HXT that are larger than or equal
to 6 times the basal activity of this enzyme, thus increas-
ing on average by almost 50% the minimum activity
allowed by criteria C1-C3. Additionally, the activity of
PFK should not change.

Application of criteria C8 on the GEPs selected by C1-C7
reduces the number of acceptable GEPs by half (2935,
0.06% ). Criterion C8 sharply constrains the allowable
changes in the expression of TDH (Fig. 2F). Only GEPs
where the gene expression of TDH is 2-fold that of the
basal state can adequately adapt to heat shock.

Model predictions and observed gene expression profiles 
after heat shock
Our results can be compared with actual microarray data
in the following way. For each available dataset, we took
the fold change in the expression of the genes present in
our model at the relevant time points and using those val-
ues we calculated the corresponding changes in enzyme
activity (Fig. 2F and Table 1). This was done as described
for the in silico profiles. We then verify if the experimen-
tally derived GEPs are among the ones that passed all our
criteria for an effective cellular adaptation to heat shock
(Table 4). Overall, the gene expression changes observed
in each of the experimental datasets match the changes
predicted by our in silico analysis as providing an appro-
priate physiological adaptation to heat shock.

Only the predicted changes to the gene expression of TDH
and PFK did not match the experimental observations.
These discrepancies may have two origins. On one hand,
our model may not be sufficiently detailed. On the other,
the noise in the datasets may be large enough to account
for the discrepancies. Our results predicted that a 2-fold
increase in the gene expression of TDH was needed in
response to heat shock in order to allow for an adequate
cellular adaptation. The in silico scanning of the changes in
gene expression only performed a discrete sampling of
values for the activity of TDH. Thus, we did not test
increases in the gene expression of this enzyme that were
between one and 2-fold that of the basal gene expression.
The experimental results showed increases of gene expres-
sion of 1.3 at BD2 15' and of 1.4 at BD3 20'. To better
characterize this problem, we refined our search and
tested in silico GEPs that considered changes in the expres-
sion of TDH that were between no change and twice the
basal level of expression. We found that, according to our
criteria, these profiles also allowed the cells to adequately

PYK over-expression and glycerol fluxFigure 4
PYK over-expression and glycerol flux. Box and 
whisker plots show correlation between trehalose produc-
tion and changes in the gene expression of PFK and TPS. 
Each entry in the box-and-whisker plot is represented by a 
box that spans the distance between two quantiles (0.25 and 
0.75) surrounding the median. The median is shown by a 
horizontal line crossing the green box. "Whiskers" lines 
extend to span the full range of values for that entry.
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adapt to heat shock. The TDH changes that were observed
in BD2 15' and BD2 20' were contained in the new in silico
profiles that were selected as allowing appropriate cellular
adaptation to heat shock. Thus, the discrepancy between
experimental results and theoretical analysis was removed
by a more detailed in silico analysis.

Our in silico results also predict that the gene expression of
PFK must remain almost unchanged for an adequate cel-
lular adaptation to heat shock. This is observed in four out
the five experimental datasets. However, the experimental
results from BD3 10' showed a 2-fold repression in the
gene expression of PFK after heat shock. In silico profiles
with this change were excluded by our functional criteria
as not allowing cells to adapt adequately to heat shock. To
explore if a 2-fold decrease in gene expression could be a
result of experimental noise, we complement our analysis
in the following way. For each experiment we measured
the quantiles for the change in gene expression for all the
genes that were present in the microarrays. Table 5 shows
the change-fold obtained by comparing pre-stressed cells
with themselves. In this situation change-fold values
should be 1, because no difference is expected between
different samples of the same population. Observed val-
ues that are different from 1 are due to experimental
noise. The upper bound for this noise is around twice the
basal level of gene expression (0.95 quantile) and the
lower bound is around half the basal value of gene expres-
sion (0.05 quantile). Thus a 2-fold decrease in gene
expression can be due to experimental noise. These results
suggest that the observed repression of PFK in BD3 10'
does not contradict our prediction within the precision of
the available experiments.

Fig 2F shows that activities of four of the enzymes have a
narrow change and that the activities of the remaining
enzymes have to increase. For some of the genes that are
over-expressed, our criteria allow for a large range of over-
expression, with the microarray derived sets being in or
next to the modal groups. One interpretation for this data
is that our criteria are sufficient to justify most of the
changes in gene expression observed on the microarray
data, at least semi-quantitatively. For some of the enzymes
the spread seen on the panels of Figure 2F is larger than
that observed in microarray data. A particular example of
this situation is the combination of high expression values
of HXT and G6PDH (Figure 6). According to our analysis,
it is theoretically possible to have over-expression of HXT
over 10-fold only if G6PDH is over-expressed at least 6-
fold. Otherwise, the cells would accumulate G6P and PEP
at concentrations that are higher than the cut-off values
allowed by criterion C4. However, there are no experi-
mental cases with change-fold values that are as high as
these. The larger spread of the allowed ranges for GLK, TPS
and G6PDH in the selected GEPs can reflect a combina-
tion of the following three situations. i) Cells can over
express these genes over a range and still properly adapt to
heat shock. This could reflect a lower evolutionary pres-
sure that leads to a larger variability of the changes in the
expression of these genes. ii) The cut off values for the cri-
teria need to be more stringent. For instance, an increase
in the stringency of criterion C4 decreases the spread of
the allowed ranges for GLK, TPS and G6PDH in the
selected profiles (data not shown). iii) Additional criteria
should be considered to understand why the predicted
spread of some genes is larger than the observed in the

PFK and TPS over-expressionFigure 5
PFK and TPS over-expression. The production of glycerol and the activity of pyruvate kinase are strongly coupled in GEPs 
that are well adapted for heat shock response. The x-axis represents the fold-change in PYK gene expression. The y-axis 
presents the production of glycerol. High expressions of PYK lead to lower production rates of glycerol. This constrains the 
fold-change in PYK gene expression, because a minimum rate of glycerol production is necessary for adaptation to heat shock.
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microarray data. However, our analysis gives no indica-
tion that this may be the case.

Development of measurement techniques that reduce
noise in the data [120-122] and methods for microarray
data normalization that improve the sensitivity to the sig-
nal [123] will improve the quality of the available experi-
mental data. However, the qualitative aspects of our
predictions are robust to small fluctuations of the exact
experimental values observed for the transcriptional
changes. Having very precise experimental measurements
would help in refining the cut-off values of the considered
constraints, which could more accurately elucidate the
quantitative design principles of gene expression in the
adaptive response. Furthermore, accurate measurements
for the early dynamics of gene expression after heat shock
at many different time points would help in determining
functional dynamic constraints that would expand the set
of steady state constraints used in this work. Work in
progress in our lab is addressing both these issues.

Final remarks
To summarize the results, only a small fraction (0.06%) of
all tested GEPs leads to a proper response to heat shock,
as defined by all eight criteria for functional effectiveness.
Analysis of the selected GEPs reveals a profile that has
well-defined characteristics. HXT should be over-
expressed at least by a factor of 6, and values higher than
9 are not favoured. GLK should also be over-expressed, at
least by a factor of 4, and no functional reasons are found
to avoid significantly large increases. PFK gene expression
should not change. The performance criteria require a 2-
fold increase for TDH, and no change in the expression
levels of PYK. Finally at least an over-expression of 2.5-

fold for TPS and a 2-fold for G6PDH are also required.
Overall, even after allowing for gene expression changes
that have several fold difference from the experimental
GEPs, after applying the functionality criteria, only GEPs
that are very similar to the experimentally observed ones
provide an appropriate response to heat shock.

A more detailed analysis of the functional effectiveness
criteria (paper in preparation) shows that the set of criteria
defined here is very specific for heat shock response. We
implemented into the model the transcriptional changes
from experimental data caused by all the environmental
changes reported in the three experiments. Finally 297 dif-
ferent GEPs from databases were implemented in the
mathematical model. This number includes some
repeated conditions, oxidative, osmotic, acid and basic
stress, etc. Our set of criteria only selected the heat shock
conditions, the previously used to explore the adaptive
response, and a new GEP that comes from DB3, transcrip-
tional changes at 20 minutes after a temperature shift
from 29 to 37 °C. These encouraging results strongly sug-
gest that the set of criteria constitute an adequate and spe-
cific definition of performance of cells to heat shock.

A final word must be said about the dynamics of the
response to heat shock. As some studies shown, consider-
ation of the dynamic response may help in devising some
important features of the design principles underlying the
systemic response to environmental changes [25].
Although this analysis is possible and desirable, not
enough data is available about the temporal changes of
the gene expression in response to heat shock. This is so
because the response to heat shock in yeast induces quick
changes in expression, that occurs around 10 minutes

Table 4: Comparison of expression levels among the three data bases considered in this study.

Values for the Criteria from Experimental Dataset d

Basal DB1 10' a DB2 15' b DB3 10' c DB3 15' c DB3 20' c

C1 60.2 263.8 222.4 175.0 262.6 199.4
C2 0.0012 0.0535 0.0343 0.1202 0.1830 0.1213
C3 1.8 7.7 3.7 4.9 10.3 7.7

C4 GLC 0.0345 0.0258 0.0184 0.0129 0.0102 0.0116
G6P 1.01 16.13 11.83 18.88 18.08 10.73
F16P 9.14 12.20 19.19 8.95 10.48 14.79
PEP 0.0095 0.0065 0.0044 0.0041 0.0091 0.0051
ATP 1.13 5.22 4.52 3.39 4.98 3.80

C5 0 9.52 7.92 9.87 11.78 10.29
C6 1.772 0.416 0.3902 0.4559 0.5146 0.4779
C7 71.42 9.41 11.81 4.19 7.79 11.41
C8 9.14 12.20 19.19 8.95 10.48 14.79

a: BD1 10': data from Eisen's experiments at 10 min. b: BD2 15': data from Causton's experiments at 15'. c: DB3 10', DB3 15' and DB3 20': data 
from Gasch's experiments at 10', 15' and 20', respectively. d: Units are the same as in Table 2.
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after the shock and are mostly completed 20 minutes after
heat shock. For all published microarray experiments,
there are few data points in this critical time interval. We
analyzed the temporal response of some of the selected
profiles and found a large variability of the time response.
This further supports the notion that more data is availa-
ble before time dependent criteria are considered.

Conclusion
This paper presents a case study in which heat shock
response in yeast is analyzed to determine quantitative
design principles that constrain changes in gene expres-
sion. This work relies on combining theoretical and math-
ematical methods to analyze the physiological effects of
hypothetical adaptive responses. This provides a frame-
work to test evolutive implications of gene expression
changes, based on evaluating the performance of the dif-
ferent GEPs. By combining theoretical methods and
mathematical models we present an integrated approach
that can help in understanding the observed adaptive
response in terms of precise quantitative design princi-
ples.

We were able to identify eight criteria for physiological
effectiveness that quantitatively constrain the heat shock
response at the genetic level. The criteria that account for

increased production of ATP, trehalose and NADPH are
the ones that have more extensive experimental support.
However, our work shows that these criteria are not the
only determinants that constrain gene expression changes
in response to heat shock. Five additional criteria for func-
tional effectiveness that constrain gene expression have
been identified. These additional criteria include con-
straints to other productive fluxes of protective molecules,
to the physiological concentration of the different metab-
olites, and considerations about the metabolic economy
of the response. Only 0.06% of all tested GEPs lead to
proper heat shock adaptation, according to our model
and criteria.

When GEPs from microarray experiments are analyzed
using the model, we find that they correspond largely to
in silico profiles that allow cells to adapt to heat shock
according to all eight criteria. Exceptions are the levels of
change in the expression of the genes coding for PFK.
When we refine our theoretical analysis and account for
noise in the data, all experimental profiles fit our in silico
predictions. Thus, the theoretical analysis is validated by
comparison to data from microarray experiments. Our
results indicate that yeast has evolved a very precise adap-
tive response to heat shock and they suggest that this
response is largely constrained by physiological require-

Table 5: Quantiles of fold changes though all time courses. Values obtained from the pre-stress situation, minute 0, are characterized 
as noise.

Experimental 
Dataset

Minute Quantiles

0.01 0.05 0.5 0.95 0.99

DB1 0 0.59 0.68 0.93 1.43 2.17
10 0.17 0.34 0.89 2.35 7.78
20 0.16 0.27 0.92 1.83 4.53
40 0.24 0.37 0.90 1.77 2.93
80 0.40 0.51 0.90 1.53 2.14
160 0.36 0.48 0.97 1.88 2.91

DB2 0 0.43 0.57 1.00 1.42 1.57
15 0.30 0.49 1.31 3.61 8.06
30 0.51 0.76 1.62 3.86 6.92
45 0.53 0.78 1.64 3.53 5.31
60 0.44 0.66 1.46 3.34 5.39
120 0.48 0.73 1.49 3.29 5.58

DB3 0 0.18 0.44 1.02 1.95 2.45
5 0.24 0.44 0.89 2.30 8.06
10 0.08 0.20 0.83 3.10 10.78
15 0.05 0.19 0.93 4.29 16.22
20 0.07 0.20 0.93 3.97 13.83
30 0.11 0.24 0.92 3.73 12.21
40 0.21 0.33 0.92 2.53 6.11
60 0.40 0.54 0.97 1.78 3.25
80 0.39 0.55 0.97 1.79 3.20
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ments. Our predictions extend previous results on this
problem [27] through extensive computation and evalua-
tion of alternative GEPs.

The theoretical approach suggested in this work has also
some potential limitations. First, as models are simplifica-
tions of the biological situation, one should not expect
that they account for all details of the system being mod-
elled. Despite this, our model captures many of the meta-
bolic features that are known to be characteristic of the
yeast adaptation to heat shock. Our results show that the
level of detail used in the current model is enough to
match the experimental observations and to identify
quantitative design principles explaining the experimen-
tal outcome. Second, the precise change-fold values vary
from one database to another due to intrinsic variability
of the experimental methods and conditions. However,
when the observed GEPs are introduced in the model the
corresponding changes in enzyme levels produce similar
qualitative physiological responses. Accordingly, these
can be used as guidelines for the proposed analysis despite
the experimental uncertainty.

More precise experimental determination of actual GEP in
response to stress conditions would lead, at the best, to a
better descriptive picture of yeast adaptation. But even a
precise determination of this profile would not explain
why it was selected among other possibilities. Our work
provides clues as to which criteria for functional effective-
ness are more important in determining the changes in
the individual genes during heat shock response. It also
provides a global, semi-quantitative, picture of the pattern
of gene expression changes that one should expect as a
response to heat shock stress. The methods and biological
results presented in this paper provide clues that help in
understanding how physiological constraints corset
changes in gene expression in response to environmental
cues. An application of the methods to analyze other types

of stress is bound to reveal the commonalities and specif-
icities of different types of stress response at the level of
the changes in gene expression. This analysis may be less
straightforward in other instances because the coupling
between changes in mRNA levels and changes in enzyme
activity may be more complex. Nevertheless, applying our
approach to analyze such cases could be of great interest
in predicting potential targets for post-transcriptional reg-
ulation of activity. This will greatly contribute to the
understanding of adaptive responses at the cellular level.

Methods
Mathematical model of the pathways involved in heat 
shock response of yeast
To build our model, we use the Generalized Mass Action
(GMA) [27,124-126] canonical within the power-law for-
malism. In this form, the differential equations for each of
the n dependent variables are represented in the form:

where Xi represents the concentration of metabolite i in
the model. The model has m independent variables that
will be considered as parameters, and r fluxes that contrib-
ute to the change in the concentration of the pool of Xi. μi,

j is the stoichiometric coefficient; it is positive if the flux j
produces Xi and negative if the flux j depletes the pool of
Xi. αj is an apparent rate constant for flux j. fj, k is the kinetic
order of variable Xk in reaction j. Each kinetic order quan-
tifies the effect of the metabolite Xk on flux j and corre-
sponds to the local sensitivity of the rate νj to Xk evaluated
at the operating point indicated by the subscript 0:

If Xk has no direct influence on the rate of reaction j, the
kinetic order is zero. If Xk directly activates the flux of reac-
tion j, the kinetic order is positive. If Xk directly inhibits
the flux of reaction j, the kinetic order is negative.

The model we study is a version of the biosynthesis of
glycerol, trehalose, and glycogen and the first step of the
pentose phosphate pathway (Fig. 1). It was originally
published and analyzed by Curto and colleagues [37-39].
In that publication parameter estimates are justified, sen-
sitivity analysis of the model is also performed and the
dynamic behaviour of the model is studied. Voit and
Radivoyevitch [27] extended this model by adding two
branching pathways that are mathematically represented
in S-system form: i) the first reaction of the pentose phos-
phate pathway and ii) the first reaction of the biosynthesis
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G6PDH and HXT over-expressionFigure 6
G6PDH and HXT over-expression. Box and whisker 
plots (see Fig.5 legend for further details) showing the joint 
distribution of the changes in the expression of G6PDH and 
HXT in the GEPs that fulfil all the performance criteria.
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of trehalose. Again, the parameter estimations for the
added reactions are fully explained in Voit and Radi-
voyevitch's publication [27]. We use this model with the
same parameter values but translating the original S-sys-
tem model into a GMA form. The S-system representation
aggregates fluxes that contribute to the increase in the con-
centration of a given metabolic pool into one single black
box process and the fluxes that contribute to the decrease
in the concentration of a given metabolic pool into
another single black box process [see [70] and references
therein]. As per our functionality criteria, we needed to
consider the fluxes of the individual processes. Converting
from the S-system into the GMA representation allows the
analysis of the individual fluxes. The precise relationship
between GMA parameters and S-systems parameters has
been discussed elsewhere [see for instance [38,70]]. Math-
ematical details about the model implementation can be
found in the referred publications or by reading the SBML
description that can be downloaded from the web [127].
All computations were done using Mathematica™ [128]
and the open-source package MathSBML [129].

Generation of hypothetical adaptive scenarios
To study the effect of gene expression changes on yeast
adaptation to heat shock we proceeded in the following
way. First, we analyzed the mathematical model using
parameter values and enzyme activities that correspond to
the basal, pre-stress situation (25°C). Second, we imple-
mented stress related changes by considering that the gene
expression changes caused by heat shock correspond to
changes in the enzyme activities of the model. Third, the
physiological effect of each expression profile was calcu-
lated by changing the basal enzyme activity level in
accordance with the fold-change in gene expression. We
only found evidence in the literature for post-transcrip-
tional activation of TDH and PYK [27,85,86]. Thus these
were the only enzymes in our model for which we consid-
ered post-transcriptional modulatory effects. Finally, we
characterized the new steady state resulting from each
GEP. Each new steady state is compared to the basal
steady state. The differences were analyzed in the context
of the known physiological response of the cells to stress.
If the new steady state did not pass criteria for adequate
functionality (see Results for a description of the criteria)
then the GEP that generated this steady state was not con-
sidered to generate a viable response to heat shock.

The scanning of physically plausible values for in silico
gene expression changes was done as follows. We
assumed that expression of each gene could change within
the ranges described in the caption for Fig. 1. These ranges
where selected after analyzing the fold changes for the
considered genes reported in the available microarray
data. By default, for each gene, a range of several fold-
changes above and below its pre-stress basal state was

scanned. This range always includes and surpass by at
least two-fold units the largest change observed in micro-
array data. In some cases (see Fig. 1) this scanning was
truncated because either over-expression or under-expres-
sion of the relevant gene is excluded by known physiolog-
ical information. For such cases sampling was extended by
a few folds in the direction that was not truncated. Within
the corresponding ranges for each gene, we scanned the
expression for the genes corresponding to the enzymes in
the model. Each combination produces a particular GEP.
We combined all allowable values for the expression of
each gene, leading to the initial analysis of 4,637,360 in
silico GEPs.

Available microarray data characterizing heat shock 
response in yeast
The GEPs corresponding to the response of yeast to heat
shock have been investigated by several groups [3-5]. The
experimental GEPs available present data from three inde-
pendent experiments in which yeast cells were subjected
to heat shock. In each independent experiment cells were
collected at different times after the temperature jump.
The three experiments reveal a similar dynamic of gene
expression, where maximal changes in gene expression
with respect to pre-stress levels are observed between 10
and 20 minutes after heat shock. Afterwards, expression of
most genes returned to values that are comparable to pre-
stress levels. If we focus on the peaks of gene expression
changes, this corresponds to 10 minutes after heat shock
(DB1 10') in Eisen's experiments [3], 15 minutes after
heat shock (DB2 15') in Causton's experiments [5], and
10 (DB3 10'), 15 (DB3 15') and 20 (DB3 20') minutes
after heat shock in the data obtained in Gasch's experi-
ments [4].

Abbreviations 
BST, Biochemical Systems Theory; SBML, Systems Biology
Markup Language; GMA, Generalized Mass Action model;
TDH, glyceraldehyde-3-phosphate dehydrogenase; PYK,
pyruvate kinase; GEP, Gene Expression Profile; BD1, data
from Eisen's experiments [3]; BD2, data from Causton's
experiments[5]; DB3, data from Gasch's experiments [4];
G6P, glucose-6-phosphate; F16P, fructose-1,6-biphos-
phate;TPS, trehalose 6-phosphate syntase complex; PFK,
phosphofructokinase; SGD, Saccharomyces Genome
Database; HXT, hexose transporters; G6PDH, glucose 6-
phosphate dehydrogenase; GLK, glucokinase/hexokinase;
PEP, phosphoenolpyruvate.
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