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Mortality models often have inbuilt identification issues challenging the statistician. The statistician can choose to work with well-
defined freely varying parameters, derived as maximal invariants in this paper, or with ad hoc identified parameters which at
first glance seem more intuitive, but which can introduce a number of unnecessary challenges. In this paper we describe the
methodological advantages from using the maximal invariant parameterisation and we go through the extra methodological
challenges a statistician has to deal with when insisting on working with ad hoc identifications.These challenges are broadly similar
in frequentist and in Bayesian setups. We also go through a number of examples from the literature where ad hoc identifications
have been preferred in the statistical analyses.

1. Introduction

Mortality models are commonly used in a wide range of
fields such as actuarial sciences, epidemiology, and sociology.
They are often used in important decisions such as how
to deal with unisex legislation in the pension industry; see
Ornelas et al. [1] and Jarner and Kryger [2]. However, such
models do often have inbuilt identification issues stemming
from overparametrisation. While identification issues are
omnipresent in statistical modelling, this paper focuses on
mortality modelling, where estimated parameters are treated
as time series and extrapolated to give forecasts of future
mortality. The underlying theme of this paper is to provide
strategies of avoiding arbitrariness resulting from the iden-
tification process. We suggest two ways forward. First, we
can reparametrise the model in terms of a freely varying
parameter, which therefore has to be of lower dimension
than the original parameter. Secondly, we can work with an
identified version of the original parameter as long as we
keep track of the consequences of the identification choice.
That way we ensure that two researchers making different
identification choices get the same statistical inferences and
forecasts.

A simple example is the age-period model for an age-
period array of mortality rates. It is well-known that the
levels of the age- and period-effects cannot be determined
from the likelihood representing the overparametrisation
of the model. When the estimated age- and period-effects
are treated as time series and subjected to plotting and
extrapolation, then our approach ensures that the statistical
analysis is the same for two researchers identifying the above
model in two different ways. Whereas this issue is relatively
simple for the age-periodmodel, identification becomesmore
tricky for complicated models such as the age-period-cohort
model and the model of Lee and Carter [3], let alone two-
sample situations.

Mortality models are built as a combination of age,
period, and cohort-effects, but the likelihood only varies with
a surjective function of these time effects.The time effects can
be divided into two parts. One part that moves the likelihood
function and another part which does not induce variation
in the likelihood function. We will argue that all inferences
and forecasts should be concerned primarily with the part
of the parameter that moves the likelihood function. This
does not preclude the researcher from working with the time
effects, but it gives some limitations on what can be done.
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This is important because the motivation and the intuition
of mortality models typically originate in the time effects.
For instance, in the context of an age-period-cohort model
linear trends cannot be identified so time series plots of
the time effects need to be invariant to linear trends and
extrapolations of time effects must preserve the arbitrary
linear trend in the time effects. This applies regardless of
whether the identification issue is dealt with in a frequentist
manner or by Bayesian methods.

To formalise the discussion slightly return to the age-
period example. Denote the predictor for the age-period data
array by 𝜇. The age-period model then determines how the
predictor𝜇 varies with a vector 𝜃 summarising age and period
effects. That vector is split into two components 𝜉 and 𝜆

so that the predictor only depends on 𝜃 through 𝜉 but not
on 𝜆 which cannot be identified by statistical analysis. In
the age-period example 𝜉 could reflect the contrasts and the
overall level of the predictor 𝜇, whereas 𝜆 reflects the level
of the age effect. The more principled solution is then to
work exclusively with 𝜉 and simply consider 𝜃 as amotivation
rather than the objective of the analysis. Another solution
is to ad hoc identify 𝜆 based on a notion of mathematical
convenience or based on a particular purpose given the
substantive context.

Once an ad hoc identification of 𝜆 is chosen the identi-
fication problem appears to go away, because the likelihood
analysis can now go through. The reason is that the variation
of 𝜃 is now reduced to the variation of 𝜉 precisely because 𝜆
is fixed. Suppose two researchers choose the same likelihood
and the same parametrisation of 𝜉 but different ad hoc
identifications 𝜆† and 𝜆

‡. Which of their conclusions will be
the same and which will be different? As the likelihood only
depends on 𝜉 the fits of the two researchers will be identical.
But differences might arise if the statistical inference or
forecasting or any other statistical analysis involves 𝜆 in some
way.

Indeed, with many extrapolation methods forecasts will
be invariant to the choice of 𝜆. But, there will also be
extrapolation methods where this is not the case. Examples
arise in the age-period-cohort model, where linear trends
have to be handled with care.

Wewill start by analysing linearly parametrisedmodels at
a rather general level. We do this with two aspects in mind.
First, we need to step back to a point in the analysis before ad
hoc identification is made. Secondly, we also want to avoid
the discussion of how to choose 𝜉 and 𝜆, which tend to be
specific to the mortality model in question. Working at the
general level we can focus on the mappings between different
parametrisations and the invariance properties coming from
these mappings. It is then seen that the parameter 𝜉 arises
as a maximal invariant. The general setting also allows the
formulation of a series of results discussing different types of
ad hoc identification, first in a frequentist fashion and then in
a Bayesian fashion.

Subsequently, we will consider the age-period-cohort
model in detail, both for one- and two-sample situations.
Using the general results it becomes easier to see that a
number of popular methods inadvertently include features
that are not invariant to ad hoc identification. These include

the “intrinsic estimator” advocated by Yang et al. [4], the
“mixed model approach” by Yang and Land [5], the Bayesian
approach by Berzuini and Clayton [6], and the two-sample
analysis by Riebler and Held [7]. Finally, we consider the
nonlinearly parametrised model of Lee and Carter [3]. The
nonlinearity gives a further complication since the mapping
from the time effects to the mortality predictor is nondif-
ferentiable. As it turns out the mortality predictor varies
in a smooth space, so the nondifferentiability is avoided by
working directly with the mortality predictor instead of the
original time effects. Instead, a Lee-Carter application should
consider whether a certain matrix has rank of unity or zero.
Apart from that the analysis is similar to that of linearly
parametrised models. Likewise a theory is given for two-
sample situations.

Throughout the paper our concern rests exclusively with
the identification problem and the consequences of ad hoc
identification for estimation, plots, inference, and forecasting.
In practice, important additional concerns are how to choose
appropriate models and forecasting methods. We would like
to refer to Girosi and King [8], Pitacco et al. [9] for general
discussions of these issues, and also to Kuang et al. [10] and
Coelho and Nunes [11] for discussions of forecast methods in
the light of structural breaks. Instead, the aim of the paper is
to present an overall framework that can help streamlining
the identification discussion that has appeared in so many
papers in so many fields over so many years.

Section 2 of this paper considers standard linear statistical
models, which lend themselves to a relative straightforward
analysis based on linear algebra. Any ad hoc identification
splits the time effect into two components. The first com-
ponent is an arbitrary component, which is not needed for
the identification of the likelihood. The other component
is necessary and sufficient to identify the model and hence
sufficient for statistical analysis. In Section 3 it is outlined how
to analyze the statistical model when the latter component is
ad hoc identified. It is argued that this can cause difficulties
for estimation, interpretation, and forecast. In Section 4 it is
shown that Bayesian analysis shares the same challenges as
the frequentist approach. In Sections 5 and 6 we study the
two particular examples: the omnipresent age-period-cohort
and Lee-Carter mortality models. All proofs are collected in
the Appendix.

2. Statistical Models with
Linear Parametrisations

In this section we present the identification problem in a
linear framework. The problem is solved by analysing the
mapping from the original time effect to the predictor which,
in turn, leads to standard statistical analysis. In Section 6
we show how these ideas transfer to a nonlinear context.
This contrasts with Section 3 in which we illustrate the
analytical challenges and inconveniences arising from ad hoc
identification.

In Section 2.1 we present the overparametrized linear
model for the mortality predictor.The identification problem
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is defined in Section 2.2 via the likelihood. In an over-
parametrized linear model two different parameters might
produce the same likelihood. In Section 2.3 we analyze the
mapping from the overparametrised parameter to the pre-
dictor.This mapping enables us to split the overparametrised
parameter into two. One arbitrary parameter and one param-
eter identify the model without being overparametrised.This
latter parameter is shown to be a maximal invariant param-
eter. In Section 2.4 it is demonstrated how any statistical
analysis can be based on this maximal invariant parameter
alone. In particular we comment that visual data representa-
tions, hypothesis testing, and forecasting are simple and well
defined. This in turn leads to standard statistical analysis.

The analysis of the linearly parametrised involves pro-
jections on linear or affine spaces and on their orthogonal
complements. It is therefore convenient to introduce the
following notation. A matrix 𝑚 has full column rank if 𝑚𝑚
is invertible. In this case the orthogonal complement 𝑚⊥ is
a matrix so 𝑚



⊥
𝑚 = 0 and (𝑚,𝑚⊥) is invertible. Thus, when

𝑚 itself is invertible then 𝑚⊥ is the empty matrix. It is not
difficult to calculate 𝑚⊥ in practise, an explicit construction
of 𝑚⊥ follows from a singular value decomposition of 𝑚𝑚

,
choosing 𝑚⊥ as the eigenvectors associated with the zero
eigenvalues. Moreover, let𝑚 = 𝑚(𝑚


𝑚)
−1 so that𝑚𝑚 is the

identity matrix, while𝑚⊥ = 𝑚⊥(𝑚


⊥
𝑚⊥)
−1.

2.1. The Model. Think of the time effect 𝜃 as our preferred
intuitive, but unidentified parameter, and think of the pre-
dictor 𝜇 as some function of 𝜃 specifying the model at
hand. In a Poisson type model, where the mean specifies the
distribution, 𝜇 could be the log of that mean. Such Poisson
models are omnipresent in mortality models. We will often
think of 𝜃 as containing some time effects. Often forecasting is
carried out simply by isolating and extrapolating such a time
effect.

Consider a data vector 𝑌 of dimension 𝑛. This could, for
instance, be the vector consisting of the stacked mortality
rates for a rectangular age-period array of dimension 𝐼 × 𝐽

in which case 𝑛 = 𝐼𝐽. The statistical model for 𝑌 could be
a generalized linear model. This involves an appropriately
chosen distribution and a link function, which links the
expected mortality rate to an 𝑛-dimensional predictor, which
is denoted by 𝜇. Taken together this defines a likelihood
function L(𝜇; 𝑌).

The model for the predictor 𝜇 is constructed in terms of,
for instance, age, period, and cohort time effects. These time
effects are summarized in a vector 𝜃, which is of dimension
𝑞 < 𝑛. Therefore 𝜇 is a surjective function of 𝜃. For the
moment the specification of the predictor is assumed linear
so that

𝜇 = 𝐷𝜃 for 𝜃 ∈ Θ = R
𝑞
, (1)

for some design matrix 𝐷 ∈ R𝑛×𝑞. We refer to this
specification as the mortality model, while the space Θ is
the time effect space. The time effect space is chosen as an
unrestricted real space in accordance with the starting point
of most mortality analyses.

The parameter space for the likelihood function and
therefore for the statistical model is given by the range of
variation for the predictor 𝜇; that is,

𝑀 = (𝜇 ∈ R
𝑛
: 𝜇 = 𝐷𝜃 for 𝜃 ∈ Θ = R

𝑞
) . (2)

The likelihood function is assumed uniquely identified on
this space in the sense that for all pairs of predictors so 𝜇† ̸= 𝜇

‡

then the likelihood of 𝜇†, 𝜇‡ differ; that is,

L (𝜇
†
; 𝑌) ̸=L (𝜇

‡
; 𝑌) , (3)

for 𝑌 in a set with positive probability.

2.2. The Identification Problem. The identification problem
of mortality models arises when the mapping from the time
effect space Θ to the parameter space𝑀 is surjective but not
injective. With a linear parametrisation this arises when the
design matrix 𝐷 has reduced column rank 𝑝 < 𝑞 so 𝐷


𝐷 is

singular. In this situation there exists time effects 𝜃† ̸= 𝜃
‡ with

the same likelihood:

L (𝐷𝜃
†
; 𝑌) = L (𝐷𝜃

‡
; 𝑌) , (4)

for all data 𝑌. Then the time effect space Θ is not useful as
parameter space for the statistical model.

2.3. Analysing the Mapping 𝜃 → 𝜇. When analysing the
mapping from our intuitively preferred parametrisation 𝜃

into the linear predictor 𝜇, we will be able to rewrite 𝜃 as a
sum of two components: one is a function of the predictor
and the other is the arbitrary part varying with 𝜃, but not with
the predictor. We provide two methods for analysis.

The first method is to find a basis 𝑋 ∈ R𝑛×𝑝 with full
column rank 𝑝 for the design 𝐷. The design matrix of the
mortality model can then be expressed as𝐷 = 𝑋𝐴

 for some
matrix 𝐴 ∈ R𝑞×𝑝 with full column rank 𝑝. Introduce a new
𝑝-dimensional parameter:

𝜉 = 𝐴

𝜃. (5)

The parameter space 𝑀 can then be written more parsimo-
niously as

𝑀 = (𝜇 ∈ R
𝑛
: 𝜇 = 𝑋𝜉 for 𝜉 ∈ R

𝑝
) . (6)

The mapping from 𝜉 to 𝜇 is bijective, so the statistical model
can just as well be parametrised in terms of 𝜉 ∈ Ξ = R𝑝.

Alternatively, the identification problem can be expressed
through an invariance argument. This argument relates to
the parameterization but resembles the classical invariance
argument for reduction of data; see Cox andHinkley [12, page
157].With a linear parametrisation the argument involves the
orthogonal complement to the matrix 𝐴. That is a matrix
𝐴⊥ ∈ R𝑞×(𝑞−𝑝) which has the properties that 𝐴

⊥
𝐴 = 0 and

that (𝐴, 𝐴⊥) is invertible. The mortality model (1) is defined
by the mapping

𝜃 → 𝜇 = 𝐷𝜃 = 𝑋𝐴

𝜃, (7)
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from Θ = R𝑞 to 𝑀. This mapping is surjective in that two
different values of 𝜃may result in the same𝜇 and therefore the
same likelihood. These equivalence classes in the time effect
space can be described by the group of transformations

𝑔 : 𝜃 → 𝜃 + 𝐴⊥𝜁, (8)

acting onΘ for arbitrary 𝜁 ∈ R𝑞−𝑝. Indeed, it holds that 𝜃 and
𝑔(𝜃) will result in the same 𝜇. The mapping (7) is therefore
invariant to the group 𝑔. We will argue that the parameter
𝜉 = 𝐴


𝜃 is a maximal invariant to the group 𝑔 acting on Θ,

which provides a link with (6). It has to be argued that for any
𝜃
†, 𝜃‡ so that 𝜉† = 𝐴


𝜃
† equals 𝜉‡ = 𝐴


𝜃
‡ then 𝜃

‡
= 𝑔(𝜃

†
),

see Cox andHinkley [12, page 159]. For this argument use the
orthogonal projection identity to write

𝜃 = 𝐴(𝐴

𝐴)
−1

𝜉 + 𝐴⊥(𝐴


⊥
𝐴⊥)
−1

𝜑; (9)

for unique 𝜉 = 𝐴

𝜃 and 𝜑 = 𝐴



⊥
𝜃. Thus, if 𝐴𝜃‡ = 𝐴


𝜃
† then

𝜃
‡
= 𝑔(𝜃

†
) with 𝜁 = 𝜑

‡
− 𝜑
†
= 𝐴


⊥
(𝜃
‡
− 𝜃
†
).

In applications it can be difficult to find a basis 𝑋 for the
design 𝐷. It can be easier to find a group 𝑔 and hence 𝐴⊥

and then use this information to construct𝐴 and a candidate
basis 𝑋 = 𝐷𝐴, noting that 𝐷 = 𝑋𝐴

. This argument leaves
it to be proven that 𝑋 is a basis, or equivalently, that the
suggested group 𝑔 actually describes the equivalence classes
of the mapping from 𝜃 to 𝜇.

It is useful to note that in the choices of 𝑋, 𝐴 only the
spaces spanned by them are unique since 𝑋𝐴 = 𝑋𝑚𝑚

−1
𝐴


for any invertible𝑚 ∈ R𝑝×𝑝. Likewise, the maximal invariant
𝜉 is only unique up to bijective transformations. This lack of
uniqueness has no impact on the analysis of the likelihood
albeit it influences interpretations.

2.4. Statistical Analysis Using the Maximal Invariant Param-
eter. The statistical model parametrised with the maximal
invariant parameter 𝜉 can be analysed by standard statistical
techniques. This contrasts to a range of problems that arise
when working with an ad hoc identified time effect 𝜃.
In the following the relatively simple standard statistical
analysis of the model parametrised by 𝜉 is discussed with
respect to likelihood theory, interpretation, plots, hypothesis
testing, forecasting, and Bayesian analysis. In Sections 3
and 4 we give an overview of the much more complicated
theory underpinning models parametrised by the ad hoc
identified time effect 𝜃. Age-period-cohort examples follow
in Section 5.

2.4.1. Exponential Family Theory. Suppose the likelihood
is drawn from a generalized linear model based on an
exponential family. Then the model is actually a regular
exponential family where the maximal invariant parameter
𝜉 is the canonical parameter since it is freely varying in a real
space; see Barndorff-Nielsen [13, page 116].This opens up for a
wealth of convenient statistical properties such as a likelihood
equation with a simple expression and explicit conditions for
a unique solution. In contrast, ad hoc identified parameters
are based on an injective mapping of the canonical parameter

𝜉 into 𝜃; see Sections 3.1 and 3.2. It is then more difficult to
fully exploit the exponential family theory.

2.4.2. Interpretation and Plots. The maximal invariant
parameter 𝜉 varies freely inR𝑝. It can therefore be interpreted
as the parameter of any standard statistical model. Since
𝜉 is freely varying the coordinates of 𝜉 can be interpreted
independently. When 𝜃 is a collection of time effects then
𝜉 can be organised as a collection of time series. Since the
coordinates of 𝜉 are freely varying the time series plots of the
components of 𝜉 have the usual interpretation of time series.
In contrast, ad hoc identified estimators are constrained to a
𝑝-dimensional subspace Θ𝜆 of Θ = R𝑞, which is often affine
but can be more complicated. A consequence is that plots are
complicated to evaluate; see Section 3.4.1.

2.4.3. Hypothesis Testing. Hypotheses are easily formulated
and analysed when using the maximal invariant parametri-
sation. An affine hypothesis that restricts 𝜉 to vary in a 𝑝𝐻-
dimensional affine subspace can be formulated as 𝐻


𝜉 =

𝜂 for known matrices 𝐻 ∈ R𝑝×(𝑝−𝑝𝐻), 𝜂 ∈ R𝑝−𝑝𝐻 . This
implies a restriction on the predictor 𝜇 = 𝑋𝜉 of (6). Form
the orthogonal complement 𝐻⊥ and recall the orthogonal
projection identity 𝐼𝑛 = 𝐻𝐻


+ 𝐻⊥𝐻



⊥
so that 𝜇 = 𝑋𝐻𝐻


𝜉 +

𝑋𝐻⊥𝐻


⊥
𝜉. Introduce a 𝑝𝐻-dimensional parameter 𝜑 = 𝐻



⊥
𝜉,

a design matrix 𝑋𝐻 = 𝑋𝐻⊥, and an offset 𝑍𝐻 = 𝑋𝐻𝜂. The
restricted parameter space is

𝑀𝐻 = (𝜇 ∈ R
𝑛
: 𝜇 = 𝑋𝐻𝜑 + 𝑍𝐻 for 𝜑 ∈ R

𝑝𝐻) . (10)

In an exponential family context both the unrestricted model
and the restricted model form regular exponential families.
A variety of nice properties then follow for the estimators
and the test statistics from the exponential family theory.
Examples are given in Sections 5.3 and 5.5.3. In contrast,
the hypothesis derived from restrictions on ad hoc identified
parameters and the resulting degrees of freedom are compli-
cated to analyse; see Section 3.4.2.

2.4.4. Forecasting. Most often the objective of a mortality
study is to forecast the future mortality. In the linear context,
𝜇 = 𝑋𝜉, this is done by extending the design 𝑋 and by
extrapolating 𝜉.

It is usually easy to extend the design 𝑋 into the forecast
horizon. This involves the construction of a triangular block
matrixwith an appropriate number of extra rows correspond-
ing to the data over the forecast horizon as well as extra
columns representing the extra parameters that would be
needed:

𝑋
ℎ
= (

𝑋 0

𝑋
ℎ

1
𝑋
ℎ

2

) . (11)

Extrapolating 𝜉 into a vector 𝜉 then gives the forecast

𝜇 = (𝑋
ℎ

1
, 𝑋
ℎ

2
) (

𝜉

𝜉
) . (12)
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The extrapolation of the parameter 𝜉 can be done as follows.
The estimated parameter, or part of it, can be thought of as
a time series. Any forecast techniques from the time series
literature applied directly to 𝜉 can be used, subject to the usual
contextual considerations.

Ad hoc identified time effects can be extrapolated in a
similar way; see Section 3.4.3. This may, however, result in
avoidable arbitrary effects in the forecast. Necessary and suffi-
cient conditions for this eventuality are given for age-period-
cohort models in Section 5.4.3. The practical examples are
mainly Bayesian in nature and are discussed next.

2.4.5. Bayesian Analysis. The introduction of the canonical
parameter shows that the likelihood, in Bayesian notation, is
of the form 𝑝(𝑦 | 𝜃) = 𝑝(𝑦 | 𝜉) where 𝜉 is freely varying.
A purist Bayesian analysis can simply introduce a prior on
the canonical parameter, 𝑝(𝜉). This is updated in a straight
forward way, resulting in the posterior 𝑝(𝜉 | 𝑦) = 𝑝(𝑦 |

𝜉)𝑝(𝜉)/𝑝(𝑦).
In contrast, introducing a prior on ad hoc identified

parameters gives various difficulties. Only parts of the prior
are updated by the likelihood, so that it becomes unclear
which information arises from the data and which infor-
mation arises from the ad hoc identification. Moreover,
avoidable arbitrariness is introduced in the forecast; see
Section 4. Introduction of hyperparameters exacerbates the
issue. Examples are given in Sections 5.4.4, 5.5.2, and 6.1.6.

3. Working with the Time Effects

In Section 2 we considered the situations where estimation,
hypothesis testing a hypothesis, or forecasting is carried out
using the canonical parameter. However, there might be
situations, where the original time effect parametrisation is
preferred, perhaps because it is felt that this parametrisation
is particularly helpful in guiding the intuition. This requires
ad hoc identification of the time effect . In this section
we will guide the considerations a statistician that has to
go through when insisting on an analysis based on some
nonunique parametrisations. As in Section 2 we focus on
linearly parametrised models. Specific examples follow in
Sections 5 and 6.

In Section 3.1 ad hoc identification is defined. As an
example we consider a least squares estimation problem with
collinear regressors in Section 3.2. For the age-period-cohort
model reviewed in Section 5 it is common to ad hoc identify
in two steps: first identifying levels then the linear trends. We
consider such two-step ad hoc identification in Section 3.3.
The consequence of ad hoc identification is considered in
Section 3.4. Indeed, when forecasting the time effect, we do
not want the forecast to depend on the identification scheme.
The same applies to graphical visualisation of our data, where
the eyemay extract patterns that depend on the identification
scheme. Likewise, confusion may arise when formulating a
hypothesis directly on the time effect parameters.

3.1. Ad Hoc Identification. In this section the time effect
parametrisation is considered. An identification scheme has

to be introduced when working with the time effects. This
may rest on mathematical convenience or it may be chosen
for a particular purpose given the substantive context. We
therefore call it ad hoc identification. Here we consider a
simple identification scheme but turn to a more common
two-step identification scheme in Section 3.3.

Once the canonical parameter 𝜉 has been estimated there
is often a wish to return to the original time effect 𝜃. The two
are linked through the surjective mapping

𝜃 → 𝜉 = 𝐴

𝜃, (13)

from Θ = R𝑞 to Ξ = R𝑝. Indeed, since 𝜉 is constructed as
a function of 𝜃 the notation for 𝜉 is often chosen to reflect
𝜃. The canonical parameter 𝜉 does, however, only give partial
information about 𝜃. The remaining part, say 𝜆, of 𝜃will have
to be chosen by the researcher and combined with 𝜉.

A linear ad hoc identification of 𝜃 comes about by the
researcher choosing a constraint

𝐿

𝜃 = 𝜆 (14)

for some known 𝜆 ∈ R𝑞−𝑝 and some matrix 𝐿 ∈ R𝑞×(𝑞−𝑝)

chosen so the square matrix (𝐴, 𝐿) is invertible. The time
effect space Θ is now reduced to an affine subspace

Θ𝜆 = (𝜃𝜆 ∈ Θ : 𝐿

𝜃𝜆 = 𝜆) . (15)

Given 𝜃 we can find 𝜉, 𝜆 through (13) and (14) as (𝜉, 𝜆) =
(𝐴, 𝐿)


𝜃. At the same time, given values of 𝜉, 𝜆 and the

invertibility of (𝐴, 𝐿), the ad hoc identified time effect is found
through

𝜃𝜆 = (
𝐴


𝐿
)

−1

(
𝜉

𝜆
) = 𝐿⊥(𝐴


𝐿⊥)
−1

𝜉 + 𝐴⊥(𝐿

𝐴⊥)
−1

𝜆. (16)

In this notation a subindex 𝜆 is introduced to avoid confusion
with the time effect 𝜃 in the original mortality model. Indeed,
there are now four different parameters in play, namely, the
original time effect 𝜃 ∈ Θ, the predictor 𝜇 ∈ 𝑀, the maximal
invariant parameter 𝜉 ∈ Ξ and the ad hoc identified time
effect 𝜃𝜆 ∈ Θ𝜆, each of which has a different interpretation.
The mapping from 𝜃 to each of 𝜇, 𝜉, and 𝜃𝜆 is surjective,
while there are bijective mappings between the latter three.
The interpretations of the time effect 𝜃 and the canonical
parameter 𝜉 will inevitably be different. For a start they have
different dimensions. Endowing the spaces with Euclidean
norms shows that distances in the two spacesΘ and Ξwill be
judged differently. The time effect 𝜃 and the ad hoc identified
time effect 𝜃𝜆 will similarly have different interpretations.
Although they have the same dimensions the Euclidean
norms on Θ and Θ𝜆 will be rather different. Confusion may
arise in the interpretation of a mortality analysis if there
is no clear distinction between 𝜃 and 𝜃𝜆. In addition an
unnecessary arbitrariness may arise when making inference
on 𝜃𝜆 or extrapolating 𝜃 ∈ Θ𝜆. We will return to these issues
in Section 3.4.

It is perhaps interesting to note that despite the linear
parametrisation the ad hoc identification need not be done
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in a linear fashion as in (14). Indeed it is common for Poisson
models with a log link to ad hoc identify 𝜃 through the
original multiplicative scale. That means that the ad hoc
identification is done nonlinearly through

𝜉 = 𝐴

𝜃𝜆, 𝜆 = 𝑓 (𝜃𝜆) . (17)

The fit of the model is unaffected by the ad hoc identifica-
tion. Indeed the fit is measured in terms of the estimate of the
predictor 𝜇 = 𝐷𝜃𝜆 where 𝐷 = 𝑋𝐴

. Since the identification
is made so 𝜉 = 𝐴


𝜃𝜆; the estimated predictor reduces to

𝜇 = 𝐷𝜃𝜆 = 𝑋𝐴

𝜃𝜆 = 𝑋𝜉, (18)

regardless of the choice of ad hoc identification.

3.2. A Least Squares Example. As an illustration of estimation
in the presence of ad hoc identification consider a normal
likelihood. Different, but equivalent, expressions can be
found depending on the parametrisation. The likelihood of
the predictor 𝜇 is

L (𝜇, 𝜎
2
; 𝑌) = (2𝜋𝜎

2
)
−𝑛/2

exp {− 1

2𝜎2
(𝑌 − 𝜇)


(𝑌 − 𝜇)}

for 𝜇 ∈ 𝑀, 𝜎
2
> 0.

(19)

Rewriting it in terms of the canonical parameter it is

L (𝜉, 𝜎
2
; 𝑌) = (2𝜋𝜎

2
)
−𝑛/2

exp {− 1

2𝜎2
(𝑌 − 𝑋𝜉)


(𝑌 − 𝑋𝜉)}

for 𝜉 ∈ Ξ = R
𝑝
, 𝜎
2
> 0,

(20)

while introducing the time effect parameter gives

L (𝜃, 𝜎
2
; 𝑌)

= (2𝜋𝜎
2
)
−𝑛/2

exp {− 1

2𝜎2
(𝑌 − 𝑋𝐴


𝜃)


(𝑌 − 𝑋𝐴

𝜃)}

for 𝜃 ∈ Θ = R
𝑞
, 𝜎
2
> 0.

(21)

The likelihood (20) of the canonical parameter 𝜉 can be
analysed by the least squares method since the design 𝑋 has
full column rank. The maximum likelihood estimator for 𝜉
and the predictor for the data are

𝜉 = (𝑋

𝑋)
−1

𝑋

𝑌, �̂� = 𝑋𝜉 = 𝑋(𝑋


𝑋)
−1

𝑋

𝑌. (22)

Along with the residual variance this is all the information
that is given by the likelihood.

The likelihood (21) of the time effect 𝜃 only depends on
𝜃 through 𝜉 = 𝐴


𝜃. The lack of identification means that the

maximum likelihood estimator for 𝜃has an arbitrary element,
so that it is a set valued estimator. Based on (16) this can be
expressed by

Θ̂𝜆 = 𝐿⊥(𝐴

𝐿⊥)
−1

𝜉 + 𝐴⊥(𝐿

𝐴⊥)
−1

𝜆

where 𝜃𝜆 ∈ Θ𝜆 ⊂ Θ,

(23)

for any 𝐿 so (𝐴, 𝐿) is invertible and for any 𝜆 ∈ R𝑞−𝑝. The fit,
however, remains the same and (18) becomes

𝜇 = 𝐷𝜃𝜆 = 𝑋𝐴

{𝐿⊥(𝐴


𝐿⊥)
−1

𝜉 + 𝐴⊥(𝐿

𝐴⊥)
−1

𝜆}

= 𝑋𝜉 = �̂�.

(24)

In order to compute actual estimates then 𝐿, 𝜆 have to be
chosen, which amounts to ad hoc identification. For instance,
with the ad hoc identifying restrictions 𝐿 = 𝐴⊥ and 𝜆 =

0 then 𝜃𝜆 can be thought of as the least squares estimator
of 𝑌 on 𝐷 using the Moore-Penrose generalised inverse
for the singular matrix 𝐷


𝐷; see Searle [14, page 212]. See

Section 5.4.1 for an example.

3.3. Step-Wise Identification. It is common to ad hoc identify
parameter in a step-wise fashion. In the first step the time
effect parameter is only partially constrained. The full iden-
tification then follows in a second step. An example is given
in Section 5.4.1 for an age-period-cohort model in which the
levels of the time effects are constrained in the first step
leaving the ad hoc identification of the linear trends to the
second step.

The first step constraints are affine of the type

𝐶

𝜃𝐶 = 𝜓, (25)

for known matrices 𝐶 ∈ R𝑞×(𝑞−𝑞𝐶), 𝜓 ∈ R𝑞−𝑞𝐶 . The con-
strained time effect space is then

Θ𝐶 = (𝜃𝐶 ∈ Θ : 𝐶

𝜃𝐶 = 𝜓) . (26)

Thereby the 𝑞-dimensional time effect space Θ is reduced to
a 𝑞𝐶-dimensional variation. The properties of this partially
ad hoc identified parameter space depends on the rank of
the matrix (𝐴, 𝐶). If the number of constraints, 𝑞 − 𝑞𝐶, is
at most equal to the number of unidentified components
𝑞 − 𝑝, it is possible that (𝐴, 𝐶) has full column rank. In
that case the constraint implies a partial ad hoc identification
without constraining the parameter space𝑀 of the statistical
model. This is shown in Theorem 1; see also Section 5.4.1
for an example, while the proof is given in the Appendix.
When (𝐴, 𝐶) has reduced rank the parameter space𝑀 is also
constrained; see Section 3.4.2 for a discussion.

Theorem 1. Suppose (𝐴, 𝐶) has full column rank. Then the
matrix 𝑚 = 𝐴



⊥
𝐶 ∈ R(𝑞−𝑝)×(𝑞−𝑞𝐶) has full column rank and

the constraint (25) does not constrain the canonical parameter
𝜉 and the predictor 𝜇. Hence, the predictor space remains of
the form (2). The equivalence classes inΘ𝐶 under the mapping
𝜃 → 𝜇 = 𝑋𝐴


𝜃 are given by the group

𝑔𝐶 : 𝜃 → 𝜃 + 𝐴⊥𝑚⊥𝜁, (27)

for arbitrary 𝜁 ∈ R𝑞𝐶−𝑝 where 𝑚⊥ ∈ R(𝑞−𝑝)×(𝑞𝐶−𝑝) is the
orthogonal complement of 𝑚. The maximal invariant remains
𝜉 = 𝐴


𝜃.

The partial ad hoc identification by (25) implies that
any time series analysis of the time effects has to happen
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relative to the constrained space Θ𝐶 rather than the space Θ.
This is awkward as discussed in Section 3.4 below. It is also
considerably more complicated than working with the freely
varying canonical parameter 𝜉; see Section 2.4.2.

3.4. Consequences of Ad Hoc Identification. In the following
we will look closer at the consequences of working with
the ad hoc identified time effect parameter 𝜃 in the context
of a linear mortality model of the form 𝜇 = 𝐷𝜃. We
consider the consequences for plotting, hypothesis testing,
and forecasting.

3.4.1. Plots of Time Effects. In themortalitymodel (1) the time
effect 𝜃 is the concatenation of age, period, and cohort effects.
It seems natural to think of these individual time effects as
time series and to plot them against time. As the time effect 𝜃
varies in the unrestricted spaceΘ = R𝑞 thismaps the 𝑞-vector
into unrestricted time series.

Estimates of the time effects are constructed by combin-
ing an estimate of 𝜉 with an ad hoc chosen value for 𝜆 = 𝐿


𝜃,

see (14). The resulting estimate 𝜃𝜆 is therefore constrained
to the space Θ𝜆 ⊂ Θ. The interpretation of the estimate 𝜃𝜆
is therefore different from the interpretation of the original
time effect 𝜃. Distances on the spaces Θ and Θ𝜆 are judged
differently and the variability of 𝜃𝜆 is deduced exclusively
from 𝜉 through (16). The time series components of 𝜃𝜆 are
now restricted through 𝜆 = 𝐿


𝜃𝜆. Plots of the 𝜃𝜆-time series

are therefore interpreted differently from the imagined plots
of the original 𝜃-time series and from the plots of themaximal
invariant parameter 𝜉 discussed in Section 2.4.2. Indeed, if
one were to analyse the estimated 𝜃𝜆-time series statistically
the linear constraint should be taken into account.This is a bit
complicated as illustrated below, but it is the consequence of
working with the ad hoc identified parameter 𝜃𝜆 rather than
the canonical parameter 𝜉.

Attempts to give intrinsic meaning to 𝜆 will be specific
to the index set for the data set at hand. For instance, the
requirement that the age effect should be zero on average
does not carry over when looking at a subsample or when
forecasting. It is not obvious that such an ad hoc identification
is anymore or less arbitrary than saying that, for instance, the
first or the last age effect should have a particular value.

Adding confidence bands to a plot of 𝜃𝜆 is in itself not
difficult. If 𝜉 is asymptotically normal with mean 𝜉 and
variance Σ, then 𝜃𝜆 is asymptotically normal with mean
𝜃𝜆 and variance 𝐿⊥(𝐴


𝐿⊥)
−1
Σ(𝐿


⊥
𝐴)
−1
𝐿


⊥
. This is a normal

distribution on the space Θ𝜆. The interpretation of these
standard errors will therefore be similar to that of 𝜃𝜆 itself.

Finally, it may be of interest to analyse the estimated 𝜃𝜆-
time series statistically. Denote this time series by 𝑥𝜆. Its
sample space is now Θ𝜆. A statistical model on Θ𝜆 can be
built as follows. The starting point could be a time series
model for unrestricted variables 𝑥 on the sample space Θ.
This gives a joint density for 𝑥 ∈ Θ, which can be reduced
by marginalisation to a density for 𝑥𝜆 ∈ Θ𝜆. Whether one
is working with the unrestricted model for 𝑥 ∈ Θ or the

restrictedmodel for 𝑥𝜆 ∈ Θ𝜆 inferences that are invariant to𝑔
must be based on those statistics of 𝑥 or 𝑥𝜆 that are invariant
to𝑔.Thus, inferencesmust be based on themaximal invariant
under 𝑔. For a general overview of invariant reduction see
Cox and Hinkley [12, page 175f], whereas Nielsen [15] gives
the argument in some detail for an autoregression with a
linear trend.

3.4.2. Hypothesis Testing. Having formulated the model in
terms of time effects itmay be of interest to test the hypothesis
that one of these time effects is absent.No identification issues
arise when the hypothesis is formulated as a restriction on the
canonical parameter 𝜉 as discussed in Section 2.4.3. But one
has to be careful when formulating hypotheses in terms of
the original time effect. See Sections 5.4.5, 5.5.3, and 5.5.4 for
examples.

Affine hypotheses on the time effect are of the form

𝑅

𝜃𝑅 = 𝜌, (28)

for knownmatrices𝑅 ∈ R𝑞×(𝑞−𝑞𝑅),𝜌 ∈ R𝑞−𝑞𝑅 .The constrained
time effect space is then

Θ𝑅 = (𝜃𝑅 ∈ R
𝑞
: 𝑅

𝜃𝑅 = 𝜌) . (29)

To see how the restriction (28) restricts the predictor space
𝑀 ⊂ R𝑛 recall that the predictor𝜇 only depends on 𝜃 through
𝜉 = 𝐴


𝜃. Thus, the analysis of the restriction (28) depends

on the interplay between the matrices 𝐴, 𝑅. Theorem A.3 in
Appendix A.3 gives a general result to that effect. It shows that
the hypothesis (28) restricts the predictor space 𝑀 to a 𝑝𝑅-
dimensional affine subspace of R𝑛 in so far as it restricts the
canonical parameter 𝜉. In particular, the degrees of freedom
of the hypothesis, 𝑝 − 𝑝𝑅, may in general be different from
the dimension reduction of the time effect parameter, 𝑞 − 𝑞𝑅.
When this is the case the restriction (28) has an element of ad
hoc identifying the time effect.

3.4.3. Forecasts. Forecasts can be made by extrapolating the
ad hoc identified time effects 𝜃𝜆. Two researchers choosing
different ad hoc identification schemes, but otherwisemaking
the same analysis, may make different forecasts. This can be
avoided if the extrapolationmethod is chosenwith some care.

Following the linear approach outlined in Section 2.4.4
the predictor 𝜇 = 𝐷𝜃 = 𝑋𝐴


𝜃 is forecasted by extending the

design𝐷 into

𝐷
ℎ
= (

𝐷 0

𝐷
ℎ

1
𝐷
ℎ

2

) . (30)

Extrapolating the ad hoc identified 𝜃𝜆 into a vector (𝜃
𝜆
, 𝜃


𝜆
)


then gives the forecast

𝜇 = (𝐷
ℎ

1
, 𝐷
ℎ

2
) (

𝜃𝜆

𝜃𝜆
) = 𝐷

ℎ

1
𝜃𝜆 + 𝐷

ℎ

2
𝜃𝜆. (31)

Often both components 𝐷
ℎ

1
𝜃𝜆 and 𝐷

ℎ

2
𝜃𝜆 depend on the

ad hoc identification. Nonetheless, these dependencies of
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ad hoc identification may cancel each other so that the
overall forecast 𝜇 is invariant to the ad hoc identification.
Such invariance would seem desirable in most applications
unless there is strong substantial reason for the ad hoc
identification scheme. Necessary and sufficient conditions for
invariance are presented for the age-period-cohort model in
Section 5.4.3 and for a nonlinear model in Section 6.1.5.

In contrast, these considerations are redundant when
working with the canonical parameter, 𝜉; see Section 2.4.4.

4. Bayesian Models and Random
Effects Models

Mortality analysis is often carried out using either Bayesian
methods or random effects methods. The mortality model is
then altered through the introduction of a prior distribution
on the parameters. One might think that the identification
problems become less of an issue or even disappear.This is not
the case since the Bayesian method and the random effects
method is based on the mortality likelihood which only
depends on the time effect 𝜃 through the maximal invariant
parameter 𝜉. Thus, the identification challenges remain. The
issue is that a prior on the unidentified part, say 𝜆, of the
time effect amounts to an ad hoc identification. Indeed, the
conditional prior of 𝜆 given 𝜉 is not updated by the mortality
likelihood. A main difference is that a maximum likelihood
analysis of the original mortality likelihood usually prompts
the researcher when there is an identification issue, whereas
both Bayesian methods and random effects methods allow
computations to go through despite an identification issue.

In Section 4.1 it is seen that introduction of a conditional
prior on 𝜆 given 𝜉 is the Bayesian analogue of ad hoc identi-
fication. This leads to the same type of forecasting challenges
as in the frequentist settings as is seen in Section 4.2. In
Section 4.3 we show how the Bayesian identification issues
transfer to random effects models.

4.1. Bayesian Estimation. For Bayesian and random effects
models we formulate a likelihood and a prior. Thus, consider
a likelihood 𝑝(𝑦 | 𝜃) = 𝐿(𝜃; 𝑦). Replacing 𝜃 by 𝜉, 𝜆 the
identification problem implies that

𝑝 (𝑦 | 𝜉, 𝜆) = 𝑝 (𝑦 | 𝜉) for all outcomes 𝑦. (32)

The prior on 𝜃 is factorised as 𝑝(𝜃) = 𝑝(𝜉, 𝜆) = 𝑝(𝜉)𝑝(𝜆 |

𝜉). In the case of Bayesian estimation the following result
emerges.

Theorem 2. Suppose the likelihood satisfies (32). Then
(i) the predictive distribution does not depend on the con-

ditional prior for 𝜆:

𝑝 (𝑦) = ∫𝑝 (𝑦 | 𝜉) 𝑝 (𝜉) 𝑑𝜉; (33)

(ii) the posterior satisfies

𝑝 (𝜉 | 𝑦) =
𝑝 (𝑦 | 𝜉) 𝑝 (𝜉)

𝑝 (𝑦)
, 𝑝 (𝜆 | 𝜉, 𝑦) = 𝑝 (𝜆 | 𝜉) ;

(34)

(iii) the posterior means satisfy

𝐸 (𝜉 | 𝑦) = ∫ 𝜉𝑝 (𝜉 | 𝑦) 𝑑𝜉,

𝐸 (𝜆 | 𝜉, 𝑦) = 𝐸 (𝜆 | 𝜉) ,

𝐸 (𝜆 | 𝑦) = ∫𝐸 (𝜆 | 𝜉) 𝑝 (𝜉 | 𝑦) 𝑑𝜉.

(35)

Theorem 2 shows that it suffices to give a prior to 𝜉 and
ignore 𝜆 as advocated in Section 2.4.5. Indeed the conditional
prior for 𝜆 given 𝜉 is not updated. Theorem 2 appears to
be well-known; see Poirier [16, Proposition 2] or Smith [17,
Section B].

Due to Theorem 2 the Bayesian analyst faces the com-
plications outlined in Section 3.4. Indeed, suppose that two
Bayesian researchers choose the same likelihood𝑝(𝑥 | 𝜉, 𝜆) =

𝑝(𝑥 | 𝜉) and the same prior 𝑝(𝜉) for 𝜉, but different
conditional priors for 𝜆 given 𝜉. Their marginal distributions
for the data are identical, but any inferences regarding
interpretation or forecasting will differ in so far as they
involve the unidentified parameter 𝜆. A Bayesian researcher
should therefore be cautiouswith inference related to𝜆.There
will of course be situations where the prior knowledge of
𝜆 given 𝜉 is found to be of substantive relevance. In such
situations it seems more fruitful to change the likelihood to
include that information.

4.2. Forecasting. Bayesian forecasts involve integrating an
extrapolative distribution. This can be done in two ways,
either working exclusively with the identified, maximal
invariant parameter 𝜉 as in Section 2.4.4, or working with the
time effect 𝜃 = (𝜉, 𝜆) as in Section 3.4.3.

4.2.1. Forecasting Using the Maximal Invariant Parameter.
Consider first the case where only the maximal invariant
parameter 𝜉 is used. In that case the forecast is computed by
sampling from the posterior𝑝(𝜉 | 𝑦) and then extrapolating𝜇
using the sampled value 𝜉 using some extrapolative methods,
say 𝑝(𝜇 | 𝜉, 𝑦). In combination this gives the forecast

𝑝 (𝜇 | 𝑦) = ∫𝑝 (𝜇 | 𝜉, 𝑦) 𝑝 (𝜉 | 𝑦) 𝑑𝜉. (36)

4.2.2. Forecasting Using the Ad Hoc Identified Time Effect.
Consider now forecasts involving the full time effect 𝜃 =

(𝜉, 𝜆). Theorem 2(ii) shows that the posterior satisfies 𝑝(𝜃 |

𝑦) = 𝑝(𝜉 | 𝑦)𝑝(𝜆 | 𝜉). The distribution forecast with
extrapolation 𝑝(𝜇 | 𝜉, 𝜆, 𝑦) is then

𝑝 (𝜇 | 𝑦) = ∬𝑝 (𝜇 | 𝜉, 𝜆, 𝑦) 𝑝 (𝜉 | 𝑦) 𝑝 (𝜆 | 𝜉) 𝑑𝜆 𝑑𝜉. (37)

The concern is now as follows. Suppose a second researcher
chooses the same extrapolative method, likelihood, and prior
for 𝜉, but different conditional priors 𝑝†(𝜆 | 𝜉). In general,
this will result in a different distribution forecast:

𝑝
†
(𝜇 | 𝑦) = ∬𝑝 (𝜇 | 𝜉, 𝜆, 𝑦) 𝑝 (𝜉 | 𝑦) 𝑝

†
(𝜆 | 𝜉) 𝑑𝜆 𝑑𝜉.

(38)
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The question is then under which conditions will 𝑝(𝜇 | 𝑦) =

𝑝
†
(𝜇 | 𝑦) so that the distribution forecasts are invariant to

the choice of conditional prior for 𝜆 given 𝜉? A sufficient
condition is that the extrapolation method does not depend
on 𝜆 so

𝑝 (𝜇 | 𝜉, 𝜆, 𝑦) = 𝑝 (𝜇 | 𝜉, 𝑦) . (39)

Condition (39) could alternatively be expressed as requiring
that the forecast 𝑝(𝜇 | 𝜃, 𝑦) = 𝑝(𝜇 | 𝜉, 𝜆, 𝑦) is invariant to
the group 𝑔 acting on the time effect space Θ so that 𝑝(𝜇 |

𝜉, 𝜆, 𝑦) = 𝑝{𝜇 | 𝜉, 𝑔(𝜆), 𝑦}.

Theorem 3. Suppose that the likelihood satisfies (32) and the
priors are probabilities. If the extrapolative distribution does
not depend on 𝜆 so (39) holds; then the forecast distribution
𝑝(𝜇 | 𝑦) computed in (37) is invariant to the choice of
conditional prior for𝜆 given 𝜉.The forecast then reduces to (36).

To summarise, the identification issues surrounding
Bayesian analysis are similar to those outlined in the pre-
vious sections. Examples of the problems that can arise are
discussed in Sections 5.4.4, 5.5.2, and 6.1.6. There are two
solutions to the identification problem. The first is only to
formulate a prior on 𝜉; see Section 2.4.5. Incidentally, this is
what Bernardo and Smith [18, page 218] do in their discussion
of the two-way analysis of variance, albeit without linking it to
the considerations of Smith [17].The prior 𝑝(𝜉) can of course
be constructed by formulating a prior on 𝜃 and then reduce it
to a prior on 𝜉 by marginalisation so 𝑝(𝜉) = ∫𝑝(𝜉, 𝜆)𝑑𝜆. The
other solution is to work with a prior on 𝜃 but avoid those
parts of the posterior that depend on 𝜆.

4.3. Random Effects Models. It is common to combine
mortality models with a random effects approach, which
effectively forms a new model. An example is given in
Section 5.4.6. We consider the consequence of the lack of
identification.

The random effect models are typically constructed as
follows. Suppose the density of the data 𝑦 given the time
effects 𝜃 = (𝜉, 𝜆) is of the form 𝑝(𝑦 | 𝜉, 𝜆) = 𝑝(𝑦 | 𝜉)

as before; see (32). A prior 𝑝(𝜃 | 𝜓) is chosen that now
depends on a parameter 𝜓. The prior can be decomposed as
𝑝(𝜃 | 𝜓) = 𝑝(𝜉 | 𝜓)𝑝(𝜆 | 𝜉, 𝜓). Theorem 2 implies that the
density of the data 𝑦 given 𝜓 is

𝑝 (𝑦 | 𝜓) = ∫𝑝 (𝑦 | 𝜉) 𝑝 (𝜉 | 𝜓) 𝑑𝜉. (40)

This in turn is used to form the random effects likelihood of
𝜓 as

𝐿RE (𝜓 | 𝑦) = 𝑝 (𝑦 | 𝜓) . (41)

This, effectively, defines a new model. The random effects
likelihood only depends on the prior 𝑝(𝜃 | 𝜓) through 𝑝(𝜉 |

𝜓). Two researchers choosing the same prior 𝑝(𝜉 | 𝜓) but
different conditional priors 𝑝(𝜆 | 𝜉, 𝜓) will then get the same
random effects likelihood and the samemaximum likelihood
estimator �̂�.

In mortality modelling it is common to go one step
further and estimate the time effects 𝜃 through the mean
of the posterior 𝑝(𝜃 | 𝑦, 𝜓) evaluated at 𝜓 = �̂�. Then the
identification problem may show up. Theorem 2 shows that

𝑝 (𝜉 | �̂�, 𝑦) =
𝑝 (𝑦 | 𝜉) 𝑝 (𝜉 | �̂�)

𝑝 (𝑦 | �̂�)
,

𝑝 (𝜆 | 𝜉, �̂�, 𝑦) = 𝑝 (𝜆 | 𝜉, �̂�) ,

(42)

so that the prior for 𝜉 is updated, while the conditional
posterior for 𝜆 given 𝜉 is not updated by the data. Thus, in
general the estimate for 𝜃 is based, in part, on a prior which
is not updated by the data.

5. Age-Period-Cohort Models

We will now apply the theoretical considerations to analyse
the age-period-cohort model. The methodological literature
on this model is large and the consequences of the above
theory are wide ranging.

In Section 5.1 we present the age-period-cohort model
along with the maximal invariant parameter. This maximal
invariant parameter is also called the canonical parameter
because the age-period-cohort model is usually implemented
as an exponential family; see Section 2.4.1.When formulating
the model we choose a notation matching the age-period-
cohort literature rather than the reserving literature. At the
same time the exposition takes it starting point in Kuang et al.
[19], but the notation deviates.

The implementation of the canonical parameter depends
on the type of data array. In Section 5.2 design matrices
are given for age-cohort, age-period, and period-cohort data
arrays. While they illustrate interesting differences in the
structure for these data arrays, they also provide the basis
for an immediate implementation via any generalised linear
model software. The age-cohort model is expressed as a
hypothesis of the age-period-cohort model in Section 5.3.
Time effects and forecasting are considered in Section 5.4,
while the two-sample age-period-cohort model is discussed
in Section 5.5.

5.1. The Model and the Canonical Parameter. Here the age-
periodmodel is set up and a quite general identification result
is reported.

Consider data 𝑌𝑖𝑗 indexed by (𝑖, 𝑗) ∈ I where 𝑖 is the age
and 𝑗 is the period.The index set may be a rectangle given by
𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽 so that the cohort 𝑘 = 𝐼−𝑖+𝑗 runs
from 1 to 𝐾 = 𝐼 + 𝐽 − 1. More generally, the index set could
be a generalized trapezoid where two corners are cut off the
rectangle so that the cohort 𝑘 runs from 1+ℎ1 to 𝐼+𝐽−1−ℎ2 for
some ℎ1, ℎ2 ≥ 0. The class of generalized trapezoids includes
the three types of Lexis diagrams discussed by Keiding [20].
We will return to those special cases below.

The statistical model is defined by the assumption that
the variables 𝑌𝑖𝑗 are independent with an exponential family
distribution with predictor 𝜇𝑖𝑗 given by

𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝛿 for 𝑖, 𝑗 ∈ I. (43)
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The time effect 𝜃 = (𝛼1 . . . , 𝛼𝐼, 𝛽1, . . . , 𝛽𝑗, 𝛾ℎ1+1
, . . ., 𝛾𝐼+𝐽−1−ℎ2 ,

𝛿)
 now varies in some time effect space Θ ∈ R𝑞 where 𝑞 =

𝐼 + 𝐽 + 𝐾 + 1 − ℎ1 − ℎ2.
The model (43) is of the form (1) discussed in Section 2.

Specifically, the predictors 𝜇𝑖𝑗 can be stacked in a vector 𝜇
of dimension 𝑛 = dimI and written as 𝜇 = 𝐷𝜃. Thus, the
parameter space for the model is of the form 𝑀 = (𝜇 ∈

R𝑛 : 𝜇 = 𝐷𝜃 for 𝜃 ∈ Θ) as outlined in (2). The mapping
𝜃 → 𝜇 from Θ to 𝑀 is surjective and the equivalence
classes in the time effect space can be described by a group
of transformations that are discussed in (8). This group can
be represented as

𝑔 : (

𝛼𝑖

𝛽𝑗

𝛾𝑘

𝛿

) → (

𝛼𝑖 + 𝑎 + (𝑖 − 1) 𝑑

𝛽𝑗 + 𝑏 − (𝑗 − 1) 𝑑

𝛾𝑘 + 𝑐 + (𝑘 − 1) 𝑑

𝛿 − 𝑎 − 𝑏 − 𝑐 − (𝐼 − 1) 𝑑

) for 𝜃 ∈ Θ,

(44)

for any 𝑎, 𝑏, 𝑐, and 𝑑. This is of the form (8) with 𝜁 =

(𝑎, 𝑏, 𝑐, 𝑑)
 although the definition of the matrix 𝐴 depends

on the structure of the index setI.
A first clue for the canonical parametrisation is given by

Fienberg and Mason [21] and Clayton and Schiffler [22] who
pointed out that, on the multiplicative scale, ratios of relative
risks are invariant. On the additive scale this amounts to
looking at second differences, such as Δ2𝛼𝑖 = 𝛼𝑖 − 2𝛼𝑖−1 +

𝛼𝑖−2. A graphical illustration of the double differences is
given in Figure 1 (graphics were done using R 3.0.2, see R
Development Core Team [23]), which is taken fromMiranda
et al. [24]. Panel (a) illustrates the interpretations of the
formula for Δ

2
𝛼𝑖 as follows. Consider the 1970 and 1971

cohorts. In 2010 these have ages 40 and 39, while in 2011 these
have ages 41 and 40. Thus, Δ2𝛼41 represents the increase in
mortality from ages 40 to 41 in 2011 relative to the increase
from ages 39 to age 40 in 2010. An equivalent interpretation
is that which represents the increase in mortality from ages
40 to 41 for the 1970 cohort relative to the increase from ages
39 to 40 for the 1971 cohort. In a similar way panels (b) and
(c) illustrate the formulas for Δ2𝛽2012 and Δ

2
𝛾1972.

Kuang et al. [19] introduces a parameter formed by these
second differences as well as three entries of the predictor;
that is,

𝜉 = (𝜇𝑖1𝑗1
, 𝜇𝑖2𝑗2

, 𝜇𝑖3𝑗3
, Δ
2
𝛼3, . . . , Δ

2
𝛼𝐼, Δ
2
𝛽3, . . . , Δ

2
𝛽𝐽,

Δ
2
𝛾ℎ1+3

, . . . , Δ
2
𝛾𝐾−ℎ2

) .

(45)

The parameter 𝜉 varies in the space Ξ = R𝑝 where 𝑝 = 𝑞 −

4. If the three points 𝜇𝑖1𝑗1 , 𝜇𝑖2𝑗2 , and 𝜇𝑖3𝑗3
are chosen not to

be linearly related then they define the levels and the linear
trends in the predictor. The formal condition is that a certain
determinant defined from the indices is nonzero; that is,

𝑖2𝑗3 − 𝑖3𝑗2 + 𝑖3𝑗1 − 𝑖1𝑗3 + 𝑖1𝑘2 − 𝑖2𝑘1 ̸= 0. (46)

Theorem 4 (see [19], [25, Corollary 2]). Let 𝜇 satisfy (43).
If the condition (46) is satisfied then the parameter 𝜉 of (45)
satisfies the following:

(i) 𝜉 is a function of 𝜃 which is invariant to the group 𝑔 in
(44);

(ii) 𝜇 is a function of 𝜉;
(iii) the parametrisation of𝜇 by 𝜉 is exactly identified in that

𝜉
†

̸= 𝜉
‡
⇒ 𝜇(𝜉

†
) ̸= 𝜇(𝜉

‡
).

Theorem 4 therefore shows that 𝜉 varies freely in Ξ =

R𝑝. Moreover, 𝜉 is a maximal invariant of the mapping 𝑚

from 𝜃 to 𝜇 under the transformations 𝑔. It should be noted
that the choice of maximal invariant is not unique. Indeed,
any bijective mapping of 𝜉 can serve as maximal invariant.
The choice of 𝜉 is convenient since it becomes the canonical
parameter in generalized linear models of the exponential
family type.

In itself this theorem does not tell how to express the
predictor 𝜇 in terms of the canonical parameter 𝜉. The link
depends on the structure of the index set I. The above
mentioned paper gives implicit expressions for generalized
trapezoid index sets. In the following we report explicit
expressions for the 3 principal Lexis diagrams.

5.2. Design Matrices for Lexis Diagrams. The link between
the canonical parameter 𝜉 and the predictor 𝜇 is analysed
for the 3 principal Lexis diagrams. We start with age-cohort
data arrays, which were the focus of attention in Kuang et al.
[19]. Such arrays are easiest to analyse because all three time
scales increase from the point where 𝑖 = 𝑗 = 𝑘 = 1. As a
consequence the results are relatively easier for these arrays.

5.2.1. Age-Cohort Data Arrays. Age-cohort data arrays are
rectangular in the age and cohort indices and given by

Iac = {(𝑖, 𝑘) : 𝑖 = 1, . . . , 𝐼, 𝑘 = 1, . . . , 𝐾} . (47)

Consequently, the period index 𝑗 = 𝑖 + 𝑘 − 1 varies over 𝑗 =

1, . . . , 𝐽 = 𝐼 +𝐾 − 1. Keiding [20] refers to this Lexis diagram
as the first principal set of death.

Age-cohort arrays are in particular used for reserving in
general insurance. In that situation, only the triangle 1 ≤

𝑖, 𝑗, 𝑘 ≤ 𝐼 is observed.The issue is to forecast the other triangle
in the square 1 ≤ 𝑖, 𝑘 ≤ 𝐼. In the reserving literature these
triangles are referred to as the upper and lower triangles, since
the cohort axis has reverse order. The two-factor age-cohort
model for triangular age-cohort arrays is known as the chain-
ladder model; see England and Verrall [26] for an overview.
Zehnwirth [27] introduced an age-period-cohort model for
such triangular arrays. The identification issue is analysed in
detail in Kuang et al. [19, 25]. Subsequently, Kuang et al. [28]
analysed the Poisson likelihood, while Kuang et al. [10] give
an empirical analysis focusing on forecasting.

The age-period-cohort model for the age-cohort arrays is
parametrised by

𝜇𝑖𝑘 = 𝛼𝑖 + 𝛽𝑖+𝑘−1 + 𝛾𝑘 + 𝛿 for 𝑖, 𝑘 ∈ Iac. (48)
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Figure 1: Illustration of interpretation of Δ2𝛼41, Δ
2
𝛽2012, and Δ

2
𝛾1972.

The time effect 𝜃 = (𝛼1, . . . , 𝛼𝐼, 𝛽1, . . . , 𝛽𝐽, 𝛾1, . . . , 𝛾𝐾, 𝛿)
 now

varies in Θ = R2(𝐼+𝐾).
The design matrix linking the canonical parameter 𝜉 in

(45) and the predictor 𝜇 is essentially an identity linking
the two parameters. A natural choice of the three levels points
to the predictors that are 𝜇11, 𝜇12, and 𝜇21. We then get the
representation

𝜇𝑖𝑘 = 𝜇11 + (𝑖 − 1) (𝜇21 − 𝜇11) + (𝑘 − 1) (𝜇12 − 𝜇11)

+

𝑖

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛼ℎ +

𝑗

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛽ℎ +

𝑘

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛾ℎ,

(49)

with the convention that empty sums are zero, and recalling
that second differences are defined as Δ2𝛼𝑖 = 𝛼𝑖 − 2𝛼𝑖−1 +𝛼𝑖−2

so that ∑𝑖
ℎ=3

Δ
2
𝛼ℎ = Δ𝛼𝑖 − Δ𝛼2 and ∑

𝑖

ℓ=3
∑
ℓ

ℎ=3
Δ
2
𝛼ℎ = 𝛼𝑖 −

𝛼1 − (𝑖 − 1)Δ𝛼2.
The identity (49) is crucial to the understanding of the

age-period-cohort model. It shows that the predictor has a
single level expressed as 𝜇11, which in turn satisfies 𝜇11 =

𝛼1 + 𝛽1 + 𝛾1 + 𝛿. The level 𝜇11 is therefore estimable, but the
individual levels 𝛼1, 𝛽1, 𝛾1, and 𝛿 are not identifiable from
the model. Further, the model has two linear trends, here
expressed with slopes 𝜇21 − 𝜇11 and 𝜇12 − 𝜇11 in terms of
the age and cohort indices. These slopes can be expressed as
𝜇21 − 𝜇11 = Δ𝛼2 + Δ𝛽2 and 𝜇12 − 𝜇11 = Δ𝛽2 + Δ𝛾2. They are
estimable, but the individual slopesΔ𝛼2,Δ𝛽2, andΔ𝛾2 are not
identifiable.

The design matrix now follows from the identity (49) so
that the predictor satisfies 𝜇 = 𝑋𝜉, where

𝜉 = (𝜇11, 𝜇21 − 𝜇11, 𝜇12 − 𝜇11, Δ
2
𝛼3, . . . , Δ

2
𝛼𝐼,

Δ
2
𝛽3, . . . , Δ

2
𝛽𝐽, Δ
2
𝛾3, . . . , Δ

2
𝛾𝐾)


,

(50)

𝑋𝑖𝑘 = {1, (𝑖 − 1) , (𝑘 − 1) , ℎ (𝑖, 3) , . . . , ℎ (𝑖, 𝐼) ,

ℎ(𝑗, 3), . . . , ℎ(𝑗, 𝐽), ℎ(𝑘, 3), . . . , ℎ(𝑘, 𝐾)}

,

(51)

where 𝜉 ∈ R𝑝, where 𝑝 = 2(𝐼 + 𝐾 − 2) and ℎ(𝑡, 𝑠) = max(𝑡 −
𝑠 + 1, 0).

The identification relies on Theorem 4, which can be
specialised to age-cohort arrays as follows.

Theorem 5 (see [19, Theorem 1]). Let 𝜇 satisfy (48). The
parameter 𝜉 of (50) satisfies the following:

(i) 𝜉 is a function of 𝜃 which is invariant to the group 𝑔 in
(44);

(ii) 𝜇 is a function of 𝜉, because of (49);
(iii) the parametrisation of𝜇 by 𝜉 is exactly identified in that

𝜉
†

̸= 𝜉
‡
⇒ 𝜇(𝜉

†
) ̸= 𝜇(𝜉

‡
).

Theorem 5 in turn implies that the parameter 𝜉 varies
freely in Ξ = R𝑝, while the design matrix𝑋 given by (51) has
full column rank.Originally, themore generalTheorem 4was
proved as a corollary toTheorem 5.

5.2.2. Age-Period Arrays. An age-period data array is rectan-
gular in the age and cohort indices and given by

Iap = {(𝑖, 𝑗) : 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽} . (52)

Consequently, the cohort index 𝑘 = 𝑗 − 𝑖 + 𝐼 varies over 𝑘 =

1, . . . , 𝐾 = 𝐼 + 𝐽 − 1. Keiding [20] refers to this Lexis diagram
as the third principal set of death.

Age-period arrays are commonly used in epidemiology,
in mortality analysis, and in sociology. The analysis of
identification issue is largely similar to that of age-cohort
arrays. However, the representation of the predictor 𝜇 in
terms of 𝜉 differs in an intriguing way, because the third time
index, the cohort 𝑘, is the difference of the other two indices.

The age-period-cohort model for the age-period arrays is
parametrised by

𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑗−𝑖+𝐼 + 𝛿 for 𝑖, 𝑗 ∈ Iap. (53)

The time effect 𝜃 = (𝛼1, . . . , 𝛼𝐼, 𝛽1, . . . , 𝛽𝐽, 𝛾1, . . . , 𝛾𝐾, 𝛿)
 now

varies in Θ = R2(𝐼+𝐽). A representation of the predictor 𝜇 in
terms of the canonical parameter 𝜉 is now

𝜇𝑖𝑗 = 𝜇𝐼1 + (𝑖 − 𝐼) (𝜇𝐼1 − 𝜇𝐼−1,1) + (𝑗 − 1) (𝜇𝐼2 − 𝜇𝐼1)

+

𝐼−2

∑

ℓ=𝑖

𝐼−2

∑

ℎ=ℓ

Δ
2
𝛼ℎ +

𝑗

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛽ℎ

+

𝑗−𝑖+𝐼

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛾ℎ+2.

(54)
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The representation (54) differs from that of (49) in a subtle
way. The three reference points for the levels of the predictor
are chosen in the corner 𝑖 = 𝐼, 𝑗 = 1. From this corner period
and cohort indices increase, while age decreases. Hence, the
age double differences Δ2𝛼𝑖 are now cumulated backwards.
This phenomenon arises because the cohort index is the
difference of the principal indices of age and period, whereas
for the age-cohort array the period index is the sum of the
principal indices of age and cohort. The predictor is now
𝜇 = 𝑋𝜉 where, with ℎ(𝑡, 𝑠) = max(𝑡 − 𝑠 + 1, 0),

𝜉 = (𝜇𝐼1, 𝜇𝐼1 − 𝜇𝐼−1,1, 𝜇𝐼2 − 𝜇𝐼1, Δ
2
𝛼3, . . . , Δ

2
𝛼𝐼,

Δ
2
𝛽3, . . . , Δ

2
𝛽𝐽, Δ
2
𝛾3, . . . , Δ

2
𝛾𝐾)


,

(55)

𝑋𝑖𝑗 = {1, 𝑖 − 𝐼, 𝑗 − 1, ℎ (1, 𝑖) , . . . , ℎ (𝐼 − 2, 𝑖) ,

(𝑗, 3) , . . . , ℎ (𝑗, 𝐽) , ℎ (𝑗 − 𝑖 + 𝐼, 3) , . . . ,

ℎ(𝑗 − 𝑖 + 𝐼, 𝐾)}

.

(56)

The identification relies onTheorem 4. It is specialised to age-
period arrays as follows.

Theorem 6 (see [24, Theorem 4.1]). Let 𝜇 satisfy (53). The
parameter 𝜉 of (55) satisfies the following:

(i) 𝜉 is a function of 𝜃 which is invariant to the group 𝑔 in
(44);

(ii) 𝜇 is a function of 𝜉, because of (54);
(iii) the parametrisation of𝜇 by 𝜉 is exactly identified in that

𝜉
†

̸= 𝜉
‡
⇒ 𝜇(𝜉

†
) ̸= 𝜇(𝜉

‡
).

The group of transformations in (44) can be specialised
as

𝑔 : (

𝛼𝑖

𝛽𝑗

𝛾𝑖−𝑖+𝐼

𝛿

) → (

𝛼𝑖 + 𝑎 + 𝑑𝑖

𝛽𝑗 + 𝑏 − 𝑑𝑗

𝛾𝑗−𝑖+𝐼 + 𝑐 + 𝑑 (𝑗 − 𝑖 + 𝐼)

𝛿 − 𝑎 − 𝑏 − 𝑐 − 𝑑𝐼

)

for 𝜃 ∈ Θ = R
2(𝐼+𝐽)

;

(57)

see, for instance, Carstensen [29]. This is of the form (8) with
𝜁 = (𝑎, 𝑏, 𝑐, 𝑑)

 and

𝐴


⊥
= (

1 1 ⋅ ⋅ ⋅ 1 −1
1 1 ⋅ ⋅ ⋅ 1 −1

1 1 ⋅ ⋅ ⋅ 1 −1
1 2 ⋅ ⋅ ⋅ 𝐼 −1 −2 ⋅ ⋅ ⋅ −𝐽 1 2 ⋅ ⋅ ⋅ 𝐾 −𝐼

) .

(58)

5.2.3. Period-Cohort Arrays. An age-period data arrays is
rectangular in the age and cohort indices and given by

Ipc = {(𝑗, 𝑘) : 𝑗 = 1, . . . , 𝐽, 𝑘 = 1, . . . , 𝐾} . (59)

Consequently, the age index 𝑖 = 𝑗 − 𝑘 + 𝐾 varies over
𝑖 = 1, . . . , 𝐼 = 𝐽 + 𝐾 − 1. Keiding [20] refers to this Lexis
diagram as the second principal set of death. Age-period
arrays are commonly used in prospective cohort studies in

epidemiology and in sociology. The analysis is similar to
that of age-period arrays when swapping the role of age and
cohort.

The age-period-cohort model for the age-cohort arrays is
parametrised by

𝜇𝑗𝑘 = 𝛼𝑗−𝑘+1 + 𝛽𝑗 + 𝛾𝑘 + 𝛿 for 𝑗, 𝑘 ∈ Iap. (60)

The time effect 𝜃 = (𝛼1, . . . , 𝛼𝐼, 𝛽1, . . . , 𝛽𝐽, 𝛾1, . . . , 𝛾𝐾, 𝛿)
 now

varies in Θ = R2(𝐽+𝐾). A representation of the predictor 𝜇 in
terms of the canonical parameter 𝜉 is now

𝜇𝑗𝑘 = 𝜇1𝐾 + (𝑗 − 1) (𝜇2𝐾 − 𝜇1𝐾) + (𝑘 − 𝐾) (𝜇1𝐾 − 𝜇1,𝐾−1)

+

𝑗−𝑘+1

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛼ℎ +

𝑗

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛽ℎ

+

𝐾−2

∑

ℓ=𝑖

𝐾−2

∑

ℎ=ℓ

Δ
2
𝛾ℎ+2.

(61)

Thus, the canonical parameter and the design matrix are
given by

𝜉 = (𝜇1𝐾, 𝜇2𝐾 − 𝜇1𝐾, 𝜇1𝐾 − 𝜇1,𝐾−1, Δ
2
𝛼3, . . . , Δ

2
𝛼𝐼,

Δ
2
𝛽3, . . . , Δ

2
𝛽𝐽, Δ
2
𝛾3, . . . , Δ

2
𝛾𝐾)


,

(62)

𝑋𝑗𝑘 = {1, 𝑗 − 1, 𝑘 − 𝐾, ℎ (𝑗 − 𝑘 + 1, 3) , . . . , ℎ (𝑗 − 𝑘 + 1, 𝐼) ,

ℎ(𝑗, 3), . . . , ℎ(𝑗, 𝐽), ℎ(1, 𝑘), . . . , ℎ(𝐾 − 2, 𝑘)}

.

(63)

In parallel with Theorem 6 we then have the following
identification result.

Theorem7. Let𝜇 satisfy (60).The parameter 𝜉 of (62) satisfies
the following:

(i) 𝜉 is a function of 𝜃 which is invariant to the group 𝑔 in
(44);

(ii) 𝜇 is a function of 𝜉, because of (61);
(iii) the parametrisation of𝜇 by 𝜉 is exactly identified in that

𝜉
†

̸= 𝜉
‡
⇒ 𝜇(𝜉

†
) ̸= 𝜇(𝜉

‡
).

5.3. Expressing the Age-Cohort Model as a Hypothesis. It is
often of interest to test the absence of the period effect. An
application to analysing asbestos related mortality can be
found in Miranda et al. [24].

The hypothesis is that 𝛽1 = ⋅ ⋅ ⋅ = 𝛽𝐽, when expressed in
terms of the time effect parameters. The restricted model is
given by, with 𝑘 = 𝑗 − 𝑖 + 𝐼,

𝜇
ac
𝑖𝑗
= 𝛼𝑖 + 𝛾𝑗−𝑖+𝐼 + 𝛿 for 𝑖, 𝑗 ∈ Iap. (64)

The identification problem simplifies to a question of
determining the levels of𝛼𝑖 and 𝛾𝑘.Therefore the (log) relative
risk parameters Δ𝛼𝑖 are identified as pointed out by Clayton
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and Schifflers [30]. In this model the cohort index is present
and keeps the difference of the principal age and period
indices.Therefore the representation of the predictor involves
backward cumulated age differences as before but with a
subtle change of sign, so that (54) reduces to

𝜇
ac
𝑖𝑗
= 𝜇𝐼1 −

𝐼−1

∑

ℓ=𝑖

Δ𝛼ℓ+1 +

𝑘

∑

ℓ=2

Δ𝛾ℓ. (65)

As a consequence the canonical parameter and the design
reduce to 𝜇ac

𝑖𝑗
= 𝑋

ac
𝑖𝑗
𝜉
ac
𝑖𝑗
, where

𝑋
ac
𝑖𝑗
= {1, −1(1≥𝑖), . . . , −1(𝐼−1≥𝑖), 1(𝑘≥2), . . . , 1(𝑘≥𝐾)} , (66)

𝜉
ac
= (𝜇𝐼1, Δ𝛼2, . . . , Δ𝛼𝐼, Δ𝛾2, . . . , Δ𝛾𝐾)


. (67)

Miranda et al. [24, Theorem 4.2] establish an identification
result similar to Theorem 6.

The age-cohortmodel can also be formulated as a hypoth-
esis on the maximal invariant 𝜉 in the age-period-cohort
model following Section 2.4.3.The period effects Δ2𝛽𝑗 are set
to zero through 𝐻


𝜉 = 0, where 𝐻 = (0, 𝐼𝐽−2, 0). Applying

this to the expression for 𝜉 in (55) gives

𝜉𝐻 = 𝐻


⊥
𝜉 = (𝜇𝐼1, Δ𝛼𝐼 − Δ𝛾2, Δ𝛾2, Δ

2
𝛼3, . . . , Δ

2
𝛼𝐼,

Δ
2
𝛾3, . . . , Δ

2
𝛾𝐾) ,

(68)

since in the absence of period effects; then 𝜇𝐼1−𝜇𝐼−1,1 = Δ𝛼𝐼−

Δ𝛾2 and 𝜇𝐼2 − 𝜇𝐼1 = Δ𝛾2. The double differences cumulate
to first differences through ∑

𝐼

𝑖=3
Δ
2
𝛼𝑖 = Δ𝛼𝐼 − Δ𝛼2, so the

above expression 𝜉𝐻 is seen to be a linear transformation
of 𝜉ac in (67). In other words the age-cohort model arises
from the age-period-cohortmodel by restricting themaximal
invariant parameter.

5.4. Working with the Time Effect. There is a large literature
seeking to identify the original time effects𝛼𝑖,𝛽𝑗, and 𝛾𝑘 of the
age-period-cohort model from the predictor. Here we look
closer at some of those ad hoc identification proposals.

5.4.1. Ad Hoc Identification of Levels. For the age-period-
cohort model it is popular to impose ad hoc identifications in
two steps of the type discussed in Section 3.3. Here the first
step is concerned with the level of the time effects and the
second step is concerned with the linear trend. Examples are
given in Sections 5.4.2 and 5.5.4.

A common first step ad hoc identification is to require
that

𝐼

∑

𝑖=1

𝛼𝑖 =

𝐽

∑

𝑗=1

𝛽𝑗 =

𝐾

∑

𝑘=1

𝛾𝑘 = 0. (69)

This ad hoc identification is specific to the chosen data
range. For instance, the constraint ∑𝐼

𝑖=1
𝛼𝑖 = 0 is not easily

transferable to a different data set drawn from the same
population but with a different set of age groups. This aspect
would have to be kept inmind if a substantivemotivation was

to be found for this constraint. Other ad hoc identification
schemes such as 𝛼𝐼 = 𝛽𝐽 = 𝛾𝐾 = 0 have similar problems.

The constraint (69) is a special case of affine constraints
of the form 𝐶


𝜃𝐶 = 𝜓 discussed in Section 3.3. The involved

dimensions are 𝑞 = 2(𝐼 + 𝐽) and 𝑝 = 𝑞 − 4, while the number
of constrains is 𝑞 − 𝑞𝐶 = 3. The matrix 𝐶 ∈ R(𝑞−𝑞𝐶)×𝑞 is given
by the top left {3 × (𝑞 − 1)}-block of𝐴

⊥
in (58) padded with a

column of zeros, while 𝜓 ∈ R3 is given by 𝜓 = 0. Theorem 1
shows that𝑚 = 𝐴



⊥
𝐶 ∈ R(𝑞−𝑝)×(𝑞−𝑞𝑐) has full rank. Indeed, 𝑚

and its orthogonal complement are given by

𝑚 = 𝐴


⊥
𝐶 = (

𝐼 0 0

0 𝐽 0

0 0 𝐾

𝐼 ̆𝑖 −𝐽 ̆𝑗 𝐾�̆�

) , 𝑚⊥ = (

− ̆𝑖

̆𝑗

−�̆�

1

) , (70)

where, for instance, ̆𝑖 = 𝐼
−1
∑
𝐼

𝑖=1
𝑖 = (𝐼 + 1)/2. Thus, the

constrained group of equivalence classes (27) is

𝑔𝐶 : (

𝛼𝑖

𝛽𝑗

𝛾𝑘

𝛿

) →

{{{{

{{{{

{

𝛼𝑖 + 𝑑 (𝑖 − ̆𝑖)

𝛽𝑗 − 𝑑 (𝑗 − ̆𝑗)

𝛾𝑘 + 𝑑 (𝑘 − �̆�)

𝛿

}}}}

}}}}

}

for 𝜃 ∈ Θ𝐶.

(71)

5.4.2. AdHoc Identification of Slopes:The “Intrinsic” Estimator.
The “intrinsic” estimator is a popular estimator in the sociol-
ogy literature; see Yang et al. [4] and see also O’Brien [31, 32]
and Fu et al. [33] for a recent discussion of its merits. It has
its roots in a suggestion by Kupper et al. [34], with an early
critique given by Holford [35].

The “intrinsic” estimator is defined in two steps. In the
first step, the levels are identified by the ad hoc constraint
(69). Three of the 𝜃-coordinates are then dropped; that is 𝛼𝐼,
𝛽𝐽, and 𝛾𝐾 are dropped. In a second step the linear trend is ad
hoc identified using a Moore-Penrose inverse as in (23).

We can analyse these steps using the developed frame-
work. The first step identifies the levels by the ad hoc
constraint (69), which is a constraint of the form 𝐶


𝜃 = 0

for the 𝐶 discussed in Section 5.4.1. This 𝜃 is defined on Θ𝐶

which is a linear subspace with a dimension deficiency of 3.
Introduce a selection matrix 𝑆⊥ ∈ R𝑞×(𝑞−3) that selects all
coordinates of 𝜃 except 𝛼𝐼, 𝛽𝐽, and 𝛾𝐾. Thus 𝑆⊥ arises as a 𝑞-
dimensional with 3 columns deleted corresponding to 𝛼𝐼, 𝛽𝐽,
and 𝛾𝐾. This is chosen so that (𝐶, 𝑆⊥) is invertible. Then 𝑆



⊥
𝜃

is freely varying in that 𝑆
⊥
Θ𝐶 = R𝑞−3. The skew projection

identity 𝐼𝑞 = 𝑆(𝐶

𝑆)
−1
𝐶

+ 𝐶⊥(𝑆



⊥
𝐶⊥)
−1
𝑆


⊥
and the constraint

𝐶

𝜃 = 0 then implies that 𝜃 = 𝐶𝑆𝜗 where 𝐶𝑆⊥ = 𝐶⊥(𝑆



⊥
𝐶⊥)
−1

and 𝜗 = 𝑆


⊥
𝜃 ∈ R𝑞−3. Note that while 𝐶𝑆⊥ depends on 𝑆⊥

and 𝐶⊥, it does not depend on the normalisation of 𝐶⊥, since
we can replace 𝐶⊥ by 𝐶⊥𝑚 for arbitrary invertible matrices
𝑚 ∈ R(𝑞−3)×(𝑞−3). This implies that 𝐶𝑆 is a function of 𝑆⊥ and
𝐶.Thepredictor𝜇 is nowparametrised by𝜇 = 𝑋𝐴


𝜃 = 𝑋𝐴



𝐶
𝜗

with𝐴
𝐶
= 𝐴

𝐶𝑆.This corresponds to equation 5 of Yang et al.

[4] who use the notation𝑋 and 𝑏 for𝑋𝐴
𝐶
and 𝜗, respectively.
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In the second step the linear trend is ad hoc identified
through a time effect parameter of the form (23) with 𝐴, 𝜃
replaced by 𝐴𝐶, 𝜗 so that 𝜃ad.hoc = 𝐶⊥𝜗ad.hoc where 𝜗ad.hoc =

𝐿⊥(𝐴


𝐶
𝐿⊥)
−1
𝜉 + (𝐴𝐶)⊥{𝐿


(𝐴𝐶)⊥}

−1
𝜆 for some scalar 𝜆 and

some matrix 𝐿⊥ ∈ R(𝑞−3)×𝑝.
The “intrinsic” estimator is ad hoc identified through the

choices 𝜆 = 0 and 𝐿⊥ = 𝐴𝐶, while 𝐶 is chosen by (69). It
therefore estimates an “intrinsic” parameter:

𝜃intrinsic = 𝐶𝑆⊥𝐶


𝑆⊥
𝐴(𝐴

𝐶𝑆⊥𝐶


𝑆⊥
𝐴)
−1

𝜉, (72)

which depends on the choices of 𝑆
⊥
, 𝐶, and 𝐴⊥. However,

since we can replace 𝐶⊥ by 𝐶⊥𝑚 for arbitrary invertible
matrices 𝑚 ∈ R(𝑞−3)×(𝑞−3) without changing 𝜃intrinsic the
expression 𝜃intrinsic does not depend on the normalisation of
𝐶⊥. The “intrinsic” parameter satisfies the following result.

Theorem 8. The “intrinsic” parameter is an injective mapping
of the canonical parameter 𝜉 ∈ R𝑝 into a 𝑝 = 𝑞−4 dimensional
linear subspace Θintrinsic of Θ = R𝑞. The “intrinsic” time effect
space is a 𝑝-dimensional linear subspace of R𝑞 of the form

Θintrinsic

= {𝜃 ∈ R
𝑞
: 𝜃 = 𝐶𝑆⊥𝐶



𝑆⊥
𝐴(𝐴

𝐶𝑆⊥𝐶


𝑆⊥
𝐴)
−1

𝜉 for 𝜉 ∈ R
𝑝
} ,

= {𝜃 ∈ R
𝑞
: 𝐶

𝜃 = 0, 𝑤


(𝐶


⊥
𝑆⊥) (𝑆



⊥
𝐶⊥) 𝐶



⊥
𝜃 = 0} ,

(73)

where 𝑤 ∈ R𝑞−3 is uniquely defined up to a scale by 𝑤𝐶
⊥
𝐴 =

0.

Theorem 8 implies that the “intrinsic” parameter should
be interpreted as an object varying in the linear subspace
Θintrinsic rather than in the unrestricted time effect space Θ =

R𝑞. As outlined in Section 3.4 this has consequences for the
interpretation of plots of the time effects, hypothesis testing,
and forecasts. A consequence of this argument is that different
choices of𝐶, 𝑆⊥,𝐿, and𝜆would lead to other ad hoc identified
parameters varying in other affine subspaces of Θ. In other
words, the “intrinsic” estimator carries the cost of working
with the somewhat complicated linear subspaceΘintrinsic.This
effort may be worthwhile if the particular choice of 𝐶, 𝑆⊥, 𝐿,
and 𝜆 can be made on substantive grounds.

5.4.3. Forecasting. Forecasting of future mortality rates
involves an extrapolation of the time parameters. In
Section 2.4.4 it was argued that ad hoc identification may
introduce an undesirable arbitrariness in the forecast. When
working exclusively with the canonical parameter 𝜉 this
arbitrariness is avoided. It is, however, also possible to
work with ad hoc identified time effects under specific
circumstances that we characterise here for age-period
arrays. This builds on the theory developed in Kuang et al.
[25] for age-cohort data arrays.

In the context of an age-period data array Iap it is often
of interest to forecast ℎ periods ahead. Suppose it is of interest
to forecast the mortality at age 𝑖 in period 𝐽 + ℎ, so that the
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Figure 2:Iap is the data array.Jap,1 is the forecast array where only
period parameters need to be extrapolated. J2 is the forecast array
where both period and cohort parameters need to be extrapolated.
Cohorts are indicated by dashed lines.

cohort is 𝑘 = 𝐼 + 𝐽 + ℎ − 𝑖. This requires an extrapolation of
the period effect. If the cohort index is sufficiently large, that
is, 𝑘 > 𝐾, then the cohort effect needs to be extrapolated too.
Thus, there are two forecast index arrays of interest:

Jap = {(𝑖, 𝑗) : 𝑖 = 1, . . . , 𝐼; 𝑗 = 𝐽 + 1, . . . , 𝐽 + ℎ; 𝑘 ≤ 𝐾} ,

Kap = {(𝑖, 𝑗) : 𝑖 = 1, . . . , 𝐼; 𝑗 = 𝐽 + 1, . . . , 𝐽 + ℎ; 𝑘 > 𝐾} .

(74)

Figure 2 illustrates these forecast index arrays.
Identification plays a role when extrapolating the esti-

mates obtained on the data array Iap. The identification
issues can be ignored if the investigator simply extrapolates
Δ
2
𝛽𝑗 andΔ

2
𝛾𝑘. In the context of ad hoc identified time effects

arbitrary linear trends are introduced in the model. The
forecast of the predictor 𝜇𝑖,𝐽+ℎ is invariant to these if and only
if the chosen extrapolation method for 𝛽𝑗, 𝛾𝑘 preserves these
linear trends so that they can cancel with the arbitrary linear
trend in 𝛼𝑖. The next result gives a precise formulation of this
statement. It applies both to point forecasts and distribution
forecasts.

Theorem 9. Consider the predictor 𝜇𝑖𝑗 for 𝑖, 𝑗 ∈ Iap as given
in (53). Suppose the time effects 𝛼𝑖, 𝛽𝑗, and 𝛾𝑘 are ad hoc
identified. Consider the class of ℎ periods-ahead forecasts over
Jap constructed as 𝜇𝑖,𝐽+ℎ = �̂�𝑖 + 𝛽𝐽+ℎ + 𝛾𝐼+𝐽+ℎ−𝑖 + 𝛿, where
𝛽𝐽+ℎ + 𝛾𝐼+𝐽+ℎ−𝑖 is a function of the ad hoc identified estimate 𝜃.
Let 𝑔 be the group (57). Invariance of the forecast 𝜇𝑖,𝐽+ℎ with
respect to the ad hoc identification is equivalent to either of the
following:

(i) the extrapolation method for period and cohort effects
is linear trend-preserving:

𝛽𝐽+ℎ (𝜃) + 𝛾𝐼+𝐽+ℎ−𝑖 (𝜃)

= [𝛽𝐽+ℎ {𝑔 (𝜃)} − 𝑏 + 𝑑 (𝐽 + ℎ)]

+ [𝛾𝐼+𝐽+ℎ−𝑖 {𝑔 (𝜃)} − 𝑐 − 𝑑 (𝐼 + 𝐽 + ℎ − 𝑖)]

∀𝑏, 𝑐, 𝑑 ∈ R;

(75)
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(ii) functions 𝑓𝛽, 𝑓𝛾 exist so that with 𝜉𝛽,𝛾 = (Δ
2
𝛽3, . . . ,

Δ
2
𝛽𝐽, Δ
2
𝛾3, . . . , Δ

2
𝛾𝐾)
; then

𝛽𝐽+ℎ (𝜃) + 𝛾𝐼+𝐽+ℎ−𝑖 (𝜃) = {𝛽𝐽 + ℎΔ𝛽𝐽 + 𝑓𝛽 (𝜉)}

+ {𝛾𝐾 + (ℎ − 𝑖 + 1) Δ𝛾𝐾 + 𝑓𝛾 (𝜉)} .

(76)

To illustrate the use ofTheorem 9 consider the extrapola-
tion methods 𝛽𝐽+ℎ = 𝛽𝐽 and Δ𝛽𝐽+ℎ = Δ𝛽𝐽. The first forecast
is a random walk forecast and it is seen to violate (ii). The
second forecast is a cumulated randomwalk and satisfies (ii).
The reason is that 𝛽𝐽+ℎ = 𝛽𝐽+∑

ℎ

ℓ=1
Δ𝛽𝐽+ℓ. SinceΔ𝛽𝐽+ℓ = Δ𝛽𝐽,

then 𝛽𝐽+ℎ = 𝛽𝐽 + ℎΔ𝛽𝐽. Further examples of forecasts that
are linear trend-preserving as well as some which are not are
given Kuang et al. [25, Table 1].

Kuang, Nielsen, and Nielsen [10] apply this to reserving
data organised in an age-cohort array Iac and discuss the
issue of robustification of forecast with respect to structural
breaks at the forecast origin. Miranda et al. [24] give an
application to asbestos related mortality using an age-period
arrayIap.

5.4.4. Bayesian Ad Hoc Identification Using a Dynamic Prior.
A Bayesian ad hoc identification using a dynamic prior does
not solve the identification problem as discussed in Section 4
and the same care has to be exercised to avoid the problems
outlined in Section 3.4. Berzuini and Clayton [6] suggest
such an ad hoc identification approach. On page 831 they
write “Identificability problems may be solved by imposing an
arbitrary linear constraint on the log-linear trend components
of age, period and cohort effects. Happily, such an arbitrary
constraint has no effect on the predictions of the model.” The
previous analysis suggests that this is far from innocent.

The Berzuini-Clayton suggestion is to ad hoc identify the
model (53) through

𝛼𝑖 = 𝛼1 + 𝛼2𝑖 +

𝑖

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛼ℎ,

𝛽𝑗 = 𝛽1 + 𝛽2𝑗 +

𝑗

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛽ℎ,

𝛾𝑘 = 𝛾1 + 𝛾2𝑘 +

𝑘

∑

ℓ=3

ℓ

∑

ℎ=3

Δ
2
𝛾ℎ,

𝛿 = 0.

(77)

A dynamic prior is chosen so that the double differences
Δ
2
𝛼𝑖, Δ
2
𝛽𝑗, and Δ

2
𝛾𝑘 are independent zero mean normal

with variances 𝜙 = (𝜎
2

𝛼
, 𝜎
2

𝛽
, 𝜎
2

𝛾
) that have 𝜒2-type prior. The

purpose of this is in part to facilitate extrapolations Δ
2
𝛼𝑖,

Δ
2
𝛽𝑗, and Δ

2
𝛾𝑘 for 𝑖 > 𝐼, 𝑗 > 𝐽, and 𝑘 > 𝐾, which

is done through further draws from normal distributions.
The level/trend effects 𝜃level = (𝛼1, 𝛼2, 𝛽1, 𝛽2, 𝛾1, 𝛾2)

 have
independent uniform priors on some large intervals.

We will analyse the Berzuini-Clayton model as applied
to an age-period data array Iap. Decompose the canonical
parameter 𝜉 from (54) into two parts: the slope and level
parameters, say 𝜉𝜇 = (𝜇𝐼1, 𝜇𝐼1 − 𝜇𝐼−1,1, 𝜇𝐼2 − 𝜇𝐼1)

, and
the collection of double differences, say 𝜉Δ. The assumed
prior for 𝜉Δ is a simple collection of independent normal
distributions with variances 𝜙. The assumed prior for 𝜉𝜇 is
a linear combination of not only the independent uniform
variables 𝜃level, but also on 𝜉Δ, since the age double differences
Δ
2
𝛼𝑖 are cumulated backwards in (54), but forwards in (77).

Thus, the prior for 𝜉 = (𝜉


𝜇
, 𝜉


Δ
)
 depends on the 𝜃level

construction.
We get a hyper-parameter 𝜆hyper = (𝜆, 𝜙), where 𝜆 is

some three-dimensional ad hoc identified level/trend effect
dependent on 𝜃level, 𝜉Δ. We will argue that the ad hoc
identified level/trend effect 𝜆 will wash out in the Berzuini-
Clayton model. However, the level/trend parameter 𝜉𝜇 is a
function of the 𝜃level construction that is tailored to the ad
hoc identification. That construction remains in the analysis.

In the presentation of the posterior Berzuini and Clayton
are careful only to consider the double differences 𝜉Δ and
stay clear of the ad hoc identified level/trend effect 𝜃level.
Theorem 2 yields the posterior 𝑝(𝜉 | 𝑦) = 𝑝(𝑦 | 𝜉)𝑝(𝜉)/𝑝(𝑦).
Thus, the marginal posterior for the double differences is
𝑝(𝜉Δ | 𝑦) = ∫𝑝(𝑦 | 𝜉Δ, 𝜉𝜇)𝑝(𝜉Δ, 𝜉𝜇)𝑑𝜉𝜇/𝑝(𝑦). This links 𝜉Δ
to 𝜉𝜇 and in turn to the 𝜃level construction.

The extrapolative method is based on double differences
so it only depends on 𝜆hyper through 𝜙 due toTheorem 9 and
the subsequent discussion. Thus, the extrapolative method is
of the form𝑝(𝜇 | 𝜉, 𝜆hyper, 𝑦) = 𝑝(𝜇 | 𝜉, 𝜙, 𝑦). By construction
it does not reduce to 𝑝(𝜇 | 𝜉, 𝑦) so that condition (39) for
Theorem 3 is not satisfied. The distribution forecast is of the
form

𝑝 (𝜇 | 𝑦) = ∬𝑝 (𝜇 | 𝜉, 𝜙, 𝑦) 𝑝 (𝜉 | 𝑦) 𝑝 (𝜙 | 𝜉) 𝑑𝜙 𝑑𝜉, (78)

which, apart from depending on the 𝜃level construction, also
depends on the conditional prior 𝑝(𝜙 | 𝜉), which is not
updated by the likelihood.

In summary, it appears that the Berzuini-Clayton analysis
depends on the 𝜃level construction as well as the conditional
prior 𝑝(𝜙 | 𝜉). The dependence on the 𝜃level construction
could of course be addressed by introducing priors directly
on 𝜉𝜇, which in turn would be updated by the likelihood.
Since the conditional prior 𝑝(𝜙 | 𝜉) cannot be updated by
the likelihood that its sole justification rests on the substantial
context.

5.4.5. A Functional Form Hypothesis. It is instructive to
consider functional form restrictions on the time effects.
Such hypotheses can be analysed using the results outlined
in Section 3.4.2. As an example restrict the age effect to be
quadratic in a similar way to Yang and Land [5] so that

𝛼𝑖 = 𝜎0 + 𝜎1𝑖 + 𝜎2𝑖
2 for 𝑖 = 1, . . . , 𝐼. (79)

This restriction on the time effect can be analysed by
writing it on the form 𝑅


𝜃 = 𝜌, see (28), and then applying
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Theorem A.3. Alternatively, in this particular case, we can
show that the restriction actually only affects the ad hoc
identified time effect through the canonical parameter, so a
simpler analysis can be made.

A quadratic polynomial has constant second order
derivative. Therefore the restriction (79) implies

Δ
2
𝛼𝑖 = 2𝜎2 for 𝑖 = 3, . . . , 𝐼. (80)

This expression has one free parameter. Thus, it is useful to
consider the third order difference:

Δ
3
𝛼𝑖 = Δ

2
𝛼𝑖 − Δ

2
𝛼𝑖−1 = 0 for 𝑖 = 4, . . . , 𝐼. (81)

This gives 𝐼−3 linear restrictions on the canonical parameter.
The age time effect 𝛼𝑖 then has three remaining parameters,
say 𝛼1, 𝛼2, and 𝛼3. These are freely varying since the parame-
ters 𝜎0, 𝜎1, and 𝜎2 are freely varying.

If the constraint is imposed directly on the canonical
parameter, the restricted model is a regular exponential
family with the advantages outlined in Section 2.4. However,
if the analysis is done with the time effect the levels and trend
will have to be ad hoc identified while bearing in mind the
issues discussed above.

5.4.6.The “Hierarchical Age-Period Cohort RegressionModel”.
In some cases a random effects approach can be used to
get an overview of the many parameters of the age-period
model. When applied to the time effects this implies an ad
hoc identification. An example is the “hierarchical age-period
cohort regressionmodel” by Yang and Land [5]. In that paper
the age effect is given a quadratic structure, but that does not
have to be the case. The model is then given by

𝛼𝑖 = 𝜎0 + 𝜎1𝑖 + 𝜎2𝑖
2
, 𝛽𝑗

D
= N (0, 𝜎

2

𝛽
) ,

𝛾𝑘
D
= N (0, 𝜎

2

𝛾
) , 𝛿 = 0.

(82)

Since random effects are only introduced for some of the time
effects, the analysis of Section 4.3 has to modified in a similar
way to the analysis in Section 5.4.4.

From (80) it is seen that the model restricts Δ2𝛼𝑖 = 2𝜎2.
Thus, divide the canonical parameter 𝜉 into three elements:
the slope and level parameters, say 𝜉𝜇 = (𝜇𝐼1, 𝜇𝐼1−𝜇𝐼−1,1, 𝜇𝐼2−

𝜇𝐼1)
, the age-double differences 𝜉𝛼 = (Δ

2
𝛼3, . . . , Δ

2
𝛼𝐼), and

the remaining double differences 𝜉𝛽,𝛾. Here 𝜉𝛼 is restricted
by the hypothesis 2𝜎2 and 𝜉𝛽,𝛾 is linear function of the
normal random effects, while 𝜉𝜇 is a three-dimensional
linear function of 𝜎2 and of the six-dimensional object ] =

(𝜎0, 𝜎1, 𝛽1, 𝛽2, 𝛾1, 𝛾2)
. This leaves a three-dimensional ad hoc

identified level/slope parameter 𝜆 which is also a function of
] but not entering the likelihood. Let 𝜓 = (𝜎0, 𝜎1, 𝜎2, 𝜎

2

𝛽
, 𝜎
2

𝛾
).

The random effects likelihood are constructed in three
steps. First, we have the usual age-period-cohort likelihood
𝑝(𝑦 | 𝜉). Secondly, the random effects distribution for 𝜉𝜇,
𝜉𝛽,𝛾, and 𝜆 is multivariate normal, while 𝜉𝛼 is deterministic
function of 𝜓. Thus, decompose the prior as 𝑝(𝜉𝜇, 𝜉𝛽,𝛾, 𝜆 |

𝜓) = 𝑝(𝜉𝜇, 𝜉𝛽,𝛾 | 𝜓)𝑝(𝜆 | 𝜉𝜇, 𝜉𝛽,𝛾, 𝜓). Thirdly, following

Section 4.3 the random effects likelihood will not depend on
𝑝(𝜆 | 𝜉𝜇, 𝜉𝛽,𝛾, 𝜓) and it is given by

𝑝 (𝑦 | 𝜓)

= ∫𝑝 (𝑦 | 𝜉𝛼, 𝜉𝜇, 𝜉𝛽,𝛾) 𝑝 (𝜉𝛼, 𝜉𝜇, 𝜉𝛽,𝛾 | 𝜓) 𝑑 (𝜉𝜇, 𝜉𝛽,𝛾) .

(83)

The prior 𝑝(𝜆 | 𝜉𝜇, 𝜉𝛽,𝛾, 𝜓) is not updated by the data.
Plots and inferences based on the posterior 𝑝(𝜃 | 𝜓, 𝑦) will
then suffer from the ad hoc identification issues outlined in
Section 3.4.

5.5. A Two-Sample Age-Period-Cohort Model. When con-
fronted with two samples for women and for men it may be
of interest to apply the age-period-cohort model (43) to each
of the samples and impose that some of the time effects are
the same across samples. The models for samples 𝑟 = 1, 2 are

𝜇𝑖𝑗𝑟 = 𝛼𝑖𝑟 + 𝛽𝑗𝑟 + 𝛾𝑘𝑟 + 𝛿𝑟 for 𝑖, 𝑗 ∈ I, 𝑟 = 1, 2. (84)

The time effect 𝜃 = (. . . , 𝛼𝑖𝑟, 𝛽𝑗𝑟, 𝛾𝑘𝑟, 𝛿𝑟, . . . )
 now varies in

Θ = R𝑞 where 𝑞 = 4(𝐼 + 𝐽).

5.5.1. Analysis of the Unrestricted Two-Sample Model. The
unrestricted two-sample model is simply analysed as two
copies of the one samplemodel of Section 5.1.The time effects
of each copy are only defined up to linear trends. The group
of transformations characterizing the identification problem
combines two copies of the one sample group (44). The
maximal invariant parameter is 𝜉 = (𝜉



1
, 𝜉


2
)

∈ R𝑝 where

𝑝 = 4(𝐼 + 𝐽 − 2) and each of 𝜉𝑟 are of the form (45). The
benefits of Section 2 hold when working with that parameter.

5.5.2. Bayesian Ad Hoc Identification Using a Dynamic Model.
An application of the unrestricted two-sample model can
be found in Cairns et al. [36]. The two samples are the
population of England and Wales and the subpopulation of
assured lives, so the substantive question is whether there
is a selection effect for the assured lives. A Bayesian model
with dynamic prior is used. It shares some features with the
Berzuini and Clayton [6] model discussed in Section 5.4.4
although the details of the ad hoc identification of the levels
and slopes are slightly different.When it comes to forecasting
the extrapolative method appears to depend on the ad
hoc identified parameter as well as the hyperparameters.
This complicates the analysis of the forecast relatively the
discussion in Section 5.4.4.

5.5.3. The Hypothesis of Common Period Parameters. The
two-sample model allows the possibility for adding cross-
sample restrictions on the parameters. As an example we
consider the hypothesis of common period parameters.

Working with the canonical parameter the hypothesis is

Δ
2
𝛽𝑖1 = Δ

2
𝛽𝑖2 for 𝑗 = 3, . . . , 𝐽. (85)

This is a simple linear restriction as that discussed in
Section 2.4.3. It is readily seen that the degrees of freedom of
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the hypothesis are 𝑝 − 𝑝𝐻 = 𝐽 − 2 so the dimension of the
restricted model is 𝑝𝐻 = 4𝐼+3𝐽−6.The canonical parameter
under the hypothesis is then

𝜉𝐻 = (. . . , 𝜇11𝑟, 𝜇21𝑟 − 𝜇11𝑟, 𝜇12𝑟 − 𝜇11𝑟, Δ
2
𝛼𝑖𝑟, Δ
2
𝛽𝑗,

Δ
2
𝛾𝑘𝑟, . . .)



.

(86)

The same result arises when writing the hypothesis in
terms of time effects so that

𝛽𝑗1 = 𝛽𝑗2 for 𝑗 = 1, . . . , 𝐽. (87)

Such hypotheses on the time effect were discussed in
Section 3.4.2. It can be analysed using the general result in
Theorem A.3. However, we will take the simpler route of
arguing that this only restricts the canonical parameter given
a hypothesis of the type (85). The argument relies on noting
that analysing the restriction for the predictors 𝜇𝑖𝑗1 and 𝜇𝑖𝑗2 is
equivalent to analysing the restriction for the predictors 𝜇𝑖𝑗1
and 𝜇𝑖𝑗2 − 𝜇𝑖𝑗1, where the cross-sample differenced predictor
is of the form

𝜇𝑖𝑗2 − 𝜇𝑖𝑗1 = (𝛼𝑖2 − 𝛼𝑖1) + (𝛽𝑗2 − 𝛽𝑗1) + (𝛾𝑘2 − 𝛾𝑘1)

+ (𝛿2 − 𝛿1) .

(88)

Now, the restricted model for the cross-sample differenced
predictor 𝜇𝑖𝑗2 − 𝜇𝑖𝑗1 is an age-cohort model:

𝜇𝑖𝑗2 − 𝜇𝑖𝑗1 = (𝛼𝑖2 − 𝛼𝑖1) + (𝛾𝑘2 − 𝛾𝑘1) + (𝛿2 − 𝛿1) . (89)

Following the analysis of Section 5.3 the (87) therefore
implies the 𝐽 − 2 linear restrictions given by (85). At the same
time the predictor for the first sample 𝜇𝑖𝑗1 is left unrestricted
by (87). In summary, the restrictions (85) and (87) are
equivalent.

The restriction has an interesting implication for the
interpretation of the involved double differences. For the
unrestricted model it was found that only plain double
differences, such asΔ2𝛼𝑗𝑟, are identified.Under the restriction
the cross-sample differenced predictor is of age-cohort form
(89) so also the cross-double differences Δ(𝛼𝑖2 − 𝛼𝑖1) and
Δ(𝛾𝑘2 − 𝛾𝑘1) are identified.

5.5.4. Step-Wise Ad Hoc Identification under the Hypothesis.
The analysis of Riebler and Held [7] finds that the difference
𝛼𝑖2 − 𝛼𝑖1 is identified under the hypothesis (85). This is not
consistent with the above analysis showing that the cross-
sample differenced predictor is an age-cohort model under
the hypothesis, for which levels such as 𝛼𝑖2−𝛼𝑖1 are identified.

The apparent difference comes about because Riebler and
Held follow a step-wise identification approach along the
lines of Sections 3.3 and 5.4.1. In a first step the time effects𝛼𝑖𝑟,
𝛽𝑗𝑟, and 𝛾𝑘𝑟 are constrained to have zero-sums as in (69). In a
second step the slopes are ad hoc identified using a Bayesian
approach similar to that of Berzuini and Clayton [6]; see
Sections 4 and 5.4.4 for a discussion of the consequences.

The identification in the first step implies that 𝛼𝑖2−𝛼𝑖1 has
a zero sum. Under the hypothesis (85) this is exactly what is

needed to ad hoc identify the levels in the age-cohort model
(89). In other words a different level identification in the first
step leads to a different level for the difference 𝛼𝑖2 − 𝛼𝑖1.

6. Models with Nonlinear Parametrisations

Some additional issues arise when looking at models with
nonlinear parametrisations. Aprominent example is themor-
tality model proposed by Lee and Carter [3] and which is the
current benchmark in mortality studies done by government
agencies and pension funds. For this model the time effect
space Θ has a nondifferentiability which can actually be
avoided by working directly with the parameter space𝑀.

We analyze the Lee-Carter model in Section 6.1. In
Section 6.2 we turn to a two-sample problem where some
additional difficulties can arise when forecasting.

6.1. The Lee-Carter Model. Themortality model proposed by
Lee and Carter [3] has predictor of the form

𝜇𝑖𝑗 = 𝛼𝑖 + 𝛽𝑖𝜅𝑗 for 𝑖, 𝑗 ∈ Iap. (90)

The time effects 𝜃 = (𝛼1, . . . , 𝛼𝐼, 𝛽1, . . . , 𝛽𝐼, 𝜅1, . . . , 𝜅𝐽) vary in
Θ = R2𝐼+𝐽.

Lee and Carter pointed towards two identification issues
of the model. If 𝛼, 𝛽, and 𝜅 are one solution to (90), then 𝛼 −

𝛽𝑐, 𝛽, 𝜅+𝑐 is also a solution for any scalar 𝑐, just as 𝛼, 𝛽/𝑑, and
𝜅𝑑 are a solution for any 𝑑 ̸= 0. Consequently, they proposed
the ad hoc identification:

∑

𝑖

𝛽𝑖 = 1, ∑

𝑗

𝜅𝑗 = 0. (91)

This is, however, not the full story about the identification
issues. To get at this we follow the outline from the linear
parametrisedmodels and start by finding the parameter space
for the predictor 𝜇.

6.1.1. The Parameter Space. We start by finding the predictor
space 𝑀. Write the model in matrix form. Let 𝜇 denote the
𝐼 × 𝐽-matrix of 𝜇𝑖𝑗. Then

𝜇 = 𝛼𝜄

+ 𝛽𝜅

, (92)

where 𝛼, 𝛽, and 𝜅 are vectors concatenating 𝛼𝑖, 𝛽𝑖, and 𝜅𝑗 and
where 𝜄 = (1, . . . , 1)


∈ R𝐽. Postmultiply by the projection

identity 𝐼𝐽 = 𝜄𝜄

+ 𝜄⊥𝜄


⊥
to get

𝜇 = 𝛼𝜄

+ 𝛽𝜅

(𝜄𝜄

+ 𝜄⊥𝜄


⊥
) = (𝛼 + 𝛽𝜅


𝜄) 𝜄

+ 𝛽 (𝜅


𝜄⊥) 𝜄


⊥
, (93)

where the orthogonal complement 𝜄⊥ can be chosen so that
𝜄


⊥
𝜅 = (Δ𝜅2, . . . , Δ𝜅𝐽)

 but could also be chosen otherwise.
Equation (93) shows that the model is composed of two
matrices with rank one. Thus, the parameter space is given
by

𝑀 = {𝜇 ∈ R
𝐼×𝐽

: 𝜇 = 𝛾𝜄

+ 𝛿𝜄


⊥

for (𝛾, 𝛿) ∈ R
𝐼
×R
𝐼×(𝐽−1)

so rank (𝛿) ≤ 1} .

(94)



18 The Scientific World Journal

Note that𝑀 does not depend on the normalisation of 𝜄⊥ since
𝛿 is freely varying. The space𝑀 is a manifold since the space
of matrices 𝛿 with an upper bound to the rank is a manifold
as opposed to the space where 𝛿 has rank of unity. This space
can be parametrised parsimoniously by

𝜉 = (𝛾, 𝛿) where 𝛾 = 𝛼 + 𝛽𝜅

𝜄, 𝛿 = 𝛽𝜅


𝜄⊥, (95)

varying in the manifold

Ξ = {(𝛾, 𝛿) ∈ R
𝐼
×R
𝐼×(𝐽−1)

: rank (𝛿) ≤ 1} . (96)

The 𝜉 is the candidate for the maximal invariant describing
the equivalence classes of the mapping from the time effect 𝜃
to the predictor 𝜇.

The next step is to analyse the time effect space Θ. It is
convenient to decompose𝑀 into two disjoint sets depending
on the rank of 𝛿. These sets are

𝑀1 = {𝜇 ∈ R
𝐼×𝐽

: 𝜇 = 𝛾𝜄

+ 𝛿𝜄


⊥
for (𝛾, 𝛿) ∈ R

𝐼
×R
𝐼×(𝐽−1)

so rank (𝛿) = 1} ,

𝑀0 = (𝜇 ∈ R
𝐼×𝐽

: 𝜇 = 𝛾𝜄
 for 𝛾 ∈ R

𝐼
) .

(97)

Correspondingly, the time effect spaceΘ can be decomposed
into two disjoint sets:

Θ1 = (𝜃 ∈ Θ : ∃𝑖, 𝑗 so 𝛽𝑖𝜅𝑗 ̸= 𝛽𝑖𝜅𝐽) ,

Θ0 = (𝜃 ∈ Θ : ∀𝑖, 𝑗 so 𝛽𝑖𝜅𝑗 = 𝛽𝑖𝜅𝐽) .

(98)

Note that 𝛿 = 0 if and only if 𝜃 ∈ Θ0. Consider first the time
effect space Θ1, which is implicitly what Lee and Carter had
in mind. The mapping 𝜃 → 𝜇 on Θ1 to𝑀 is invariant to the
group of transformations:

𝑔1 : (

𝛼𝑖

𝛽𝑖

𝜅𝑗

) → (

𝛼𝑖 + 𝛽𝑖𝑐

𝛽𝑖

𝑑

(𝜅𝑗 − 𝑐) 𝑑

) , (99)

acting on Θ1 for all 𝑐 ∈ R and all 𝑑 ̸= 0. The parameter 𝜉 =

(𝛾

, 𝛿

)
 is invariant under 𝑔1 acting onΘ1. Now, consider the

spaceΘ0 with deficient rank.Then 𝛼𝑖, 𝛽𝑖, and 𝜅𝑗map into 𝛼𝑖+
𝜑𝑖 where 𝜑𝑖 = 𝛽𝑖𝜅𝑗 is constant in 𝑗, so that 𝛿 = 𝛽𝜅


𝜄⊥ = 0. This

mapping is invariant to the group of transformations:

𝑔0 : (
𝛼𝑖

𝛽𝑖𝜅𝑗
) → (

𝛼𝑖 + 𝑎𝑖

𝛽𝑖𝜅𝑗 − 𝑎𝑖
) , (100)

acting on Θ0 for all (𝑎1, . . . , 𝑎𝐼)

∈ R𝐼.

Theorem 10. Let 𝜇 ∈ 𝑀. The parameter 𝜉 ∈ Ξ of (95) satisfies
the following:

(i) 𝜉 is a function of 𝜃 ∈ Θwhich is invariant to the groups
𝑔0, 𝑔1 in (99) and (100);

(ii) 𝜇 is a function of 𝜉;

(iii) the parametrisation of 𝜇 by 𝜉 is exactly identified in the
sense that 𝜉† ̸= 𝜉

‡
⇒ 𝜇(𝜉

†
) ̸= 𝜇(𝜉

‡
).

Theorem 10 shows that 𝜉 varies freely on the space Ξ and
it gives a unique parametrisation of 𝜇. As a function of 𝜃 it is
invariant to 𝑔0, 𝑔1; hence it is a maximal invariant.

It is interesting to compare the properties of the spaces
𝑀, Ξ, and Θ. The spaces 𝑀 and Ξ are spaces of matrices
with deficient rank. These are smooth spaces, but they are
not vector spaces since the sum of matrices with rank
one may have rank larger than one. In contrast Θ is a
vector space. The mapping from Θ to 𝑀 will inevitably
be nondifferentiable. This nondifferentiability is avoided by
working directly with 𝑀. Likewise, in a Bayesian setting it
would seemmore difficult to introduce a meaningful prior of
Θ with its nondifferentiability than on𝑀.

6.1.2. Maximum Likelihood Estimation. Themaximum likeli-
hood estimator for 𝜉 can be derived analytically in the normal
case.

Consider a situation where the data array is of age-period
form so 𝑌𝑖𝑗 for (𝑖, 𝑗) ∈ Iap. Suppose 𝑌𝑖𝑗 are independent
normal with mean 𝜇𝑖𝑗 and variance 𝜎

2. Organise the data in a
matrix 𝑌. Then the log likelihood is of the form

ℓ (𝜇, 𝜎
2
; 𝑌) = −

𝐼𝐽

2
log (2𝜋𝜎2) − 1

2𝜎2
tr {(𝑌 − 𝜇) (𝑌 − 𝜇)



} .

(101)

The maximum likelihood estimator is of the following form.
Subsequently, this is related to the estimator suggested by Lee
and Carter.

Theorem 11. For a normal age-period array parametrised by
(94) the maximum likelihood estimators are

𝛾 = 𝑌𝜄(𝜄

𝜄)
−1

, 𝛿 = [svd1 {𝑌𝜄⊥(𝜄


⊥
𝜄⊥)
−1

𝜄


⊥
}] 𝜄⊥(𝜄



⊥
𝜄⊥)
−1

,

(102)

where svd1(⋅) is the singular value decomposition truncated to
one factor.

Thus, 𝛾 is estimated by the row-averages of the data
matrix, while 𝛿 is estimated by the singular value decompo-
sition of the row-wise demeaned data matrix.

6.1.3. Estimation of Ad Hoc Identified Time Effects. The ad
hoc identification (91) gives a time effect 𝜃𝜆 varying in a
2𝐼 + 𝐽 − 2 dimensional affine subspace of Θ = R2𝐼+𝐽. The
ad hoc identified 𝜃𝜆 can now be expressed in terms of the
maximal invariant parameter 𝜉 using (95). In the case where
𝛿 ̸= 0 then it has singular value decomposition 𝛿 = 𝛿𝐿𝛿𝑆𝛿



𝑅
for

two vectors 𝛿𝐿 ∈ R𝐼 and 𝛿𝑅 ∈ R𝐽−1 so 𝛿
𝐿
𝛿𝐿 = 1 and 𝛿𝑅𝛿



𝑅
= 1,

while 𝛿𝑆 > 0 is a positive scale. The ad hoc identification of
Lee and Carter then gives

𝛼𝜆 = 𝛾, 𝛽𝜆 = 𝛿𝐿(𝜄

𝛿𝐿)
−1

, 𝜅𝜆 = 𝜄⊥𝛿𝑅𝜄

𝛿𝐿𝛿𝑆. (103)
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Inserting the maximum likelihood estimators from
Theorem 11 yields the estimators proposed by Lee and
Carter. However, the disentangling of the singular values
and singular vectors of 𝛿 is done by the ad hoc identification
𝛽

𝜄 = 1 and 𝜅


𝜄 = 0. These estimators are therefore specific

to the considered data array and data set in parallel with the
discussion in Sections 3.2 and 5.4.1.

6.1.4. Consequences of the Possible Rank Deficiency. The
parameter space𝑀was split into spaces𝑀1 and𝑀0 depend-
ing on the rank of 𝛿. The space 𝑀0 is a Lebesgue null set
relative to 𝑀. Broadly speaking, there are two consequences
of the possible rank deficiency. The first consequence is an
estimation problem arising in the vicinity of𝑀0. The second
consequence is that the usual normal asymptotic distribution
theory does not apply in the vicinity of 𝑀1. Whether this
becomes a problem in practice depends on the data. One
solution is to ensure that the time effect really is present when
using the Lee-Carter model.

Investigate whether the time effects are present amounts
to estimating the rank of𝛿. For a given data set twoLee-Carter
models can be estimated.The firstmodel with predictor space
𝑀 is the unrestricted model in which rank(𝛿) ≤ 1. The
second model has predictor space 𝑀0 so 𝛿 = 0. Twice the
difference of the likelihood values gives a likelihood ratio test
statistic which is asymptotically 𝜒2. If the smaller model,𝑀0,
is accepted this is used in subsequent analysis. However, if the
smallermodel𝑀0 is rejected then it is likely that the predictor
is not located in the vicinity of𝑀0 and it is then safe to work
with the predictor space𝑀1.

The consistency of this step-wise procedure is discussed
in a cointegration context by Johansen [37, Section 12].
Even when this procedure points towards working with the
parameter space 𝑀1 the rank deficiency may still affect
inference under𝑀1. Analysis of simple canonical correlation
models suggests that inference under 𝑀1 will be nearly
similar if the distance to𝑀0 is sufficiently large. A problem is
that the distribution for the test statistic will have poor finite
sample properties when the parameter value is close to𝑀0. A
simple way to get around this problem is to test for𝑀0 using
a test with lower level than the conventional level. A more
complicated way to address this is to employ a finite sample
correction when seeking to test for 𝑀0. See Nielsen [38, 39]
for further discussion of this issue in the context of simple
canonical correlation models.

The rank deficiency issue is typically not encountered
in a standard Lee-Carter analysis. The reason is that the
analysis is typically applied to data where there is a marked
improvement in mortality rates over time. A Lee-Carter
analysis could however run into trouble if it were applied to
data without a strong calendar effect.The issue becomesmore
pertinent when extending Lee-Carter model with a cohort
component such as

𝜇𝑖𝑗 = 𝛽
(1)

𝑖
+ 𝛽
(2)

𝑖
𝜅
(2)

𝑗
+ 𝛽
(3)

𝑖
𝛾
(3)

𝑗−𝑖+𝐼
; (104)

see Renshaw and Haberman [40]. If the cohort effect is
modest the latter matrix is nearly rank deficient and the
likelihood will be nearly flat in certain directions. This is

presumably the reason for the estimation problem noted by
Cairns et al. [41].

6.1.5. Forecasting. Thepurpose of Lee-Cartermodel is usually
to forecast future mortality. This issue is considered for the
model with parameter space𝑀1. The standard approach is to
extrapolate 𝜅, ad hoc identified through, for instance, 𝜅𝜄 = 0.
The ℎ-step ahead extrapolation of 𝜅𝐽+ℎ based on some forecast
methods is denoted by 𝜅𝐽+ℎ(𝜅). Combined with the estimates
�̂�𝑖, 𝛽𝑖 this gives the overall forecast

𝜇𝑖,𝐽+ℎ (𝜃) = �̂�𝑖 + 𝛽𝑖𝜅𝐽+ℎ (𝜅) . (105)

The identification question is then for which extrapolation
methods this equals

𝜇𝑖,𝐽+ℎ {𝑔1 (𝜃)} = (�̂�𝑖 + 𝛽𝑖𝑐) + (
𝛽𝑖

𝑑
)𝜅𝐽+ℎ {(𝜅 − 𝑐) 𝑑} . (106)

The condition for avoiding adverse impact of the ad hoc
identification is as follows.

Theorem 12. Let 𝜇 ∈ 𝑀2. The forecast 𝜇𝑖,𝐽+ℎ in (105) is
invariant to ad hoc identification if and only if the extrapolation
method for the period effect is location-scale preserving:

𝜅𝐽+ℎ {(𝜅 − 𝑐𝜄) 𝑑} = {𝜅𝐽+ℎ (𝜅) − 𝑐} 𝑑 ∀𝑐 ∈ R, ∀𝑑 ̸= 0. (107)

The default forecast method in the literature is a random
walk with a drift, which was the preferred forecast of Lee and
Carter [3]. This is given by

𝜅𝐽+ℎ = 𝜅𝐽+ℎ−1 + ]𝑐 + 𝜀ℎ, (108)

with estimates ]̂𝑐 = (𝐽 − 1)
−1
∑
𝐽

𝑗=2
(𝜅𝑗 − 𝜅𝑗−1) and normal

errors 𝜀ℎ with mean zero and estimated variance �̂�
2
(𝜅) =

(𝐽 − 2)
−1
∑
𝐽

𝑗=2
(𝜅𝑗 − 𝜅𝑗−1 − ]̂𝑐)

2. This extrapolation method is
location-scale preserving as required inTheorem 12. It is even
linear trend preserving. Other valid forecasts are a random
walk without intercept as given by the equation 𝜅𝐽+ℎ =

𝜅𝐽+ℎ−1 + 𝜀ℎ, or an autoregression given by 𝜅𝐽+ℎ = 𝜌𝜅𝐽+ℎ−1 +

]𝑐 + 𝜀ℎ.
An alternative approach to forecastingwould consider the

predictor of the model for a particular age ground, say 𝑖. That
predictor is �̂�

𝑖
= 𝑒


𝑖
(𝛾𝜄

+ 𝛿𝜄


⊥
), where 𝑒𝑖 is the 𝑖th unit vector.

From this we can generate forecasts 𝜇𝑖,𝐽+ℎ using any time
series method. The resulting forecast will in general depend
on 𝜅 as well as �̂�𝑖, 𝛽𝑖 and it is therefore more general than
the forecasts discussed in Theorem 12, which only depends
on 𝜅. The forecast for another age group, say 𝑖†, should be the
same up to a linear transformation dictated by the Lee-Carter
structure.Thus, the ℎ-step ahead forecasts for the entire array
are

�̃�
𝐽+ℎ

=
𝛿𝜄


⊥
𝑒 ̆𝚤

𝑒
𝑖
𝛿𝜄
⊥
𝑒 ̆𝚤

(𝜇𝑖,𝐽+ℎ − 𝑒


𝑖
𝛾𝜄

) + 𝛾𝜄

, (109)

for an index ̆𝚤 is chosen so that 𝑒
𝑖
𝛿𝜄


⊥
𝑒 ̆𝚤 ̸= 0.
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6.1.6. Bayesian Ad Hoc Identification Using a Dynamic Model.
A Bayesian model with dynamic specification of the prior
has been suggested by Pedroza [42]. Dynamic priors are
presented for the time effects 𝜃 = (𝜉, 𝜆) involving a hyper
parameter 𝜙.The ad hoc identification (91) is imposed so that
analysis is made for an ad hoc identified time effect 𝜃𝜆.

Pedroza presents posteriors for 𝜃𝜆. When evaluating this
posterior one should bear in mind that the conditional prior
𝑝(𝜆 | 𝜉) is not updated by the data; see Theorem 2. The
presented extrapolative method does not depend on 𝜆. Even
so, the forecast will depend on conditional prior 𝑝(𝜙 | 𝜉)

which is not updated by the data; see Theorem 3.

6.2. The Two-Sample Lee-Carter Model. We now turn to
applications of the Lee-Carter model in two-sample prob-
lems. Suppose two samples are for women and men. One
approach would be to fit separate Lee-Carter models to the
two datasets. These Lee-Carter models are of the form

𝜇𝑖𝑗𝑟 = 𝛼𝑖𝑟 + 𝛽𝑖𝑟𝜅𝑗𝑟 for 𝑖, 𝑗 ∈ Iap, 𝑟 = 1, 2. (110)

The objective is now to extrapolate the period effects 𝜅𝑗𝑟.
Extrapolating the two models separately using separate ran-
dom walks is often seen to be volatile, so methods that seek
to combine information from both estimated series 𝜅𝑗𝑟 are
sought after.The next result describes the invariance problem
in forecasting.

Theorem 13. Let 𝜇
𝑟
∈ 𝑀2𝑟 for 𝑟 = 1, 2. The forecast 𝜇𝑖,𝐽+ℎ,1

for sample 𝑟 = 1 is invariant to ad hoc identification if the
extrapolation method 𝜅𝐽+ℎ,1 preserves location/scale for sample
1, but is invariant to location and scale for sample 2. That is for
all 𝑐1, 𝑐2 ∈ R and all 𝑑1, 𝑑2 ̸= 0; then

𝜅𝐽+ℎ,1 {𝑑1 (𝜅1 − 𝑐1) , 𝑑2 (𝜅2 − 𝑐2)} = 𝑑1 {𝜅𝐽+ℎ,1 (𝜅1, 𝜅2) − 𝑐1} .

(111)

For one sample the standard forecasting technique
appears to be the random walk with a drift as in (108). For
the two-sample problem a suggestion could be that women
and men should share a common random walk with a drift
but deviate from this by a stationary process. In econometrics
this idea is referred to as cointegration as proposed by Engle
and Granger [43]; see also Johansen [37] for a likelihood
based vector autoregressive approach. It is tempting to require
that the calendar effects should cointegrate with coefficients
of unity, so 𝜅𝑗1 − 𝜅𝑗2 should be stationary. However, that
apparently intuitive choice violates Theorem 13 because the
locations and scales of 𝜅𝑗𝑟 are different and arbitrary.

There are two fixes to this problem. The first solution
is to work directly with the mortality predictors 𝜇𝑖𝑗𝑟 for
an arbitrary age group 𝑖 as outlined for the one-sample
case in connection with (109). Since no identification is
involved it is permitted to impose that𝜇𝑖𝑗1 and𝜇𝑖𝑗2 cointegrate
with coefficients of unity. The forecast for age group 𝑖 is
then carried over to other age groups. The second solution
is to work with the estimated series 𝜅𝑗𝑟 but estimate the
cointegrating coefficients from the data. In other words, the
cointegrating relation 𝜅𝑗1 − 𝜑𝜅𝑗2 − 𝜓 should be zero mean,

stationary, with coefficients 𝜑, 𝜓 estimated from the data.
This can, for instance, be done by Johansen’s approach for a
bivariate vector autoregression; see Hendry and Nielsen [44,
Section 17].

7. Conclusion

Ad hoc identification is intimately linked to interpretation,
inference, numerical analysis, and forecasting. The ad hoc
identification will often introduce an arbitrary element in
the statistical analysis, whether it is based on frequentist
or Bayesian methods. This arbitrary element is entirely
avoidable and is in our viewbest avoided unless there is a clear
substantial motivation for ad hoc identification. For decades
there has been a debate over how it is best to ad hoc identify
mortality models. Our proposal is to bypass this discussion
by analysing the surjectivemapping between the unidentified
time effect parameter and the predictor of the model and
then deduce a maximal invariant parametrisation. In our
experience there are typically two substantial benefits. First,
it simplifies estimation and other statistical computations
which is what we have focused on here. Secondly and perhaps
more importantly, it helps to focus the substantial question
that gives rise to the analysis in the first place.

The issue of dealing with two time scales also occurs in
other statistical models, such as the Cox regression model;
see Cabrera et al. [45] for a recent application. In future
research it would be interesting to consider whether the
analysis presented here has any bearing on that problem.

Appendix

A. Proofs

A.1. Some Linear Algebra Results

Lemma A.1. Consider 𝐴 ∈ R𝑞×𝑝 and 𝐶 ∈ R𝑞×(𝑞−𝑞𝐶) so
𝑝, 𝑞𝐶 ≤ 𝑞. Suppose they have full column rank. Then the
following statements are equivalent for some 𝑝𝐶 ≤ 𝑝 :

(i) (𝐴, 𝐶) ∈ R𝑞×(𝑝+𝑞−𝑞𝐶) has rank 𝑝𝐶 + 𝑞 − 𝑞𝐶;
(ii) 𝐴

⊥
𝐶 ∈ R(𝑞−𝑝)×(𝑞−𝑞𝐶) has rank 𝑝𝐶 + 𝑞 − 𝑞𝐶 − 𝑝;

(iii) 𝐶
⊥
𝐴 ∈ R𝑞𝐶×𝑝 has rank 𝑝𝐶.

Proof of Lemma A.1. (i)⇔(ii) Premultiply the matrix (𝐴, 𝐶)

with the invertible matrix (𝐴, 𝐴⊥)
 to get the identity

(
𝐴


𝐴


⊥

) (𝐴, 𝐶) = (
𝐼𝑝 𝐴


𝐶

0 𝐴


⊥
𝐶
) = (

𝐼𝑝 0

0 𝐴


⊥
𝐶
)𝑀

where 𝑀 = (
𝐼𝑝 𝐴


𝐶

0 𝐼𝑝+𝑞−𝑞𝐶

) .

(A.1)

Since the first matrix (𝐴, 𝐴⊥)
 and the last matrix𝑀 have full

rank then

rank (𝐴, 𝐶) = rank (𝐼𝑝) + rank (𝐴
⊥
𝐶) = 𝑝 + rank (𝐴

⊥
𝐶) .

(A.2)
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(i)⇔(iii) Swap the roles of 𝐴, 𝐶 so rank(𝐴, 𝐶) = 𝑞 − 𝑞𝐶 +

rank(𝐶
⊥
𝐴).

Lemma A.2. Consider 𝐴 ∈ R𝑞×𝑝 and 𝐶 ∈ R𝑞×(𝑞−𝑞𝐶) so
𝑝 ≤ 𝑞𝐶 ≤ 𝑞. Suppose (𝐴, 𝐶) ∈ R𝑞×(𝑝+𝑞−𝑞𝐶) has full column
rank 𝑝 + 𝑞 − 𝑞𝐶. Then 𝑚 = 𝐴



⊥
𝐶 ∈ R(𝑞−𝑝)×(𝑞−𝑞𝐶) has full

column rank and (𝐴, 𝐶) has orthogonal complement given by
(𝐴, 𝐶)⊥ = 𝐴⊥𝑚⊥ where𝑚⊥ ∈ R(𝑞−𝑝)×(𝑞𝐶−𝑝).

Proof of Lemma A.2. Since (𝐴, 𝐶) has full column rank
Lemma A.1 (i, ii) implies that 𝑚 has full column rank.
Since 𝑚



⊥
𝐴


⊥
(𝐴, 𝐶) = (𝑚



⊥
𝐴


⊥
𝐴,𝑚


⊥
𝑚) = 0 we argue

that (𝐴, 𝐶, 𝐴⊥𝑚⊥) is invertible. Premultiply by the invertible
matrix (𝐴, 𝐴⊥)

 to get

(
𝐴


𝐴


⊥

) (𝐴, 𝐶, 𝐴⊥𝑚⊥) = (
𝐼𝑝 𝐴

𝐶 0

0 𝑚 𝐴


⊥
𝐴⊥𝑚⊥

) . (A.3)

The matrix (𝑚, 𝐴


⊥
𝐴⊥𝑚⊥) has full rank. Indeed, its inverse is

(𝑚,𝐴


⊥
𝐴⊥𝑚⊥)

−1

= [(𝐴


⊥
𝐴⊥)
−1

𝑚{𝑚

(𝐴


⊥
𝐴⊥)
−1

𝑚}

−1

,

𝑚⊥(𝑚


⊥
𝐴


⊥
𝐴⊥𝑚⊥)

−1

]



.

(A.4)

Thus, the block triangular matrix (A.3) and, hence,
(𝐴, 𝐶, 𝐴⊥𝑚⊥), have full rank.

A.2. Proofs of Main Theorems

Proof of Theorem 1. Since (𝐴, 𝐶) has full column rank then
Lemma A.2 shows it has orthogonal complement 𝐴⊥𝑚⊥ so
that (𝐴, 𝐶, 𝐴⊥𝑚⊥) is invertible. The orthogonal projection
identity shows

𝜃 = (𝐴, 𝐶) (
𝐴


𝐶
)𝜃 + 𝐴⊥𝑚⊥(𝐴⊥𝑚⊥)



𝜃

= (𝐴, 𝐶) (
𝜉

𝜓
) + 𝐴⊥𝑚⊥𝜁,

(A.5)

by the constraint 𝐶𝜃 = 𝜓 and the definitions 𝐴𝜃 = 𝜉 and
(𝐴⊥𝑚⊥)


𝜃 = 𝜁. This defines the constrained time effect space

Θ𝐶. Consider now the mapping 𝜃 → 𝜇 = 𝑋𝐴

𝜃. Premultiply

the above expression for 𝜃 by 𝐴 = (𝐼𝑝, 0)(𝐴, 𝐶)
 to get 𝐴𝜃 =

𝜉 so 𝜇 = 𝑋𝜉. Thus, since 𝜓 is fixed, the equivalence classes in
Θ𝐶 are given by 𝑔𝐶 : 𝜃 → 𝐴⊥𝑚⊥𝜁, with 𝜉 = 𝐴


𝜃 as a maximal

invariant.

Proof of Theorem 2. (i) With the likelihood (32) so 𝑝(𝑦 |

𝜉, 𝜆) = 𝑝(𝑦 | 𝜉) then

𝑝 (𝑦) = ∫{∫𝑝 (𝑦 | 𝜉, 𝜆) 𝑝 (𝜉, 𝜆) 𝑑𝜆} 𝑑𝜉

= ∫𝑝 (𝑦 | 𝜉) {∫𝑝 (𝜉, 𝜆) 𝑑𝜆} 𝑑𝜉

= ∫𝑝 (𝑦 | 𝜉) 𝑝 (𝜉) 𝑑𝜉.

(A.6)

(ii) By Bayes formula and the likelihood (32) then

𝑝 (𝜉 | 𝑦) =
𝑝 (𝑦 | 𝜉) 𝑝 (𝜉)

𝑝 (𝑦)
,

𝑝 (𝜆 | 𝜉, 𝑦) =
𝑝 (𝑦 | 𝜉, 𝜆) 𝑝 (𝜆 | 𝜉)

𝑝 (𝑦 | 𝜉)
= 𝑝 (𝜆 | 𝜉) .

(A.7)

(iii) The posterior means are

E (𝜉 | 𝑦) = ∫ 𝜉𝑝 (𝜉 | 𝑦) 𝑑𝜉,

E (𝜆 | 𝜉, 𝑦) = ∫𝜆𝑝 (𝜆 | 𝜉, 𝑦) 𝑑𝜆 = ∫𝜆𝑝 (𝜆 | 𝜉) 𝑑𝜆,

E (𝜆 | 𝑦) = ∫𝜆𝑝 (𝜆 | 𝑦) 𝑑𝜆 = ∫𝜆{∫𝑝 (𝜆, 𝜉 | 𝑦) 𝑑𝜉} 𝑑𝜆

= ∫𝑝 (𝜉 | 𝑦) {∫𝜆𝑝 (𝜆 | 𝜉) 𝑑𝜆} 𝑑𝜉,

(A.8)

noting that 𝑝(𝜆 | 𝜉, 𝑦) = 𝑝(𝜆 | 𝜉).

Proof of Theorem 3. Consider the expressions in (37) and
(38); that is,

𝑝 (𝜇 | 𝑦) = ∬𝑝 (𝜇 | 𝜉, 𝜆, 𝑦) 𝑝 (𝜉 | 𝑦) 𝑝 (𝜆 | 𝜉) 𝑑𝜆 𝑑𝜉 (A.9)

and a similar expression involving 𝑝†. The question is when
they are identical. Assuming 𝑝(𝜇 | 𝜉, 𝜆, 𝑦) = 𝑝(𝜇 | 𝜉, 𝑦) as in
(39) the expression reduces to

𝑝 (𝜇 | 𝑦) = ∫𝑝 (𝜇 | 𝜉, 𝑦) 𝑝 (𝜉 | 𝑦) {∫𝑝 (𝜆 | 𝜉) 𝑑𝜆} 𝑑𝜉

= ∫𝑝 (𝜇 | 𝜉, 𝑦) 𝑝 (𝜉 | 𝑦) 𝑑𝜉,

(A.10)

since the conditional prior integrates to unity. The same
applies for the expression involving 𝑝†(𝜆 | 𝜉).

Proof of Theorem 5. Similar to the proof of Kuang et al. [19,
Theorem 1], albeit for a rectangular instead of a triangular
data array.

Proof of Theorem 8. Recall 𝜃intrisic = 𝐶𝑆⊥𝐶


𝑆⊥
𝐴(𝐴

𝐶𝑆⊥

𝐶


𝑆⊥
𝐴)
−1
𝜉 where 𝐶𝑆⊥ = 𝐶⊥(𝑆



⊥
𝐶⊥)
−1 as defined in (72). Pre-

multiply by 𝐴 and 𝐶
 to see that 𝐴𝜃intrisic = 𝜉 and 𝐶


𝜃intrisic.

This does, however, not describe the full variation of 𝜃intrisic
since (𝐴, 𝐶) is not a square matrix. We must extend the
matrix (𝐴, 𝐶)with columns so that it is square and invertible.

We find a vector 𝑤 ∈ R𝑞−3 so that (𝐴, 𝐶, 𝐶⊥𝑤) is
invertible. Recall 𝐴 ∈ R𝑞×𝑝 where 𝑞 = 𝑝 + 4. The matrix
𝐶 ∈ R𝑞×3 is chosen so that (𝐴, 𝐶) has full column rank
𝑞− 1 = 𝑝+3 as discussed in Section 5.4.1. Apply Lemma A.2,
swapping the role of 𝐴,𝐶, to see 𝑤⊥ = 𝐶



⊥
𝐴, say, has full

column rank. Then (𝐴, 𝐶) has orthogonal complement 𝐶⊥𝑤.
We show that for any invertible matrix 𝑀 ∈ R𝑞×𝑞

then the 1 × 2 block matrix {(𝐴, 𝐶),𝑀𝐶⊥𝑤} is invertible.
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To see this hold, premultiply by {(𝐴, 𝐶), 𝐶⊥𝑤}
 to see that an

invertible upper triangular matrix arises.
To analyse the properties of 𝜃intrisic it suffices to analyse

{(𝐴, 𝐶),𝑀𝐶⊥𝑤}

𝜃intrisic, since there is a bijective mapping

between the two. Choose 𝑀 = 𝐶⊥(𝐶


⊥
𝑆⊥)(𝑆


⊥
𝐶⊥)𝐶


⊥
+

𝐶𝐶
. Then it holds that 𝐶

⊥
𝑀

= (𝐶


⊥
𝑆⊥)(𝑆


⊥
𝐶⊥)𝐶


⊥
so that

𝐶


⊥
𝑀

𝐶𝑆⊥𝐶


𝑆⊥
= 𝐶


⊥
and therefore

𝑤

𝐶


⊥
𝑀

𝜃intrisic = 𝑤


𝐶


⊥
𝐴(𝐴

𝐶𝑆⊥𝐶


𝑆⊥
𝐴)
−1

𝜉 = 0, (A.11)

since 𝑤

𝐶


⊥
𝐴 = 0 by construction. Thus, it holds that

𝑤

(𝐶


⊥
𝑆⊥)(𝑆


⊥
𝐶⊥)𝐶


⊥
𝜃intrisic = 0 as required.

Proof of Theorem 9. This is a generalisation of the proof of
Kuang et al. [25, Theorems 1, 2]. Let 𝑘ℎ = 𝐽 + ℎ + 𝐼 − 𝑖 − 𝐾 =

ℎ − 𝑖 − 1.
(i) Recall the group 𝑔 in (57). Then (i) follows by

comparing the equations

𝜇𝑖,𝐽+ℎ (𝜃) = �̂�𝑖 + 𝛽𝐽+ℎ (𝜃) + 𝛾𝐾+𝑘ℎ
(𝜃) + 𝛿,

𝜇𝑖,𝐽+ℎ {𝑔 (𝜃)} = �̂�𝑖 + 𝑎 + 𝑑𝑖 + 𝛽𝐽+ℎ {𝑔 (𝜃)} + 𝛾𝐾+𝑘ℎ
{𝑔 (𝜃)}

+ 𝛿 − 𝑎 − 𝑏 − 𝑐 − 𝑑𝐼.

(A.12)

(ii) As in Section 3.1 there is a bijective mapping from 𝜃 to 𝜆,
𝜉, where 𝜉 is invariant to 𝑔, but 𝜆 is not.The choice of 𝜆 is not
important. Any extrapolations of 𝛽𝑗, 𝛾𝑘 can then be written in
the form

𝛽𝐽+ℎ (𝜃) = 𝛽𝐽 + ℎΔ𝛽𝐽 + 𝐹𝛽 (�̂�, 𝜉) ,

𝛾𝐾+𝑘ℎ
(𝜃) = 𝛾𝐾 + 𝑘ℎΔ𝛾𝐾 + 𝐹𝛾 (�̂�, 𝜉) ,

(A.13)

for some functions 𝐹𝛽, 𝐹𝛾. Applying the group 𝑔 it follows

𝛽𝐽+ℎ {𝑔 (𝜃)} = 𝛽𝐽 + 𝑏 − 𝑑𝐽 + ℎ (Δ𝛽𝐽 − 𝑑) + 𝐹𝛽 {𝑔 (�̂�) , 𝜉} ,

𝛾𝐾+𝑘ℎ
{𝑔 (𝜃)} = 𝛾𝐾 + 𝑐 + 𝑑𝐾 + 𝑘ℎ (Δ𝛾𝐾 + 𝑑) + 𝐹𝛾 {𝑔 (�̂�) , 𝜉} .

(A.14)

Due to (i) it must hold 𝐹(𝜆, 𝜉) = 𝐹𝛽(𝜆, 𝜉) + 𝐹𝛾(𝜆, 𝜉) and must
equal 𝐹{𝑔(𝜆), 𝜉} = 𝐹𝛽{𝑔(𝜆), 𝜉} + 𝐹𝛾{𝑔(𝜆), 𝜉}. The function
𝐹 must then be constant in the first argument. This must
apply in the forecast region Jap where 𝛾 is not extrapolated.
Therefore, it must also hold that the 𝐹𝛽(𝜆, 𝜉) = 𝐹𝛽{𝑔(𝜆), 𝜉},
and in turn that 𝐹𝛾(𝜆, 𝜉) = 𝐹𝛾{𝑔(𝜆), 𝜉}. Conversely, if the
functions𝐹𝛽,𝐹𝛾 are constant in𝜆 then the forecast is invariant
to 𝑔.

Proof of Theorem 10. (i) Equation (95) shows that 𝜉 is a
function of 𝜃.

(ii) Equation (93) shows that 𝜇 = 𝛾𝜄

+𝛿𝜄


⊥
is a function of

𝜉.
(iii) The decomposition 𝜇 = 𝜇𝜄𝜄


+ 𝜇𝜄


⊥
𝜄⊥ shows that there

is a one-one mapping between 𝜇 and (𝜇𝜄, 𝜇𝜄


⊥
). In turn, (93)

shows that (𝜇𝜄, 𝜇𝜄
⊥
) = (𝛾, 𝛿). Thus if (𝛾†, 𝛿†) ̸= (𝛾

‡
, 𝛿
‡
) then

𝜇
†

̸= 𝜇
‡.

Proof of Theorem 11. Rewrite the trace term using the identity
𝐼𝐽 = 𝜄𝜄


+ 𝜄⊥𝜄


⊥
to get

T = tr {(𝑌 − 𝜇) (𝑌 − 𝜇)


} = tr {(𝑌 − 𝜇) 𝜄𝜄

(𝑌 − 𝜇)



}

+ tr {(𝑌 − 𝜇) 𝜄⊥𝜄


⊥
(𝑌 − 𝜇)



} .

(A.15)

By (94) then 𝜇 = 𝛾𝜄

+ 𝛿𝜄


⊥
so thatT = T1 +T2 where

T1 = tr {(𝑌 − 𝛾𝜄

) 𝜄𝜄

(𝑌 − 𝛾𝜄


)


} = 𝜄

𝜄 tr {(𝑌𝜄 − 𝛾) (𝑌𝜄 − 𝛾)


} ,

T2 = tr {(𝑌 − 𝛿𝜄


⊥
) 𝜄⊥𝜄


⊥
(𝑌 − 𝛿𝜄



⊥
)


}

= tr {(𝑌𝜄⊥𝜄


⊥
− 𝛿𝜄


⊥
) (𝑌𝜄⊥𝜄



⊥
− 𝛿𝜄


⊥
)


} .

(A.16)

The term T1 has a minimum of zero if and only if 𝑌𝜄 = 𝛾.
InT2 replace for a moment 𝛿𝜄

⊥
by a matrix 𝜙 with rank of at

most one.The alteredT2 is minimised when 𝜙 is the singular
value decomposition of 𝑌𝜄⊥𝜄



⊥
truncated to rank one due;

see Golub and van Loan [46, Theorem 2.5.2]. That singular
value decomposition has the property that it is zero when
multiplied by 𝜄. Therefore it is also the minimiser of the
original problem.

Proof of Theorem 12. It follows by comparing (105) and (106).

Proof of Theorem 13. Write 𝜇𝑖,𝐽+ℎ,1(𝜃1, 𝜃2) = �̂�𝑖1 +

𝛽𝑖1𝜅𝐽+ℎ,1(𝜅1, 𝜅2). This is equals to 𝜇𝑖,𝐽+ℎ,1{𝑔2(𝜃1), 𝑔2(𝜃2)} =

(�̂�𝑖1 + 𝛽𝑖1𝑐1) + (𝛽𝑖1/𝑑1)𝜅𝐽+ℎ,1{𝑑1(𝜅1 − 𝑐1), 𝑑2(𝜅2 − 𝑐2)} under
the given condition.

A.3. A Further Result on Time EffectHypotheses. Consider the
restriction 𝑅


𝜃𝑅 = 𝜌 of (28). The following result holds.

Theorem A.3. Consider the restriction

𝑅

𝜃𝑅 = 𝜌 (A.17)

of (28) where 𝐴 ∈ R𝑞×𝑝 and 𝑅 ∈ R𝑞×(𝑞−𝑞𝑅) so 𝑝, 𝑞𝑅 ≤ 𝑞.
Suppose 𝐴 and 𝑅 have full column rank. Then, for some 𝑝𝑅 ≤
min(𝑝, 𝑞𝑅) it holds 𝑝𝑅 = rank(𝑅

⊥
𝐴) = rank(𝐴, 𝑅) − (𝑞 − 𝑞𝑅).

Then write 𝑅
⊥
𝐴 = 𝑎𝑏

 for some matrices 𝑎 ∈ R𝑞𝑅×𝑝𝑅 and 𝑏 ∈

R𝑝×𝑝𝑅 with full column rank. The hypothesis (28) restricts the
canonical parameter affinely through

𝑏


⊥
𝜉 = 𝑏


⊥
𝐴

𝑅𝜌, (A.18)

so that the degrees of freedom of the restriction is 𝑝 − 𝑝𝑅.
Introduce the parameters

𝜑1 = 𝑎

𝑅


⊥
𝜃𝑅, 𝜑2 = 𝑏



𝐴

𝜉 = 𝜑1 + 𝑏



𝐴

𝑅𝜌. (A.19)
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Then, the predictor 𝜇 can be written as the 𝑝𝑅-dimensional
affine subspace of the form

𝑀𝑅 = (𝜇 ∈ R
𝑛
: 𝜇 = 𝑋𝑏𝜑1 + 𝑋𝐴


𝑅𝜌 for 𝜑1 ∈ R

𝑝𝑅) (A.20)

= (𝜇 ∈ R
𝑛
: 𝜇 = 𝑋𝑏𝜑2 + 𝑋𝑏⊥𝑏



⊥
𝐴

𝑅𝜌 for 𝜑2 ∈ R

𝑝𝑅) .

(A.21)

The mapping 𝜃𝑅 → 𝜇 = 𝑋𝐴

𝜃𝑅 on 𝜃𝑅 ∈ Θ𝑅 is invariant with

respect to the group 𝑔𝑅 : 𝜃𝑅 → 𝜃𝑅 + 𝑅⊥𝑎⊥𝜁3 with 𝜑1 and 𝜑2 as
maximal invariants.

A special case arises if the restriction combines a restriction
on 𝐴 with ad hoc identification. That is, if 𝑅 = (𝐴𝑑, 𝐶) where
𝑑 ∈ R𝑝×(𝑝−𝑝𝑅) and 𝐶 ∈ R𝑞×{(𝑞−𝑝)−(𝑞𝑅−𝑝𝑅)} so (𝐴, 𝐶) has full
column rank.Then 𝑏 = 𝑑⊥ so that the restriction (A.18) reduces
to 𝑑𝜉 = (𝐼𝑝−𝑝𝑅

, 0)𝜌.

Proof of Theorem A.3. Apply Lemma A.1 (i, iii) to see that
rank(𝐴, 𝑅) = 𝑝𝑅 + 𝑞 − 𝑞𝑅 is equivalent to rank(𝑅

⊥
𝐴) = 𝑝𝑅.

We can then write 𝑅
⊥
𝐴 = 𝑎𝑏

 for some matrices 𝑎 ∈ R𝑞𝑅×𝑝𝑅

and 𝑏 ∈ R𝑝×𝑝𝑅 with full column rank.
Exploit the projection identity 𝐼𝑞 = 𝑅⊥𝑅



⊥
+ 𝑅𝑅
 to get

𝜉 = 𝐴

𝜃𝑅 = 𝐴


𝑅⊥𝑅


⊥
𝜃𝑅 + 𝐴


𝑅𝑅

𝜃𝑅. Insert 𝐴


𝑅⊥ = 𝑏𝑎

 and
𝑅

𝜃𝑅 = 𝜌 to get 𝜉 = 𝑏𝑎


𝑅


⊥
𝜃𝑅 + 𝐴


𝑅𝜌 and therefore

𝜃 → 𝜇 = 𝑋𝐴

𝜃 = 𝑋𝑏𝑎


𝑅


⊥
𝜃𝑅 + 𝑋𝐴


𝑅𝜌. (A.22)

Inserting the orthogonal projection 𝐼𝑝 = 𝑏𝑏


+ 𝑏⊥𝑏


⊥
this can

also be written as

𝜃 → 𝜇 = 𝑋𝐴

𝜃 = 𝑋𝑏 (𝑎


𝑅


⊥
𝜃𝑅 + 𝑏



𝐴

𝑅𝜌) + 𝑋𝑏⊥𝑏



⊥
𝐴

𝑅𝜌.

(A.23)

Noting that 𝜑1 = 𝑎

𝑅


⊥
𝜃𝑅 is freely varying so is 𝜑2 = 𝑎


𝑅


⊥
𝜃𝑅+

𝑏


𝐴

𝑅𝜌. To rewrite 𝜑2 premultiply the first term by 𝐼𝑝𝑅 = 𝑏



𝑏

to get 𝜑2 = 𝑏


(𝑏𝑎

𝑅


⊥
𝜃𝑅 + 𝐴


𝑅𝜌). Then insert 𝜌 = 𝑅


𝜃𝑅 and

𝑏𝑎

= 𝐴

𝑅⊥ to get𝜑2 = 𝑏



𝐴

(𝑅𝑅


⊥
+𝑅𝑅

)𝜃𝑅 = 𝑏



𝐴

𝜃𝑅 = 𝑏



𝐴

𝜉.

This gives the space𝑀𝑅 in (A.21).
To derive the reduced group 𝑔𝑅 choose a 𝜃𝑅 ∈ Θ𝑅 so that

𝑅

𝜃𝑅 = 𝜌. Any 𝜃

†

𝑅
∈ Θ can be written as 𝜃†

𝑅
= 𝜃𝑅 + 𝑅𝜁1 +

𝑅⊥𝑎𝜁2+𝑅⊥𝑎⊥𝜁3 since (𝑅, 𝑅⊥) and (𝑎, 𝑎⊥) have full rank. Since
𝜃𝑅 ∈ Θ𝑅 then 𝜃

†

𝑅
∈ Θ𝑅 if and only if 𝜁1 = 0. We now consider

whether 𝜃𝑅, 𝜃
†

𝑅
are equivalent with respect to the restricted

mapping (A.22). It holds

𝜃
†

𝑅
→ 𝜇
†
= 𝑋𝑏𝑎


𝑅


⊥
(𝜃𝑅 + 𝑅⊥𝑎𝜁2 + 𝑅⊥𝑎⊥𝜁3) + 𝑋𝐴


𝑅𝜌.

(A.24)

Noting that 𝜇 = 𝑋𝑏𝑎

𝑅


⊥
𝜃𝑅 + 𝑋𝐴


𝑅𝜌 and 𝑎


𝑅


⊥
𝑅⊥𝑎 = 𝐼𝑝𝑅

,
while 𝑎𝑅

⊥
𝑅⊥𝑎⊥ = 0, then 𝜇

†
= 𝜇 + 𝑋𝑏𝜁2 which reduces to 𝜇

if and only if 𝜁2 = 0. Thus, the mapping 𝜃𝑅 → 𝜇 on 𝜃𝑅 ∈ Θ𝑅

is invariant with respect to the group 𝑔𝑅 : 𝜃𝑅 → 𝜃𝑅 + 𝑅⊥𝑎⊥𝜁3

with 𝜑1 and 𝜑2 as maximal invariants.

Now, suppose 𝑅 = (𝐴𝑑, 𝐶). Then Lemma A.2 shows that
𝑚 = 𝐴



⊥
𝐶 has full column rank, while (𝐴, 𝐶) has orthogonal

complement 𝐴⊥𝑚⊥. Thus, 𝑅 has orthogonal complement

𝑅⊥ = {(𝐴, 𝐶) (
𝑑⊥

0
) , (𝐴, 𝐶)⊥}

= {(𝐴, 𝐶) (
𝐼𝑝

0
) 𝑑⊥, 𝐴⊥𝑚⊥} .

(A.25)

In particular, it holds 𝐴𝑅⊥ = (𝐼𝑝, 0)(𝐴, 𝐶)

𝑅⊥ = (𝑑⊥, 0) =

𝑑⊥(𝐼𝑝𝑅
, 0), which is denoted 𝑏𝑎

 in the general case, so that
𝑏 = 𝑑⊥. Consider the restriction (A.18). Here, 𝑏

⊥
𝜉 = 𝑑


𝜉,

while 𝑏
⊥
𝐴

= 𝑑

𝐴

= (𝐼𝑝−𝑝𝑅

, 0)(𝐴𝑑, 𝐶)

= (𝐼𝑝−𝑝𝑅

, 0)𝑅
 so that

𝑏


⊥
𝐴

𝑅𝜌 = (𝐼𝑝−𝑝𝑅

, 0)𝜌.
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Miranda are gratefully acknowledged.

References

[1] A. Ornelas, M. Guillén, andM. Alcañiz, “Implications of unisex
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