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A B S T R A C T   

Cuproptosis, a distinct form of programmed cell death, is an emerging field in oncology with 
promising implications. This novel mode of cell death has the potential to become a regulatory 
target for tumor therapy, thus expanding the currently limited treatment options available for 
patients with cancer. Our research team focused on investigating the role of functional long non- 
coding RNA (lncRNAs) in hepatocellular carcinoma (HCC). We were particularly intrigued by the 
potential implications of HCC-lncRNAs on cuproptosis. Through a comprehensive analysis, we 
identified three cuproptosis-related lncRNAs (CRLs): AC018690.1, AL050341.2, and LINC02038. 
These lncRNAs were found to influence the sensitivity of HCC to cuproptosis. Based on our results, 
we constructed a risk model represented by the equation: risk score = 0.82 * AC018690.1 + 0.65 
* AL050341.2 + 0.61 * LINC02038. Notably, significant disparities were observed in clinical 
features, such as the response rate to immunotherapy and targeted therapy, as well as in cellular 
characteristics, including the composition of the tumor immune microenvironment (TIME), when 
comparing the high- and low-risk groups. Most importantly, knockdown of these CRLs was 
confirmed to significantly weaken the resistance to cuproptosis in HCC. This effect resulted from 
the accelerated accumulation of lipoacylated-DLAT and lipoacylated-DLST. In summary, we 
identified three CRLs in HCC and established a novel risk model with potential clinical applica-
tions. Additionally, we proposed a potential therapeutic method consisting of sorafenib-copper 
ionophores-immunotherapy.   
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1. Introduction 

Hepatocellular carcinoma (HCC) stands as a prevalent form of primary liver cancer and is globally the second leading cause of 
cancer-related deaths [1,2]. Unfortunately, the incidence of HCC has surged unpredictably on a global scale. HBV emerges as a major 
risk factor for HCC [3], and an additional contributing factor is the obesity epidemic, leading to the development of nonalcoholic fatty 
liver disease and nonalcoholic steatohepatitis [4,5]. The most effective treatment, surgery, confers benefits primarily to a limited 
subset of patients in the early stages [6]. Unfortunately, it is often the case that patients are diagnosed with cancer when it has already 
reached an advanced stage. In such instances, tumors often display resistance to traditional chemotherapy or radiotherapy, curtailing 
the effectiveness of these treatments [7]. The intricate biology of HCC poses a substantial obstacle to the advancement of more refined 
and targeted therapeutic approaches. Therefore, it is imperative to accurately identify specific targets for HCC and develop therapeutic 
strategies that prove effective. 

Copper serves as an indispensable catalytic and structural cofactor, instigating alterations in protein structure, catalytic activity, 
and protein-protein interactions that drive crucial biochemical processes vital to life [8,9]. The regulation of copper homeostasis is 
meticulous, maintaining copper levels at exceptionally low levels under normal conditions [10]. Anomalies in copper metabolism are 
linked to conditions such as anemia, metabolic and neurological diseases, and cancer [11,12]. Existing data suggest an excessive 
accumulation of copper in HCC [13]. Notably, copper has been identified as a key player in expediting the proliferation, invasive 
behavior, and metastatic potential of malignant cells [14]. In a recent notable study by Tsvetkov et al., copper-dependent death was 
proposed, involving the direct binding of copper to fatty acylated components of the tricarboxylic acid (TCA) cycle, a phenomenon 
termed cuproptosis [15]. Investigating the molecules that regulate this distinctive form of cellular death has the potential to deepen 
our understanding and uncover possible applications in clinical interventions for HCC. 

Long non-coding RNAs (lncRNAs) represent a functionally diverse group of non-coding RNAs (ncRNAs) abundant in the human 
transcriptome. However, the mechanisms underlying the functions of most lncRNAs in cells remain poorly understood [16]. It is 
increasingly evident that a large proportion of lncRNAs play crucial roles in regulating normal cellular physiology and are implicated 
in various diseases, including cancer [17,18]. While some studies have utilized bioinformatics techniques to identify 
cuproptosis-related lncRNAs (CRLs) in HCC, the involvement of CRLs in the intricate process of cuproptosis, particularly in cancer, 
remains largely unknown. The regulatory mechanisms governing this phenomenon are yet to be clarified. 

In this study, we aimed to identify essential CRLs and explore their significance in the progression and development of HCC. We 
developed a cuproptosis-related risk model through a comprehensive analysis method that integrated both coding and non-coding 
RNA expression data, along with survival data from patients with HCC. Analyzing the biological activity of CRLs, we compared the 
features of the risk groups. In vitro experiments were conducted to validate the role of these lncRNAs in regulating cuproptosis. Our 
study underscores the significance of CRLs in HCC, providing a foundational understanding for the potential clinical application of 
copper ionophores. 

2. Materials and methods 

2.1. Datasets 

We obtained FPKM-normalized RNA-seq data from 374 tumor samples, along with corresponding clinical data, from The Cancer 
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/projects/TCGA-LIHC). Patients with incomplete clinical data were 
excluded. Additionally, we acquired the GSE115018 dataset, which includes 12 HCC tissues and 12 paracancerous normal tissues, from 
the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). This dataset served as the validation dataset. 

2.2. Patient samples 

For validation purposes, six patients with HCC were included in this study. This group comprised three high-invasive (HI) HCC 
tissues, characterized by tumor diameters smaller than 3 cm and diagnosed with postsurgical metastasis or recurrence, and three low- 
invasive (LI) HCC tissues, characterized by tumor diameters larger than 3 cm and postsurgical metastasis or recurrence negativity. All 
clinical samples were collected from Sir Run Run Shaw Hospital in Hangzhou, China. The study adhered to the principles of the 
Declaration of Helsinki and received approval from the institutional review board of Sir Run Shaw Hospital. Written informed consent 
was obtained from all patients before surgery for the use of their tissues in scientific research. 

2.3. Next generation sequencing 

Total RNA was extracted using the TRIzol reagent (Invitrogen) following the manufacturer’s instructions. The concentration and 
quality of total RNA were assessed using a Nanodrop spectrophotometer and verified by gel electrophoresis. Subsequently, the total 
RNA samples were sent to TSINGKE Biological Technology Co., Ltd. for library construction, sequencing, and analysis. 

2.4. Differential expression analysis of lncRNAs 

For the identification of lncRNAs exhibiting significant differential expression between HCC and normal liver tissues (TCGA 
dataset), we utilized the R package “limma (version: 3.58.1) ". The screening criteria applied were |log2 (Fold Change)| > 1 and 
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adjusted p-value <0.01. The Benjamini–Hochberg (BH) method was employed for p-value correction. 

3. Identification of CRLs in HCC 

Cuproptosis-related genes (CRGs) were obtained from a study conducted by Tsvetkov et al. [15]. Subsequently, we investigated 
lncRNAs exhibiting correlation with CRGs based on FPKM values, utilizing Pearson’s correlation analysis with a threshold of R > 0.3 
and a p-value <0.0001 as the statistical criteria. 

3.1. Construction of a cuproptosis-related risk model 

To address the scarcity of HCC public datasets containing ncRNAs, mRNA expression profiles, and clinical data, we utilized the 
“createDataPartition” function from the R package “caret (version: 6.0–94) ". This function randomly divided patients with HCC (TCGA 
datasets) into training and test groups in a 1:1 ratio. A statistical analysis (chi-square test, p-value >0.05) confirmed no significant 
differences in clinical information between the two groups (Supplementary Table 1). Survival analysis, incorporating the overlap 
between CRLs and differentially expressed lncRNAs, was conducted using the R package “survival (version: 3.5–7)". Initially, CRLs 
associated with patient prognosis were identified through univariate Cox analysis (p-value <0.05). To mitigate multicollinearity, we 
employed LASSO regression analysis, cross-validated ten times for robustness. Subsequently, multivariate Cox analysis assessed the 
independent impact of screening CRLs on patient prognosis and facilitated the development of a risk model. The computational 
formula for the cuproptosis-related risk score is given by: risk score = Coefi lncRNA1 × lncRNA1 expression + Coefi lncRNA2 ×
lncRNA2 expression + ⋅ ⋅⋅⋅⋅ +Coefi lncRNAn × lncRNAn expression, where n represents the number of CRLs, and Coefi denotes the 
coefficient of the corresponding lncRNA. This formula calculates risk scores for each sample. Subsequently, the TCGA dataset and 
additional datasets (GSE115018 and clinical HCC samples) were partitioned into high- and low-risk groups based on the median risk 
score. 

3.2. Principal component analysis (PCA) 

To evaluate the effectiveness of the constructed risk model in differentiating between patients in high- and low-risk groups, we 
performed PCA using the R package “limma (version: 3.58.1)" on the TCGA dataset. This analysis aimed to assess the accuracy of the 
model and its ability to capture meaningful distinctions based on the expression of CRLs. 

3.3. Validation of cuproptosis-related risk model based on CRLs 

We conducted risk curve and survival analyses on the cuproptosis-related risk model for the entire sample, as well as the training 
and test groups. Kaplan–Meier survival curves were generated using the R packages “survival (version: 3.5–7)" and “survminer 
(version: 0.4.9)". The aim was to assess the relationship between overall survival (OS) and disease-free survival (DFS) in connection 
with the risk scores of patients categorized into high- and low-risk groups. Furthermore, we utilized the Wilcoxon rank-sum test to 
compare risk scores in the validation datasets (GSE115038 and clinical HCC samples). 

3.4. Optimization of cuproptosis-related risk model 

To enhance the cuproptosis-related risk model, we analyzed clinical indicators of patients with HCC (Supplementary Table 2) using 
the R package “survival (version: 3.5–7)". Factors influencing survival (with a p-value <0.05) were incorporated into the model. 
Subsequently, we employed the R packages “survival (version: 3.5–7)" and “rms (version: 6.3–0)" to construct a nomogram for pre-
dicting 1-, 3-, and 5-year survival in patients with HCC. To assess the predictive accuracy of the optimized risk model, a calibration 
curve was utilized. 

3.5. Analysis of tumor immune microenvironment (TIME) 

We applied the “ssGSEA” algorithm, implemented in the R package “GSVA (version: 1.50.0)" to assess the abundance of 23 distinct 
immune cell types infiltrating each sample [19]. Pearson’s correlation analysis was employed to evaluate the relationship between the 
risk score and the abundance of immune cells. Tumor Immune Dysfunction and Exclusion (TIDE), an indicator predicting the response 
of a patient to immunotherapy [20,21], underwent assessment through Analysis of Variance (ANOVA) to compare immune charac-
teristics between risk groups. 

3.6. Comparison of tumor mutational burden among risk groups 

Using the R package “maftools (version: 2.18.0)", we extracted the Mutation Annotation Format (MAF) from the TCGA database. 
This study aimed to examine the mutational landscape of patients with HCC in different cuproptosis-related risk groups. 
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3.7. Drug susceptibility analysis 

To investigate the therapeutic effects of drugs in the two groups, we calculated the semi-inhibitory concentration (IC50) values of 
drugs using the R package “pRRophetic”. 

3.8. Function enrichment analysis 

For Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we employed the R packages 
“clusterProfiler (version: 4.10.0)" and “org.Hs.eg.db (version: 3.18.0)”. The BH method was applied for p-value correction, with a 
threshold set at p-value <0.05. 

3.9. Reagents 

Detail of these reagents were included in Supplementary Materials. 

3.10. Cell culture 

Huh7 cells were cultured in MEM (Invitrogen, Grand Island, NY, USA) supplemented with 10 % fetal bovine serum (FBS) and 1 % 
glutamine, while HCCLM3 cells were maintained in DMEM (Invitrogen, Grand Island, NY) with 10 % FBS, and 1 % glutamine. HCCLM3 
was maintained in DMEM (Invitrogen, Grand Island, NY) with 10 % FBS and 1 % glutamine. All cells were cultured at 37 ◦C and 5 % 
CO2. Rigorous quality control measures were implemented, including mycoplasma testing through a polymerase chain reaction (PCR)- 
based method and DAPI staining to confirm the absence of contamination. Detailed information on cell line sources is provided in the 
Supplementary Materials. 

3.11. Copper ionophores-induced cell death assay 

For siRNA transfection, Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) was utilized following the manufacturer’s in-
structions. Supplementary Materials contain the siRNA sequences used. After 48 h of transfection, copper ionophores (elesclomol) and 
CuCl2 were introduced at the specified concentrations, with a medium change after 2 h of shock. Subsequently, after 20 h, the medium 
was collected, adherent cells were digested, and the cell suspension was centrifuged at 2000 rpm for 15 min. CFSE (Invitrogen) was 
diluted in PBS (1:3000), and the cells were resuspended, followed by an incubation at room temperature in the dark for 15 min. Flow 
cytometry (BD LSRFortessa) was employed for detection, utilizing excitation light at 488 nm. 

3.12. RNA extraction and quantitative real-time PCR 

RNA extraction was performed using an RNA-Quick Purification Kit (ES Science). Subsequently, the extracted RNA underwent 
reverse transcription using an Eco M-MLV RT Premix Kit (AG11706; Accurate Biology). The expression of target genes was normalized 
to that of the endogenous control gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RT-qPCR was conducted on Quant-
Studio 1 (Applied Biosystems, Thermo Fisher Scientific, USA) using a SYBR Green Premix Pro Tag HS qPCR kit (AG11701, Accurate 
Biology). The 2− ΔΔCT method was employed to calculate lncRNA expression levels. Primer sequences used for RT-qPCR are provided in 
the Supplementary Materials. 

3.13. Cell lysis and immunoblotting (IB) 

For cell lysis, cells were homogenized in RIPA or IP lysis buffer supplemented with a Protease Inhibitor Cocktail, Phosphatase 
Inhibitor Cocktail, Panobinostat, and Methylstat. Lysates were cleared by centrifugation at 13,000 rpm for 15 min at 4 ◦C. The resulting 
supernatants were subjected to immunoprecipitation using the indicated antibodies. Proteins were separated on 10–15 % SDS/PAGE 
gels and transferred onto PVDF membranes (Millipore, Billerica, MA, USA). Following blocking, membranes were incubated with 
specific primary antibodies at appropriate dilutions. This was followed by incubation with HRP-conjugated secondary antibodies and 
visualization using the ECL system (Bio-Rad). 

3.14. Immunohistochemical (IHC) staining 

The tissue underwent fixation in 4 % paraformaldehyde, followed by paraffin embedding and slicing into 5 μm sections. Following 
dewaxing, antigen repair was performed by boiling the sections in Tris/EDTA buffer (pH 9.0) for 5 min. A 30-min incubation with 3 % 
H2O2 blocked peroxidase, and subsequent blocking with 10 % goat serum for 1 h was carried out. The tissue sections were then 
exposed to the specific FDX1 antibody (12592-1-AP, 1:500, Proteintech) at 4 ◦C overnight. Following PBS washing, slides were 
incubated with a biotin-conjugated secondary antibody for 45 min, followed by washing. Immunohistochemical staining and DAB 
visualization were performed using the GTVision III detection system (Gene Tech, China). Finally, the slides were stained with he-
matoxylin and dehydrated. 

J. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e24453

5

3.15. Statistical analysis 

R (version 4.0.5) and GraphPad Prism (version 6.0.1) were employed for all statistical analyses. Each experiment was conducted 
independently at least twice. Comparisons were carried out using a two-tailed paired Student’s t-test, one-way ANOVA, or two-way 
ANOVA, as specified in the individual figures. Statistical significance was set at p < 0.05, considering it as statistically significant 
(*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). 

Fig. 1. Identification of cuproptosis-related lncRNAs (CRLs) in HCC. A. Expression levels of cuproptosis-related genes (CRGs) in normal liver tissue 
and HCC tumor tissue. B. Kaplan–Meier survival curves of overall survival of HCC patients between high and low expression groups of CRGs. C. The 
volcano plot of the differential expressed lncRNAs between the normal liver tissue samples and HCC samples. The screening criteria utilized were | 
log2 (Fold Change)| > 1 and adjusted p-value <0.01. The Benjamini–Hochberg (BH) method was employed for p-value correction. D. The corre-
lation between differential expressed lncRNAs and CRGs in the TCGA dataset (method: Pearson’s correlation analysis). Each unit’s color indicated 
the degree of correlation. Red implied the positive relationship; blue was on the contrary. E. The overlap of differentially expressed lncRNAs and 
CRLs in HCC. F. Comparison of CRLs expression levels between normal liver tissue samples and HCC samples in the TCGA dataset. ns p > 0.05; *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 
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4. Results 

4.1. Identification of CRLs in HCC 

It is now widely recognized that lncRNAs serve as indicators of unique cell states or biological processes, potentially representing 
cellular pathologies such as cancer and serving as targets for therapeutic intervention [22,23]. However, research on lncRNAs asso-
ciated with cuproptosis is limited. In this study, we investigated whether lncRNAs play a role in the response of HCC cells to copper. 

Despite this, the occurrence of cuproptosis in various cancer types remains unclear. To address this gap, we examined the 
expression of CRGs. Our analysis unveiled significant differences in CRG expression levels between normal and HCC samples (Fig. 1A). 
To maintain intracellular copper homeostasis, ATP7A functions as a copper exporter [24], while SLC31A1 imports copper from the 
extracellular matrix into the cells [25]. In HCC, the expression of ATP7A was 1.5 times higher than that in normal tissues, whereas the 
expression of SLC31A1 was slightly lower. As illustrated in Fig. 1B, CRGs were found to negatively impact the prognosis of patients 
with HCC. Consequently, it is reasonable to posit that HCC cells exhibit resistance to the toxic effects of copper. 

Subsequently, we conducted a differential expression analysis to identify aberrantly expressed HCC-lncRNAs (Fig. 1C). Our 
investigation pinpointed 50 lncRNAs that may be closely associated with cuproptosis in HCC (Fig. 1D). Among these, 37 CRLs 
exhibited high expression levels in tumor samples (Fig. 1E–F). In summary, our findings strongly link cuproptosis to the development 
and progression of HCC, and the identified 37 CRLs may play a pivotal role in regulating this process. 

4.2. Construction of HCC risk model based on CRLs 

To establish a robust risk model, patients with HCC were initially randomly assigned to two groups: a training group and a test 
group. Importantly, there were no discernible differences in clinical characteristics between these groups, as outlined in 

Fig. 2. Construction of HCC risk model based on CRLs. A. Univariate Cox regression of CRLs in HCC patients (threshold value: p-value< 0.05). B. 
Distribution of the LASSO coefficients of CRLs. C. The 10-fold cross-validation of variable selection in the LASSO algorithm. D. The correlation 
between 3 candidate CRLs and CRGs in the TCGA dataset (method: Pearson’s correlation analysis). Each unit’s color indicated the degree of cor-
relation. Red implied the positive relationship, blue was on the contrary. E. PCA analysis confirmed a prominent difference between high- and low- 
risk groups. 
ns p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 
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Fig. 3. Validation and improvement of the HCC risk model. A-C. The distribution of overall survival (OS) risk scores, survival time and survival 
status, heat maps of 3 CRLs expressions between high- and low-risk groups in the training (A), test (B), and TCGA groups (C), respectively. D-F. 
Kaplan–Meier survival curves of OS of HCC patients between high- and low-risk groups in the training (D), test (E), and TCGA groups (F), 
respectively. G-I. Kaplan–Meier survival curves of disease-free survival (DFS) of HCC patients between high- and low-risk groups in the training (G), 

J. He et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e24453

8

Supplementary Table 1. This random assignment strategy ensured a representative sample for the development of our risk model. The 
identification of critical CRLs involved a multi-step process. Firstly, a comprehensive univariate Cox analysis was conducted, focusing 
on fourteen lncRNAs that had the potential to influence the prognosis of patients with HCC (Fig. 2A). Subsequently, a LASSO regression 
analysis was applied to narrow down the selection to six lncRNAs, effectively addressing the issue of multicollinearity among variables 
(Fig. 2B–C). The final refinement of the CRLs involved a multivariate Cox analysis, which isolated three independent variables with a 
significant impact on patient prognosis. These variables—AC018690.1, AL050341.2, and LINC02038—were then used to construct the 
risk model, represented by the equation: risk score = 0.82 * AC018690.1+ s0.65 * AL050341.2 + 0.61 * LINC02038. We also examined 
the connections between these three CRLs and CRGs. As anticipated, we validated that all three were inversely correlated with FDX1, a 
pivotal regulator of protein lipoylation crucial in cuproptosis [15], and positively correlated with ATP7A and ATP7B, both copper 
exporters [26] (Fig. 2D). 

Using the median risk score, we stratified patients with HCC into high- and low-risk groups. Principal component analysis (PCA) 
results indicated a significant distinction between these groups (Fig. 2E), confirming the robustness of the risk model based on CRLs. 

4.3. Validation and improvement of the HCC risk model 

We observed a consistent trend across the training (Fig. 3A, D, and 3G), test (Fig. 3B, E, and 3H), and TCGA groups (Fig. 3C, F, and 
3I), where patients with lower risk scores exhibited better prognosis. In the overall survival (OS) analysis, hazard ratios were 2.31, 
1.85, and 2.05 in the training, test, and TCGA groups, respectively (Fig. 3D–F). Additionally, the correlation between risk scores and 
disease-free survival (DFS) was evident, with hazard ratios of 1.54, 1.80, and 1.67, respectively (Fig. 3G–I). Furthermore, a positive 
correlation was identified between tumor grade and the proportion of high-risk patients (Fig. 3J). When comparing HCC to normal 
liver tissue samples (Fig. 3K) and high-invasive (HI) to low-invasive (LI) HCC samples (Fig. 3L), the observed significant increase in risk 
scores indicated a robust association between CRLs and HCC development and progression. 

To improve the accuracy of the risk model, we conducted univariate and multivariate Cox analyses on the clinical information of 
patients with HCC. The results revealed that the clinical stage of patients could independently affect their prognosis (Supplementary 
Table 2). Consequently, we integrated this factor into the risk model to construct a nomogram (Fig. 4A). As anticipated, the calibration 
curve demonstrated excellent alignment of our proposed nomogram for survival prediction (Fig. 4B). This improved risk model more 
effectively and accurately reflected the patient survival status (Fig. 4C). 

4.4. Correlation between HCC risk model and tumor immune microenvironment (TIME) of patients with HCC 

The diversity of immune cells within the tumor immune microenvironment (TIME) plays a pivotal role in cancer progression [27]. 
Consequently, our interest was piqued regarding potential disparities in TIME between high- and low-risk groups. Initially, we assessed 
immune cell components through ssGSEA based on key markers of 23 immune cells [19]. Our findings indicated that over 60 % of 
common immune cells exhibited significant differences in tumor-infiltrating levels between the high- and low-risk groups (Fig. 5A). 

A noteworthy observation was the positive correlation between the number of T helper 2 (Th2) cells and risk scores (Fig. 5B). Given 
that Th2 cells counteract the antitumor effect of T helper 1 (Th1) cells [28]. Simultaneously, we confirmed an inverse correlation 

test (H), and TCGA groups (I), respectively. J. Distribution of patients with high- and low-risk in different grades of HCC. K. Comparison of risk 
scores between HCC samples and normal liver tissue samples in validation dataset (GSE115018). L. Comparison of risk scores between high-invasive 
(HI) and low-invasive (LI) HCC samples in validation dataset (clinical HCC samples). 
ns p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 

Fig. 4. Construction and validation of an optimized nomogram based on CRLs. A. A nomogram combining clinical stage and risk scores predicts 1-, 
3-, and 5-years overall survival in patients with HCC. B. Calibration curves test the agreement between actual and predicted outcomes at 1, 3, and 5 
years. C. Kaplan–Meier survival curves of OS of HCC patients between high- and low-risk groups after optimization. 
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between the infiltration of Th17 cells (directly activating CD8+ T cells) and dendritic cells (DCs, activating T cells to trigger an 
antitumor response) and risk scores [29,30] (Fig. 5C–D). 

The landscape of cancer treatment has been profoundly impacted by remarkable advancements in immune checkpoint (ICP) 
blockade therapies [30,31]. Intriguingly, PD-L1 and more than ten types of ICPs exhibited significant differences in expression between 
the high- and low-risk groups (Fig. 5E). Additionally, it is crucial to note that cancer cells have developed intricate mechanisms to 
evade the recognition of cell death as immunogenic [32]. As illustrated in Fig. 5F, the genes associated with immunogenic cell death 
(ICD) varied between the constructed models. 

The Tumor Immune Dysfunction and Exclusion (TIDE) prediction score serves as an indicator of the potential for immune evasion 
and dysfunction within a tumor [19,20]. Based on the lower TIDE scores observed among patients in the high-risk group, it can be 
inferred that their likelihood of experiencing immune escape was comparatively reduced. Consequently, these individuals might have 
a higher probability of deriving therapeutic advantages from immunotherapeutic interventions (Fig. 5G). 

In summary, the risk model constructed using CRLs has the potential to reflect the TIME of patients and provide valuable insights 
for the immunotherapy of HCC. 

4.5. Clinical characteristics, treatment prediction and molecular analysis of risk groups 

The pathological grade of a tumor holds significant importance in determining its malignancy level [33]. Grade III samples, pri-
marily from high-risk group patients, affirm the validity of our risk model (Fig. 6A). ADH1A and PYCR2 play roles in the metabolic 
reprogramming of HCC and stand out as novel prognostic biomarkers [34]. In the high-risk group, the expression of ADH1A-
—associated with favorable patient outcomes—was notably lower. Additionally, the high-risk group exhibited lower expression of 
PYCR2, a gene linked to shorter survival (Fig. 6B–C). Moreover, the mutation rate in the high-risk group slightly surpassed that in the 
low-risk group (Fig. 6D–E). The intriguing observation of a significant decrease in TP53 mutation frequency from the high-risk to the 
low-risk group prompts further exploration. Multiple studies indicate that mutant p53 stimulates glycolysis, suppresses oxidative 
phosphorylation, and modulates lipid metabolism, potentially enhancing cancer cell evasion through these mechanisms [35]. How-
ever, additional studies are necessary for a comprehensive understanding of these mechanisms. 

Sorafenib, targeting VEGF receptor, RAF, and PDGF receptor, has demonstrated a substantial extension of OS in patients with 
advanced HCC [36], while Dasatinib can induce cell cycle arrest and apoptosis in “progenitor” HCC cell lines [37]. Through a pre-
dictive analysis of drug sensitivity, we showcased that high-risk patients exhibited significantly reduced sensitivity to these drugs 
(Fig. 6F–G). 

To delve into the potential mechanisms affecting sensitivity to copper toxicity, we conducted an analysis of relevant pathways using 
gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) based on differentially expressed genes between the high- 
and low-risk groups (Fig. 6H–J). The results indicate the involvement of DNA replication origin binding, cell cycle, and ECM-receptor 
interactions in this process. 

In summary, the high- and low-risk groups exhibited marked differences in clinical, therapeutic, and molecular aspects, suggesting 
that CRLs may serve as essential regulators of HCC. 

4.6. In vitro validation of the association between lncRNAs and cuptoptosis 

To provide substantive and compelling evidence for the CRLs in our model, we treated HCC cells (Huh7 and HCCLM3) with 
Elesclomol (100 nM)-Cu (100μM) and assessed the resulting cell death rate induced by copper overload. Remarkably, our findings 
revealed that both Huh7 and HCCLM3 cells exhibited significant resistance to cuproptosis (cell death rate <20 %). However, upon 
silencing AC018690.1, AL050341.2, and LINC02038, we observed a marked increase in cytotoxicity caused by copper overload 
(Fig. 7A–C). 

Cuproptosis arises from the direct binding of copper to the lipoacylated components of the TCA cycle, leading to the aggregation of 
lipoacylated proteins and, ultimately, proteotoxic stress and cell death. Thus, heightened lipoacylation serves as a hallmark event in 
cuproptosis [14]. As anticipated, immunoblotting results demonstrated that silencing AC018690.1, AL050341.2, and LINC02038 
significantly intensified intracellular lipoacylation (Fig. 7D), firmly establishing the link between CRL candidates and cuproptosis. 
Furthermore, high-risk HCC samples, indicative of a substantial invasion propensity, exhibited a noticeable reduction in the expression 
levels of FDX1 (Fig. 7E–F). 

Consequently, targeting these lncRNAs has the potential to enhance the efficacy of copper ionophores against HCC, thereby 
fostering the development of novel therapies that build upon existing modalities (such as first-line drugs, immunotherapy and copper 
ionophores). 

Fig. 5. The correlation between HCC risk model and TIME of HCC patients. A. Differential enrichment scores of 23 immune cell types among HCC 
risk groups in TCGA. B-D. Correlation between optimized risk model scores and the contents of T helper 2 cells (B), T helper cells 17 (C) and 
Dendritic Cells (D). E-F. Differential expression of ICPs (E) and ICD-related genes (F) among the high- and low-risk groups in TCGA. G. Comparison 
of TIDE prediction score between the high- and low-risk groups. 
ns p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 
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5. Discussion 

Encouragingly, Tsvetkov et al. proposed a unique form of regulated cell death- “cuproptosis” [15]. While copper chelation therapy 
has demonstrated its efficacy for treating copper metabolic diseases, such as Wilson’s disease [12], the utilization of copper ionophores 
in cancer treatment remains limited in terms of effectiveness [31]. 

Recent genome-wide representation of the human cancer transcriptome has demonstrated that lncRNA expression is one of the 
most prevalent transcriptional changes in cancer [32]. Some lncRNAs mediate tumourigenesis or tumour suppression and are potential 
targets for cancer treatment. However, only a few lncRNAs have been functionally characterized [33]. There is limited evidence 
linking lncRNAs to coproptosis. Therefore, our study aimed to explore lncRNA targets closely related to copper toxicity to improve the 
effect of copper ionophores in cancer treatment and provide a theoretical basis for the comprehensive treatment of HCC. 

First, 37 lncRNAs closely related to cuproptosis and abnormally expressed in HCC were identified. Among these, we determined 
that AC018690.1, AL050341.2, and LINC02038 were closely related to patient prognosis using univariate Cox analysis, LASSO 
regression analysis, and multivariate Cox analysis. Considering the importance of clinical diagnosis, we added clinical stage (which 
could affect the prognosis of patients as an independent factor) into our model, which improved the accuracy and validity of the risk 
model and was more conducive to prospectively predicting patient survival. This has a guiding significance for clinical decision- 
making. 

To determine the potential mechanisms by which candidate CRLs affect resistance to copper toxicity, we analyzed the cellular, 
functional, and molecular characteristics of the high- and low-risk groups. On the one hand, the contents of 13 kinds of immune cells 
differ in two groups, in which Th2 cells, Th17 cells and DCs were strongly correlated with risk scores in our model. Hence, it is 
reasonable to believe that the TIME is also involved in the association between lncRNA targets and cuproptosis, which is also explained 
by the differences between ICPs and ICD-related genes. 

The differences in pathological grade and tumour biomarker expression also proved the feasibility of our model from another 
perspective. Functional enrichment analysis revealed that the differences between the two groups mainly existed in the cell cycle, 
ECM-receptor receptor, and p53 signalling pathways. Cell cycle abnormalities are important features of cancer [34], while extra-
cellular matrix (ECM) components have been identified as important modulators of cancer progression [35]. Additionally, p53 mu-
tations occur frequently in human HCC [36]. The observed variations in the frequency of p53 mutations between the high- and low-risk 
groups indicate that there may be a regulatory role for CRLs in the cuproptosis process in HCC via these pathways. 

Notably, our study provided unique insights into the treatment of HCC based on cuproptosis. First, the TIDE scores showed that 
patients in the high-risk group were more likely to benefit from immunotherapy. Therefore, immunotherapy can be applied to patients 
with HCC with high expression of AC018690.1, AL050341.2, and LINC02038. In addition, high-risk patients show poor sensitivity to 
sorafenib and dasatinib, and targeting lncRNAs may improve drug efficacy. Furthermore, experiments in vitro have verified that these 
targets significantly affect the death of HCC cells caused by copper ionophores. In this study, we constructed a risk model with clinical 
practicability and proposed a new comprehensive treatment scheme for HCC based on the regulation of cuproptosis by lncRNA targets, 
thus opening a new horizon for HCC treatment. 

However, this study had several limitations. Owing to the lack of sequencing and clinical follow-up data from sufficient HCC 
samples, this risk model has not yet been shown to be applicable to all HCC subtypes for defining cuproptosis-based therapy regimens. 
Our in vitro experiments were dependent on HCC cell lines and may not completely reflect the intricate nature of tumors. The molecular 
processes underlying the regulation of cuproptosis by these three HCC CRLs remain unknown. Therefore, an extensive experimental 
investigation is necessary. 

6. Conclusions 

Among the lncRNAs associated with cuproptosis and abnormally expressed in HCC, we identified AC018690.1, AL050341.2, and 
LINC02038 as clearly associated with the prognosis of patients with HCC. Furthermore, we developed an innovative risk model based 
on targets and key clinical factors, and patients with HCC were divided into high- and low-risk groups based on their risk scores. Our 
analysis found significant differences in TIME, molecular and clinical characteristics between the risk groups. The remarkable effect of 
the CRLs targets on Cu toxicity resistance was verified in vitro. In conclusion, our study constructed a risk model which could not only 
predict the survival of patients with HCC but also provide comprehensive and meaningful HCC treatment. 

Fig. 6. Clinical characteristics, treatment prediction and molecular analysis of high/low risk groups. A. Distribution of patients with high- and low- 
risk (the optimized risk model) in different grades of HCC. B. Comparison of ADH1A expression levels among risk groups in the TCGA dataset. C. 
Comparison of PYCR2 expression levels among risk groups in the TCGA dataset. D-E. Waterfall plot of top 10 mutant genes in the high- (D) and low- 
risk group (E) in HCC. 
F-G. Box plot of drug sensitivity to Sorafenib (F) and Dasatinib (G) in high- and low-risk groups 
H. Differential gene expression in high- and low-risk groups of HCC. 
I-J. Gene Ontology (GO) (H) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (I) pathway enrichment analysis. The BH method was applied 
for p-value correction, with a threshold set at p-value <0.05. 
ns p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 
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Fig. 7. In vitro validation of the association between lncRNAs and cuptoptosis. A. RT-qPCR were used to verify the knock-down efficiency of siRNAs 
against specific lncRNAs. 
B–C. Left: Flow cytometry results showed the proportion of dead cells (CFSE− ) in si-NC, si-AC018690.1, si-AL050341.2 and si-LINC02038 groups (B 
for Huh7 cells, and C for HCCLM3 cells) after 2 h s shock with Elesclomol (100 nM) -Cu (100μM). Right: the proportion of dead cells of different 
groups are quantified (B for Huh7 cells, and C for HCCLM3 cells) 
D. Huh7 and HCCLM3 cells in si-NC, si-AC018690.1, si-AL050341.2 and si-LINC02038 groups were treated with Elesclomol (200 nM)- Cu (1 M) 
shock for 2 h s. After 24 h s, the degree of lipoacylation was analyzed by immunoblotting and the antibody described in the description. GAPDH was 
used as an internal reference 
E. Comparison of protein expression patterns of FDX1 in clinical HCC samples between the high- and low-risk group using Immunohistochemistry 
(IHC) assays (20 × ) 
F. The expression levels of FDX1 among risk groups were compared by immunohistochemistry. IOD/area denotes the mean optical density of the 
areas of interest 
ns p > 0.05; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. 
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