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What this study adds:
Walkability, which is the presence of environmental features 
that increase the propensity for walking, is a built environment 
exposure that may impact sleep; however, there is no consen-
sus in the current literature. Prior studies assign walkability 
exposure using residential addresses, which captures a limited 
representation of a person’s true exposure to walkable envi-
ronments. In this study, we used fine-scale time-activity data 
from smartphone global positioning systems (GPS) to assess 
walkability exposure, and we objectively measured sleep using 
consumer-wearable devices. Incorporating these mobile health 
data streams (e.g. minute-level GPS, wearables) into this epide-
miologic study, we investigated associations between walkabil-
ity and sleep.
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Background:  Sleep is influenced by the environments that we experience while awake and while asleep. Neighborhood walkability 
has been linked with chronic disease and lifestyle factors, such as physical activity; however, evidence for the association between 
walkability and sleep is mixed. Extant studies assign walkability based on residential addresses, which does not account for mobility. 
We examined the association between walkability and sleep in the Nurses’ Health Study 3 (NHS3) Mobile Health Substudy (MHS).
Methods:  From 2018 to 2020, individuals in the United States-based NHS3 prospective cohort participated in the MHS, in which 
minute-level global positioning systems (GPS) data and objective sleep duration and efficiency measures were collected via a custom 
smartphone application and Fitbit, respectively, for four 7-day periods across a year to capture seasonal variability. Census tract 
walkability was calculated by summing z-scores of population density (2015–2019 American Community Survey), business density 
(2018 Infogroup), and intersection density (2018 TIGER/Line road shapefiles). We ran generalized additive mixed models with penal-
ized splines to estimate the association between walkability and sleep, adjusting for individual-level covariates as well as GPS-based 
exposure to environmental and contextual factors.
Results:  The average main sleep period duration was 7.9 hours and the mean sleep efficiency was 93%. For both sleep duration 
and sleep efficiency, we did not observe an association with daily average walkability exposure.
Conclusion:  In this study of women across the United States, we found that daily GPS-based neighborhood walkability exposure 
during wake time was not associated with objective wearable-derived sleep duration or sleep efficiency.
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Introduction
Sleep is an integral process to human health; sleep’s role in 
repair and recovery is essential to cognition, performance, and 
mental health and key in the maintenance of physical and car-
diometabolic health.1,2 Effects of suboptimal sleep on the human 
body range from short-term health consequences that impact 

day-to-day quality of life to increased risk of several chronic 
diseases including cardiovascular disease and several cancers.3–5 
Insufficient sleep is modulated by a variety of individual-level 
risk factors that relate to socioeconomic status, health behav-
iors, and overall health status, but there is also evidence that 
environmental and contextual exposures may impact the risk 
of suboptimal sleep; the ubiquity of these exposures motivate 
further studies to better understand how these exposures are 
related to sleep.6,7

Environmental exposures that shape one’s sleeping environ-
ment as well as exposures that are experienced during wake 
time that precedes sleep can impact sleep.8–10 Built environment 
factors, such as light-at-night (LAN), neighborhood greenspace, 
and walkability, are of particular interest due to their modifi-
ability and previous links with sleep.11–14 Neighborhood walk-
ability, which is broadly defined by the presence of features that 
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increase propensity for human walking, is hypothesized to be 
linked to sleep through the mechanism of increased physical 
activity.15

The relationship between neighborhood walkability and sleep 
outcomes is not fully elucidated; it is hypothesized that higher 
walkability exposure leads to higher physical activity, which pro-
motes sleep health via the facilitation of melatonin production, 
stress reduction, and improvement of mood.16,17 However, there 
are mixed findings in the current literature with some evidence 
supporting an association between walkability and sleep, but not 
all.13,18,19 Difficulty in accounting for correlated environmental 
coexposures such as LAN and noise may contribute to the lack of 
consensus on this association. Additionally, extant studies have 
relied on the assignment of walkability exposure based on resi-
dential address locations, which does not account for time spent 
away from the home. Using minute-level global positioning sys-
tems (GPS) data to derive walkability exposure and objectively 
measured sleep data that was collected over a year-long period 
for each participant, we investigated associations between walk-
ability and sleep duration and efficiency in the Nurses’ Health 
Study 3 (NHS3) Mobile Health Substudy (MHS).

Methods

Nurses’ Health Study 3 Mobile Health Substudy

The NHS3 is an open prospective cohort study of male and 
female nurses and nursing students, with participants in both 

the United States and Canada. Enrollment for NHS3 began in 
2010 for female participants and in 2018 for male participants, 
all born in 1965 or later. NHS3 is internet based, with survey 
modules on health and health behaviors sent to participants on 
personalized timelines based on enrollment date, with a new 
questionnaire sent to each participant approximately every 6 
months.20

The MHS within NHS3 began in 2018. This study was 
approved by the Institutional Review Board at Brigham and 
Women’s Hospital and Harvard Pilgrim Health Care Institute 
(Boston, MA). At the time of enrollment, we selected partici-
pants who had completed at least four questionnaires, had 
reported no doctor-diagnosed sleep disorder, and had a smart-
phone running iOS. A total of 511 participants consented and 
were asked to download a custom smartphone application that 
passively collected GPS location. They were also provided Fitbit 
(San Francisco, CA) wearable devices to objectively measure 
physical activity and sleep outcomes including duration and 
efficiency.21 A range of devices were used throughout the study 
period, including the Fitbit Charge HR, Fitbit Charge 2, and 
Fitbit Charge 3. Participants were followed for a year, with four 
separate periods of 7-day long data collection, spaced 3 months 
apart, to capture seasonal variation. Of the participants enrolled 
in the MHS, 402 had sleep data collected and 464 had at least 
1 day of GPS data. After restricting to participants who had 
simultaneous GPS and sleep data, there were 290 participants 
and 4576 sleep periods. Once we removed the 462 nonmain 
sleep periods (i.e., naps) as well as restricted to observations 
with complete (i.e., no missingness) environmental exposure 
and covariate data, there were 276 participants and 3952 main 
sleep periods (Figure 1).

Sleep

Sleep data measured by the Fitbit devices were downloaded 
from Fitabase (San Diego, CA). Due to the use of different 
devices, we have sleep period observations in our dataset esti-
mated from two Fitbit algorithms, “Stages” and “Classic.” Main 
sleep periods, as classified by the Fitbit device, were included 
in this analysis; they are the sleep periods of the longest dura-
tion and are classified for distinction from naps. For each sleep 
period, data on duration (in minutes) and efficiency (percentage 
of time asleep relative to time in bed, calculated as 100 × minutes 

Figure 1.  Deriving the analytic dataset of 276 participants and 3592 main sleep periods from the NHS3 Mobile Health Substudy’s GPS data and Fitbit sleep 
data.
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asleep/[time in bed − minutes after wakeup]) were derived by 
Fitbit. We additionally conducted analyses with the sleep mea-
sures operationalized as categorical outcomes, to estimate the 
risk of high and low sleep duration and efficiency. Specifically, 
we categorized sleep duration as optimal (7–9 hours, reference), 
less than 7 hours, and more than 9 hours. Sleep efficiency was 
categorized as optimal (85%–96%, reference), low efficiency 
(less than 85%), and high efficiency (over 96%).

Exposure

GPS data were collected via a custom smartphone application 
developed for the study, which identified the latitude and longi-
tude of the smartphone every 10 minutes. These GPS points pro-
vided data on the locations of participants throughout the study 
period, which were used for exposure assessment. To ensure the 
accuracy of GPS data in the analytic dataset, a restriction crite-
ria of minimum 65-m horizontal accuracy was applied. Using 
the timestamp of GPS points and the times of the sleep records 
recorded by the Fitbit device, each GPS point was classified as 
occurring during wake or sleep; this was used to assign environ-
mental exposures accordingly. Wake exposures were assigned 
based on the daily main wake period preceding each main sleep 
(i.e., sleep periods beginning after midnight were assigned the 
previous day’s exposure).

The walkability exposure used in this analysis draws on the 
framework by Rundle et al, which was optimized to examine 
the relationships between walkability and physical activity; the 
calculation of this walkability index for the United States has 
been described elsewhere.22,23 Briefly, walkability exposure was 
calculated by summing the z-scores of three elements: popula-
tion density, business density, and intersection density. A higher 
walkability score is indicative of an area that encourages 
active transport versus driving. Population density was calcu-
lated by using population data from 2015 to 2019 American 
Community Survey 5-year estimates and 2010 Census Bureau 
shapefiles.24 The geospatial 2018 Infogroup US Historical 
Business Dataset, which contains geocoded addresses of all 
businesses across the United States, was used to calculate 
business density.25 For intersection density, intersection counts 
were calculated with road data from 2019 Tiger/Line shape 
files of all roads with the interstates removed.26 The resulting 
walkability exposure is spatially resolved at the census tract 
level. We joined this walkability exposure to all the GPS points 
for each participant. By cross-referencing the date and time 
of each GPS point with the timing of sleep records measured 
by Fitbit, we calculated the daily mean walkability exposure 
during wake.

Covariates

Sociodemographic information including age, marital status, 
employment status, and education and behavioral health infor-
mation such as alcohol consumption and prevalence of health 
outcomes including depression were ascertained on the NHS3 
baseline survey. We also utilized a covariate for whether the 
sleep period occurred on a weekend or weekday, based on the 
day of the wake period. Shiftwork was ascertained from a sur-
vey deployed via the smartphone application that participants 
filled out after each week-long GPS/sleep data collection period, 
which asked if they had done any shiftwork (and if so, on which 
days); for sensitivity analyses regarding shiftwork, all sleep peri-
ods on dates with reported shiftwork and dates following the 
shiftwork within that week-long data collection period were 
considered impacted by shiftwork and excluded in a sensitiv-
ity analysis. Data on sleep in nonmain sleep periods (i.e., naps) 
were collected from the Fitbit; we operationalized a naps vari-
able by classifying main sleep periods on the same day a nap had 
also occurred (for main sleep periods occurring after midnight, 

naps on the previous calendar date were included) and excluded 
these in a sensitivity analysis.

For environmental exposure covariates, the same method 
described earlier for assignment using GPS data was applied. 
For LAN, Stray Light Corrected Nighttime Day/Night Band 
Composites data from NASA’s Visible Infrared Imaging 
Radiometer Suite was utilized, which has a monthly 500-m 
spatiotemporal resolution; this was temporally matched to 
the month of each GPS point.27 For noise, we used 270-m res-
olution time-aggregated (2000–2014) anthropogenic median 
A-weighted decibel noise data provided by the National Park 
Service; for GPS points occurring between 7 am and 7 pm, 
daytime noise levels were assigned, while GPS points occurring 
between 7 pm and 7 am were assigned nighttime noise levels.28 
For temperature, we matched the date of the GPS point with 
mean daily temperature data at an 800-m spatial resolution 
from Parameter-elevation Regressions on Independent Slopes 
Model.29 For neighborhood socioeconomic status (SES), the 
Census tract level exposure calculated for the Nurses’ Health 
Study cohorts was used; it is a composite score of z-standardized 
components representing education, employment, housing, 
wealth, racial composition, and density for which higher scores 
represent higher neighborhood SES.30 Data from the 2010 
Census were used. For greenness, we extracted the seasonal 
Normalized Difference Vegetation Index, which is a satellite 
measure of photosynthetically active vegetation, at a 30-m reso-
lution, and matched to the season and year of each GPS point.31 
Normalized Difference Vegetation Index has a range of −1 to 
1, with negative values representing water, zero representing 
barren rock and soil, and values greater than zero representing 
vegetation. Consistent with other studies of greenness, we set 
negative values to zero, resulting in a range of values between 
zero and one. For the environmental exposure covariates, the 
periods (sleep vs. wake) used for exposure assignment were as 
follows: LAN, noise, and outdoor temperature during sleep; 
neighborhood SES and greenness during wake.

Statistical analysis

All statistical analyses were conducted in R 4.2.0 (Vienna, 
Austria). To estimate the association between daily mean walk-
ability exposure during wake and sleep outcomes, we used 
generalized additive mixed models with a random intercept for 
individuals. Both duration, in minutes, and efficiency, in per-
cent, were modeled continuously. We tested for nonlinearity in 
all dose responses by evaluating the effective degrees of freedom 
assigned by penalized splines from the R package mgcv.32 To 
account for the correlation between observations on adjacent 
days, we used an autoregressive correlation structure. In basic 
models, we adjusted for age (years). In fully adjusted models, 
we additionally adjusted for race (White/non-White), marital 
status (ever/never married), education (advanced degree yes/no), 
employment (yes/no), alcohol consumption (≥1 drink per day 
yes/no), season (Spring/Summer/Fall/Winter), weekend versus 
weekday, LAN, noise, outdoor temperature, neighborhood SES, 
and greenness (each continuous). We estimated the expected 
difference in sleep duration and efficiency associated with an 
interquartile range (IQR) increase in daily walkability exposure 
during the wake.

We also conducted analyses with sleep duration and effi-
ciency measures as categorical outcomes for which the middle 
category (7–9 hours for duration, 85%–96% for efficiency) 
was considered optimal and used as the referent group. To esti-
mate the odds of higher and lower levels of sleep duration and 
efficiency, we used mixed effects logistic regression models on 
subsets of the analytic dataset including the referent group and 
the level of interest; for instance, to estimate the odds of higher 
sleep duration, we ran logistic regression models on the subset 
of observations from the referent group and the high duration 
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group. To account for correlations between repeated measures 
within an individual, as well as that of observations from the 
same data collection week, we included random intercepts for 
participant/collection week. This subsetted logistic regression 
approach has been shown to be comparable to the results of a 
multinomial logistic regression and permitted us to assess non-
linear dose responses.33

We conducted sensitivity analyses to examine the robustness 
of our results to alternative modeling choices. To determine if 
shiftwork may have impacted associations, we removed sleep 
periods for which shiftwork was reported and the sleep peri-
ods that followed a date of shiftwork within a data collection 
week. To determine if naps may have modified associations, we 
also ran models restricted to sleep periods on dates for which 
no naps occurred. To ensure our estimation of the association 
was not impacted by the combination of Fitbit algorithms used, 
we also ran models restricted to sleep observations from only 
the newer “Stages” algorithm. Finally, to evaluate if depres-
sion would potentially alter associations between walkability 
and sleep, we also ran a sensitivity analysis restricting partici-
pants who did not self-report doctor-diagnosed depression at 
enrollment.

Results
Participants in the NHS3 MHS were all female, majority White 
race, and employed with roughly equivalent representation 
across geographic regions (Table 1). The average age of partic-
ipants was 39.6 years old (SD, 7.1). Participants had an aver-
age sleep duration of 7.9 hours (SD, 1.6) and an average sleep 
efficiency of 92.6% (SD, 8.0%). On average, each participant 
had 13 recorded sleep periods during the study period, with a 
mean of five sleep periods in each of the quarterly data col-
lection weeks. Across the included sleep periods, the average 
walkability exposure of the wake period preceding sleep was 
0.5 (SD, 2.8). The demographics of the participants included in 
the analysis did not differ meaningfully from demographics of 
those who provided Fitbit sleep data or of those who consented 
(eTable 1; http://links.lww.com/EE/A308).

Associations between walkability and sleep duration did not 
deviate from linearity. In our basic model, a one IQR increase in 
walkability exposure was associated with a 2.64 minute shorter 
sleep duration (95% confidence interval [CI]: −5.53, 0.25); after 
additionally adjusting for demographic variables, temporal 
variables, and environmental coexposures, the association was 
attenuated to a 1.77 minute shorter (95% CI: −4.99, 1.46) sleep 
duration (Table 2). In categorical analyses, compared to those 
who slept 7–9 hours, the odds ratio (OR) for each IQR increase 
in daily walkability exposure and low sleep duration (< 7h) was 
1.03 (95% CI: 0.94, 1.13); meanwhile, for high sleep duration 
(>9 hours), the OR was 0.96 (95% CI: 0.86, 1.06).

For sleep efficiency, due to evidence of nonlinearity, we mod-
eled the continuous association with a penalized spline. Both the 
basic age-adjusted and fully adjusted models had a similar shape, 
with 5.1 and 4.6 effective degrees of freedom, respectively, but 
little evidence of an association between most levels of walkabil-
ity and efficiency (Figure 2). In categorical analyses, the ORs for 
low (<85%) and high sleep efficiency (>96%) were 0.96 (95% 
CI: 0.66, 1.40) and 1.06 (95% CI: 0.97, 1.16), respectively 
(Table 2). All results were robust in sensitivity analyses (eTable 
2 and eAppendix 1; http://links.lww.com/EE/A308).

Discussion
In our study of GPS-derived walkability exposure and sleep 
outcomes in the NHS3 MHS, we did not find evidence of 
associations between walkability and sleep duration, or sleep 
efficiency. Across models of continuous and categorical sleep 
duration and sleep efficiency, we observed null associations 
with walkability. We conducted several sensitivity analyses 
to account for if factors relating to sleep such as naps, shift-
work, and depression as well as the way sleep, estimated via the 
Fitbit algorithm may have impacted our findings; however, the  
associations remained stable. This study is the first to assess 
the association between walkability and sleep using objective 
sleep data collected with repeated measures across seasons with 
nationwide geographic dispersion and activity space for expo-
sure assessment.

Prior studies of walkability and sleep duration have shown 
inconsistent findings; one study showed suggestive positive 
associations while another found negative associations.13,19 In 
contrast to the multiple 1-week data collection periods year-
round in this study, each of these previous studies utilized data 
from single week-long periods. Our null findings are consistent 
with results reported in other previous studies.13,18,19

Differences in reported associations between walkability and 
sleep may reflect differences in how walkability scores are cal-
culated.34 Prior studies looking at the connection between walk-
ability and sleep have used a variety of measures including the 
nationwide Street Smart Walk Score or combinations of quan-
titative and qualitative measures of walkability on more local 
street-segment levels in specific neighborhoods.13,18,19 A related 
version of the walkability exposure metric employed in this 

Table 1.

Characteristics of the 276 female participants and 3592 sleep 
periods of the Nurses’ Health Study 3 Mobile Health Substudy 
with paired sleep and GPS data available

Participant characteristic Mean (SD)

Age (years) 39.58 (7.10)
n (%)

Advanced degree (% yes) 71 (25.7)
Employed (% yes) 260 (94.2)
Married (% yes) 170 (61.6)
Race (% White) 264 (95.7)
Depression (% yes) 86 (31.2)
Region (%)
 � Midwest 66 (23.9)
 � Northeast 64 (23.2)
 � South 77 (27.9)
 � West 69 (25.0)
Alcohol consumption (% ≥1 drink/day) 6 (2.2)

Sleep period characteristic Mean (SD)

Duration (hours) 7.94 (1.61)
Efficiency (%) 92.62 (8.00)
Greenness exposure during wake (NDVI) 0.28 (0.16)
Walkability exposure during wake  0.46 (2.75)
LAN exposure during sleep (nanoWatts/cm2/sr) 25.29 (27.83)
Noise exposure during sleep (L

50
, dBA) 44.68 (4.24)

Neighborhood SES exposure during wake 1.95 (2.96)
Outdoor temperature exposure during sleep (°C) 14.08 (9.11)

Duration (%) n (%)
 � <7 hours 794 (22.1)
 � 7–9 hours 1,988 (55.3)
 � >9 hours 810 (22.6)
Efficiency (%)
 � <85% 204 (5.7)
 � 85%–96% 1,999 (55.7)
 � 96%–100% 1,389 (38.7)
Season (%)
 � Fall 810 (22.6)
 � Spring 810 (22.6)
 � Summer 1,068 (29.7)
 � Winter 904 (25.2)
Day of week (% weekends) 1,006 (28.0)

Advanced degree is a binary variable indicating whether the participant has a master’s degree 
in nursing or higher. Marital status is a binary variable for either never married or ever married 
(married, widowed, and divorced). Depression is self-reported diagnosis.
NDVI indicates Normalized Difference Vegetation Index.
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study has been previously shown to be associated with physical 
activity in other cohorts of healthy adults, in addition to being 
associated with increased Fitbit-measured physical activity in 
this NHS3 MHS when assigned using GPS time-activity data to 
assign exposure.22,23,35

The demographic composition of the NHS3 MHS is largely 
early-middle-aged married White and educated women. Relative 
to prior studies of walkability and sleep, which were conducted 
in predominantly non-White and low-income cohorts such as 
the Multiethnic Atherosclerosis Study and the Pittsburgh Hill/
Homewood Eating, Shopping, and Health Study, this study’s 
population is less generalizable to disadvantaged populations, 
due to differences in exposure distributions and potential 
confounders. The Fitbit-measured average sleep duration and 
efficiency in this cohort are comparable to longitudinal Fitbit 
measurements of sleep outcomes among free-living, healthy 
adults in other studies.36

This study has limitations. Walkability was assessed at 
Census tract spatial resolution; in accordance with the mod-
ifiable areal unit problem, there is possible bias due to the 
aggregated nature and arbitrary spatial size and shape of 
Census tracts. Additionally, walkability was calculated using 
three components, but other contextual aspects of walkability 
such as neighborhood safety (e.g., crime), presence of public 
transportation, and public spaces like parks that could influ-
ence behavior and sleep were not incorporated.37 As a study 
population, the NHS3 MHS may have limited generalizabil-
ity due to its predominantly White and middle-to-high SES 
demographics. The lack of association between walkability and 
sleep in this population may reflect its relative affluence and 
homogenous racial composition. Studies conducted in more 

sociodemographically diverse populations are needed to deter-
mine whether these patterns hold. With respect to outcome 
assessment, research-grade accelerometry is still regarded as 
preferable over Fitbit devices for assessing sleep in free-living 
conditions, particularly due to the proprietary nature of their 
algorithms. However, the Fitbit devices used in the study have 
been validated against research-standard measures of acceler-
ometry or polysomnography, with reports of small differences 
in both sleep duration and sleep efficiency in healthy popula-
tions, of discrepancies of at most 11 minutes and 8%, respec-
tively.38–40 Additionally, due to their lower cost, Fitbits are more 
scalable for large-scale studies and are less prone to bias than 
subjective sleep measures.41

This study also has several strengths. To our knowledge, this 
study is the first to use GPS time-activity data and longitudinal 
objectively measured sleep outcomes to assess the relationship 
between neighborhood walkability and sleep. In contrast to 
prior work that largely relies on residential assignment of walk-
ability, being able to account for mobility with minute-level GPS 
data across an individual’s activity space enabled us to reduce 
exposure measurement error by capturing both residential and 
nonresidential exposures.42 Additionally, the leveraging of fine 
temporal scale GPS data for exposure assessment enabled clear 
delineation of exposure during the wake period. With regards to 
confounding by environmental coexposures, we utilized avail-
able environmental exposure data, on the same spatial scale as 
the main exposure, to control for salient factors such as LAN 
and noise that may be correlated with both walkability and 
sleep.

In summary, we found that in this study GPS-derived walk-
ability exposure was not associated with objectively measured 

Table 2.

Association between an IQR increase in walkability exposure on sleep duration and efficiency among 276 participants and 3592 sleep 
periods of the Nurses’ Health Study 3 Mobile Health Substudy

Effect estimate (minutes) (95% CI)

Continuous models Basica Adjustedb

Duration −2.64 (−5.53, 0.25) −1.77 (−4.99, 1.46)

Odds ratio (95% CI)

Categorical models n participant n sleep Basica Adjustedb

Duration (7–9 hours referent)
 � Low duration (<7 hours) 272 2,782 1.04 (0.96, 1.13) 1.03 (0.94, 1.13)
 � High duration (>9 hours) 270 2,798 0.95 (0.87, 1.03) 0.96 (0.88, 1.06)
Efficiency (85%–96% referent)
 � Low efficiency (<85%) 258 2,203 0.88 (0.62, 1.25) 0.96 (0.66, 1.40)
 � High efficiency (>96%) 263 3,388 1.05 (0.97, 1.14) 1.06 (0.97, 1.16)

aAdjusted for age.
bAdjusted for age, education, employment, alcohol consumption, marital status, race, season, weekend versus weekday, light-at-night exposure during sleep, noise exposure during sleep, temperature 
exposure during sleep, greenness exposure during wake, and neighborhood SES exposure during wake.

Figure 2.  Associations between walkability exposure and sleep efficiency (%) among 276 participants and 3592 sleep periods of the Nurses’ Health Study 3 
Mobile Health Substudy. Splines were restricted to predicted values ≤100% to retain interpretability.
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sleep duration and efficiency in this nationwide cohort of 
women in the United States. In addition to contributing to 
the body of mixed evidence in the literature on walkability 
and sleep, this study illustrates the possibilities of integrating 
mobile health technologies such as smartphone GPS and wear-
ables to interrogate the relationship between sleep and the built 
environment.
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