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Abstract: Iron oxide nanoparticles have attracted a great deal of research interest in recent years for
magnetic hyperthermia therapy owing to their biocompatibility and superior thermal conversion
efficiency. Magnetoferritin is a type of biomimetic superparamagnetic iron oxide nanoparticle in
a ferritin cage with good monodispersity, biocompatibility, and natural hydrophilicity. However,
the magnetic hyperthermic efficiency of this kind of nanoparticle is limited by the small size of the
mineral core as well as its low synthesis temperature. Here, we synthesized a novel magnetoferritin
particle by using a recombinant ferritin from the hyperthermophilic archaeon Pyrococcus furiosus as a
template with high iron atom loading of 9517 under a designated temperature of 90 ◦C. Compared
with the magnetoferritins synthesized at 45 and 65 ◦C, the one synthesized at 90 ◦C displays a larger
average magnetite and/or maghemite core size of 10.3 nm. This yields an increased saturation
magnetization of up to 49.6 emu g−1 and an enhanced specific absorption rate (SAR) of 805.3 W g−1

in an alternating magnetic field of 485.7 kHz and 49 kA m−1. The maximum intrinsic loss power
(ILP) value is 1.36 nHm2 kg−1. These results provide new insights into the biomimetic synthesis of
magnetoferritins with enhanced hyperthermic efficiency and demonstrate the potential application
of magnetoferritin in the magnetic hyperthermia of tumors.

Keywords: hyperthermophilic archaeon; iron oxide nanoparticle; magnetic hyperthermia; magnetoferritin;
biomineralization

1. Introduction

Magnetic nanoparticles (MNPs) have been applied widely in biomedical fields, in-
cluding diagnosis and therapy, for their unique superparamagnetism and safety within the
body [1]. In particular, MNPs are demonstrated to have an electromagnetic-thermal conver-
sion capacity under an alternating magnetic field (AMF) via hysteresis or Néel/Brownian
relaxation [2,3]. These properties ensure that MNPs have applications in magnetic hyper-
thermia therapy (MHT) for cancer treatment [4–6].

Ferritin is an iron-storage protein that is present in most living organisms and plays
a significant role in iron management and detoxification for cellular iron homeostasis [7].
The structure of ferritin is nanocage-like with an outer diameter of 12 nm and an inner
cavity diameter of 8 nm and is self-assembled by multiple polypeptide subunits (usu-
ally 24) [8,9]. In past decades, ferritin was used as an excellent biotemplate for the synthesis
of magnetic cores (Fe3O4, γ-Fe2O3) in a ferritin cage to form a composite, called magnetofer-
ritin. Magnetoferritin has been widely used in targeted drug delivery, magnetic resonance
imaging contrast agents, and MHT for its excellent biocompatibility, monodispersity, and
chemical/genetic modifiability [10–13]. However, its application is limited by the low
magnetic-to-thermal conversion efficiency of conventional magnetoferritins. For example,
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Balejcikova et al. investigated the hyperthermic efficiency of magnetoferritins with a diam-
eter of 4.2 nm under different AMF conditions (f = 190 kHz and H = 5.9–12.0 kA m−1) [14],
but the magnetic heating effect was too low to calculate the specific absorption rate (SAR).
That was explained by the small size and the low crystallinity of the polyphase core [14].
To improve the hyperthermic efficiency of magnetoferritin, we synthesized a human H
chain magnetoferritin (MHFn) with a highly crystalline magnetite and/or maghemite
core (4.8 nm) under strictly anaerobic conditions. The SAR value under the applied AMF
(f = 805.5 kHz, H = 19.5 kA m−1) was 51.3 W g−1, and the intrinsic loss power (ILP) was
0.17 nHm2 kg−1 [15]. Fantechi et al. reported a cobalt doping method during the synthesis
of MHFn to enhance the magnetic anisotropy and hyperthermic efficiency, but the SAR
under the AMF (12.4 kA m−1, 183 kHz) was only 2.81 W g−1 [13]. For superparamagnetic
nanoparticles with a diameter no greater than 20 nm, the heating efficiency remarkably
increased with the particle size [16]. However, it is difficult to synthesize a magnetite core
greater than 8 nm at a conventional synthesis temperature of 65 ◦C [17–19] because the
internal diameter of the ferritin cage (~8 nm) limits the loading of iron atoms to <5000.

In this work, we synthesized magnetoferritin within a ferritin cage (PfFn) from the
hyperthermophilic archaeon Pyrococcus furiosus by adding theoretical loading factors of
10,000 Fe/cage at temperatures of 45 ◦C, 65 ◦C, 90 ◦C, and 95 ◦C, named MPfFn-45, MPfFn-
65, MPfFn-90, and MPfFn-95, respectively. PfFn is considered to be the most thermostable
ferritin so far, with a melting temperature (Tm) of >120 ◦C or 116.8 ◦C measured under dif-
ferent conditions [20,21]. Compared with mammalian ferritins, such as recombinant human
H chain ferritin (Tm = 77 ◦C) [22], PfFn has a much higher thermostability as well as a dif-
ferent inner structure. In particular, the nucleation sites of PfFn contain fewer acidic amino
acid residues, leading to the different magnetic behavior of obtained magnetoferritin [23,24].
Various characterization techniques, including transmission electron microscopy (TEM),
dynamic light scattering (DLS), circular dichroism (CD) spectrum, and Fourier transform
infrared (FTIR) spectra were used to determine the particle size, morphology, structure, and
composition of magnetoferritin [25,26]. We found that the magnetoferritin can be obtained
at a maximum temperature of 90 ◦C to achieve a magnetite core size of 10.3 nm, which
exceeds the inner size of the ferritin cage (~8 nm). The core size, saturation magnetization,
and hyperthermic efficiency of MPfFn are apparently improved as the synthesis tempera-
ture increases from 45 ◦C to 90 ◦C. The SAR and ILP values of MPfFn-90 are significantly
higher than those of magnetoferritin and some MNPs with comparable sizes in previous
works. This work provides new insights into the heating efficiency of magnetoferritin and
the potential application in magnetic hyperthermia treatment of tumors and heat-triggered
drug release.

2. Results and Discussion
2.1. Preparation and Characterization of MPfFn

The negative stained TEM image shows that PfFn is composed of a homogeneous
spherical nanocage approximately 12 nm in diameter (Figure 1a). When theoretical
10,000 Fe2+ and H2O2 (mole ratio = 3:1) were simultaneously and stepwisely added into the
PfFn solution under strictly controlled anaerobic conditions (Figure 1b), the synthesized
MPfFn-45, MPfFn-65, and MPfFn-90 became a homogeneous black solution with very few
precipitates, but the majority of the MPfFn-95 particles precipitated after centrifugation
(Figure S1). As shown in the TEM images (Figure 1c), the iron oxide cores of the MPfFn-
45, MPfFn-65, and MPfFn-90 were well dispersed with mean diameters of 7.1 ± 1.2 nm,
7.6 ± 1.4 nm, and 10.3 ± 1.9 nm, respectively (Figure 1e). The high-resolution TEM images
and selected diffraction rings (Figure 1d) demonstrate that the inner cores of the three
samples are highly crystalline magnetite (Fe3O4) and/or maghemite (γ-Fe2O3). It is worth
noting that further characterizations to distinguish between the two minerals are not pro-
vided in this study. We think the magnetite/maghemite ratio of the magnetoferritin core
has an extremely slight effect on the hyperthermic efficiency because of the similarity in the
crystal structure and magnetic properties of the two minerals [27]. As seen in Figure S2,
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severe aggregation of MPfFn-95 occurred when the temperature was elevated to 95 ◦C.
Based on the yield of monodispersed magnetoferritin particles, we consider 90 ◦C an
appropriate temperature for synthesis of MPfFn particles in our method, and this synthesis
temperature is much higher than that in most previous works [17,19,23,28]. This can be
explained by the extreme living conditions of Pyrococcus furiosus, which grows between
70 ◦C and 103 ◦C and at pH values between 5 and 9, with optimal growth conditions
of 100 ◦C and pH 7, corresponding to the shortest doubling time of 37 min [29]. In our
previous study, the ferritin cage (PfFn) was demonstrated to maintain its iron incorporation
function after being heated at the temperature of 110 ◦C for 30 min [20]. However, the large
iron loading factors (10,000/protein cage) and the long reaction time (200 min) can change
the structure of the ferritin and partially weaken its shell stability [20,30] resulting in the
good dispersion of the MPfFn-90 but aggregation of the MPfFn-95.
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stained TEM images of PfFn (scale bar: 50 nm). (b) Schematic diagram of the biomimetic synthesis 

Figure 1. Structural characteristics of recombinant ferritin cages and MPfFn samples. (a) Negative-
stained TEM images of PfFn (scale bar: 50 nm). (b) Schematic diagram of the biomimetic synthesis of
MPfFn-90. (c) TEM images, (d) high-resolution TEM images, and (e) size distribution histograms of
MPfFn-45, MPfFn-65, and MPfFn-90. The inset in Figure 1d is the selected area’s electron diffraction
image, where the measured lattice planes (004), (222), and (022) indicate that the mineral structure is
magnetite (Fe3O4) and/or maghemite (γ-Fe2O3).
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To quantify the real loading factors of iron in the ferritin cage of the MPfFn-45,
MPfFn-65, and MPfFn-90, the ferritin cage and iron contents were determined by thermo-
gravimetric analysis (TGA) and the Ferrozine method [31], respectively. The ferritin cage
and Fe percentages of these particles are listed in Table S1 (see Supplementary Materials).
Accordingly, we calculated that the ferritin cages of MPfFn-45, MPfFn-65, and MPfFn-90
contain 5494, 6737, and 9517 Fe atoms, respectively.

As the average core size of MPfFn-90 exceeds the inner diameter of the PfFn cage
(~8 nm), it is crucial to ascertain whether the protein cage is perturbed for the reason that
the functional groups (i.e., -NH2, -COO-, -OH) on the protein cage can be used for chemical
modification for diagnostics and therapeutics [32,33]. The CD spectra revealed that the
secondary structure of MPfFn-45 was well maintained (Figure 2a), whereas that of MPfFn-65
changed slightly and that of MPfFn-90 changed significantly. This indicates that long-term
mineralization (200 min) at a high temperature influences the outer protein structure of
magnetoferritins [34]. However, the FTIR spectra (Figure 2b) show that the absorption
peaks appearing at 1654 cm−1 and 1544 cm−1 in the PfFn and MPfFn samples are specific
signals of the peptide bond and correspond to amides 1 and 2, respectively [35,36]. The
characteristic peak (1396 cm−1) of -COO stretching vibrations of amino acid side chains [37]
and the board characteristic band (~3290 cm−1) of -NH2 and -OH stretching vibrations [38]
were retained after biomineralization. These results demonstrate that the functional groups
are maintained well in all samples. Moreover, the DLS data show that the hydrodynamic
diameter (HD) of apoferritin PfFn (13.8 nm) slightly increases to 15.4, 16.0, and 25.0 nm
after biomineralization of MPfFn-45, MPfFn-65, and MPfFn-90, respectively (Figure 2c).
This demonstrates that all magnetoferritin particles are monodispersed due to the outer
ferritin cage. Accordingly, we speculated that the high thermostability and flexibility allows
the PfFn cage to remain intact while becoming somewhat larger during mineralization at
90 ◦C, resulting in a larger core size.
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(c) DLS analysis of PfFn, MPfFn-45, MPfFn-65, and MPfFn-90 samples with hydrodynamic diameters
of 13.8, 15.4, 16.0, and 25.0 nm, respectively.



Int. J. Mol. Sci. 2022, 23, 4012 5 of 15

2.2. Magnetic Hyperthermia of Magnetoferritin

To investigate the magnetically induced heating capability of the MPfFn samples, we
measured the hyperthermia performance by recording the temperature kinetics of their
colloidal dispersions under exposure to a designated AMF (f = 485.7 kHz, H = 49 kA m−1)
(Figure 3a). Samples were kept at the same Fe concentration (0.5 mg mL−1) for direct
comparison. The initial sample temperature of the experiment was kept at about 22 ◦C to
minimize the influence of the coil temperature on the sample. MPfFn-90 demonstrated an
excellent hyperthermia effect, with a temperature rise of about 16.8 ◦C for 5 min (Figure 3b).
In contrast, the temperatures of MPfFn-45 and MPfFn-65 only increased by approximately
3.3 and 4.7 ◦C, respectively. As shown in Figure 3c, the SAR value of MPfFn-90 was as high
as 805.3 W g−1, 5.6 times higher than that of MPfFn-65 (143.6 W g−1) and 4.7 times higher
than that of MPfFn-65 (170.4 W g−1). Furthermore, the iron concentration-dependent
heating effect of MPfFn-90 was also investigated. As shown in Figure 3d, it was found that
∆T of MPfFn-90 significantly increased with the increase in iron concentration; it reached
16.9 ◦C, 23.5 ◦C, 43 ◦C, 55.9 ◦C, and 66.5 ◦C in 300 s for concentrations of 0.5, 1, 2, 3, and
4 mg mL−1, respectively.
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Figure 3. Hyperthermic performance of MPfFn under AMF. (a) Schematic illustration of the magnetic
hyperthermia test. (b) Time-dependent temperature change curves of MPfFn-45, MPfFn-65, and
MPfFn-90 under an AMF (= 485.7 kHz, H = 49 kA m−1). (c) Comparison of SAR values. (d) Time-
dependent temperature change curves with different iron concentrations.

The ∆T under an AMF with f = 485.65 kHz and varying intensity is shown in Figure 4a.
As expected, higher SAR values were recorded by increasing the applied H and followed
a square trend (Figure 4b). Further, ∆T under H = 49 kA m−1 with varying f is shown in
Figure 4c. A linear trend was also observed whenever the SAR values were plotted as a
function of the applied f at a fixed H (Figure 4d). The behavior of SAR versus H and f is in
agreement with that observed in previous studies [39,40]. To compare the heating efficiency
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of our samples with that of MNPs reported in previous studies, the ILP (normalized SAR)
was calculated according to Equation (1).

ILP = SAR/(fH2) (1)

Table 1 compares the ILP-related parameters of our results with other works. It
demonstrates that the maximum ILP value of MPfFn-90 (1.36 nH m2 kg−1) is not only much
higher than that of reported magnetoferritins [13,15,24], but also higher than some reported
MNPs with comparable core sizes, indicating that MPfFn-90 has better hyperthermic
efficiency and thus shows great potential in magnetic hyperthermia applications.
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Table 1. Comparison of TEM size, magnetic field intensity, frequency, and SAR values of the MPfFn
with other MNPs.

Sample TEM Size
(nm)

H
(kA m−1)

f
(kHz)

SAR
(W g−1)

ILP
(nHm2 kg−1) Reference

HFt5 6.8 12.4 183 2.81 0.1 [13]
PfFt10 12.4 183 4.9 0.17 [24]
MHFn 4.8 19.5 805.5 51.3 0.17 [15]
AFF-3 10 13.9 175.2 48.6 1.4 [41]

MMNPs 10 40.56 300 127.7 0.26 [42]
Fe3O4 6.5 4 165.3 10.3 3.8 [43]
MNPs 13 13.8 114 14.1 0.65 [44]

Pro-Glu-MNPs 4.5 42.3 300 69 0.2 [45]
S4-Zn0.53 Fe2.47O4@PEG 20 24 765 380 0.86 [46]

MPfFn-45 7.1 49 485.7 143.6 0.12 This work
MPfFn-65 7.6 49 485.7 170.4 0.15 This work
MPfFn-90 10.3 49 485.7 805.3 0.70 This work
MPfFn-90 10.3 39 485.7 535.4 0.72 This work
MPfFn-90 10.3 29 485.7 376.8 0.92 This work
MPfFn-90 10.3 19 485.7 239.2 1.36 This work

2.3. Magnetic Properties of Magnetoferritin Nanoparticles

To better understand the hyperthermic mechanisms of MPfFn samples, the magnetic
properties of the samples were investigated, and the results are shown in Figure 5 and
Table 2. The hysteresis loops measured at 300 K display zero coercivity (Hc), confirming
that all samples are typical superparamagnetic nanoparticles. The saturation magnetization
(Ms) of MPfFn-90 (42.3 emu g−1) is much higher than that of MPfFn-45 (29.4 emu g−1)
and MPfFn-65 (32.4 emu g−1). Conversely, at a low temperature (5 K) all samples display
open hysteretic loops. The Hc values of MPfFn samples are in accordance with that of
magnetite or maghemite within 200–300 Oe [47]. The MPfFn-90 also shows the highest
Ms value among these samples at 5 K. A high value of Ms can make MNPs convert
more electromagnetic energy into heat energy under an applied AMF [43], which can
partially explain the higher SAR value of MPfFn-90. The zero-field-cooled (ZFC) and
field-cooled (FC) magnetization curves in a field of 1.5 mT from 5 K to 300 K are shown in
Figure 5c. The blocking temperature (TB) of MPfFn-90 (261.5 K) is much higher than that of
MPfFn-45 (82.9 K) and MPfFn-65 (90.1 K), indicating that MPfFn-90 hasa larger core size.
This is in good agreement with the TEM results. Based on the Wohlfarth–Cisowski test
for randomly oriented noninteracting single-domain particles, the isothermal remanent
magnetization (IRM) acquisition curve and direct current demagnetization (DCD) curve
intersect at R = 0.5 [48]. In this work, the R values (Figure 5d) of MPfFn-45, MPfFn-65,
and MPfFn-90 are 0.38, 0.36, and 0.33, respectively. This decrease in R value suggests
more magnetostatic interactions with the larger core of MPfFn-90. The magnetic properties
of MPfFn-95 were also studied, and the results are shown in Figure S3. Compared with
MPfFn-90, MPfFn-95 exhibits a higher Ms value at both 5 K and 300 K, which might be due
to the higher synthesis temperature. However, no TB value is observed, indicating a larger
core caused by particle aggregation.
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Table 2. Comparison of magnetic parameters for MPfFn-45, MPfFn-65, and MPfFn-90.

Arrhenius Law

Samples Core Size
(nm)

HD
(nm)

Ms (300 K)
(emu g−1)

Ms (5 K)
(emu g−1)

Hc (5 K)
(Oe)

TB
(K) R EB/kB

(K)
τ0
(s)

MPfFn-45 7.1 15.4 29.4 38.7 256.9 82.9 0.38 3102.5 8.6 × 10−22

MPfFn-65 7.6 16.0 32.4 41.0 273.7 90.1 0.36 3461.0 9.5 × 10−21

MPfFn-90 10.3 25.0 42.3 49.6 240.1 261.5 0.33 11,913.0 3.2 × 10−24

Magnetic anisotropy is also a significant parameter that influences the hyperthermic
efficiency of MNPs [49]. With the determined TB value, the anisotropy constant KA of
MNPs with no magnetic interactions can be calculated by [50].

KA = ln(
t0

τ0
)

kBTB

V
(2)

where t0 is the timescale of the measurement (100 s), τ0 is the microscopic jump time (10−9 s),
kB is the Boltzmann constant, and V is the volume of MNPs, which can be estimated
using the average particle diameter determined via TEM measurements (spherical shape
approximation). The KA values obtained for MPfFn-45, MPfFn-65, and MPfFn-90 are
1.55 × 105, 1.37 × 105, and 1.60 × 105 J m −3, respectively. However, we noticed that the
magnetic interactions among the MPfFn samples are nonnegligible, and such interactions
influence the real value of TB [51]. Therefore, the AC susceptibility at temperatures from
5 K to 300 K under an AC field of 1 to 1000 Hz at 4 Oe was studied. The in-phase (χ′) and
out-of-phase (χ′′) susceptibility of the three samples at different excitation frequencies are
displayed in Figure 6 According to the Néel model, the temperature dependence of the
relaxation of the magnetization of noninteracting superparamagnetic systems follows an
Arrhenius law [52].

τ(T) = τ0 exp(EB/kBT) (3)

where EB is the anisotropy energy barrier for magnetization reversal, EB = Keff V, and Keff
is the effective anisotropy constant. τ0 is the attempt time. The plot of ln (τ) = ln (1/2πν)
versus of 1/TMax (the blocking temperatures obtained from the χ′′ maxima for different
observation times) is a straight line (Figure 7a), consistent with an Arrhenius law. The
EB and τ0 values are listed in Table 2, and the effective anisotropy values Keff deduced
from EB are approximately 2.28 × 105 J m −3, 2.08 × 105 J m −3, and 2.87 × 105 J m −3,
respectively (Figure 7b). It is clear that the values of Keff for all MPfFn samples are
higher than that for bulk magnetite (1.35 × 104 J m −3) [16,51]. It is worth noting that
the anisotropy constant includes the contributions from crystalline, shape, and surface
anisotropy [17]. The magnetic nanoparticles (6–11 nm) showed decreasing Keff with size
in previous work [17,51], and the variation is mainly attributable to changes in their
size. In contrast, the Keff in our work decreased when the size of MPfFn increased from
7.1 to 7.6 nm but increased drastically when the size increased from 7.6 to 10.3 nm. The
shape anisotropy can be ignored because of the similar shape of magnetoferritins. Besides
the surface anisotropy affected by the size, crystalline anisotropy is also an important factor
that influences the Keff of magnetoferritins. The elevated temperature of 90 ◦C largely
increased the crystalline anisotropy, resulting in a higher Keff.
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3. Materials and Methods
3.1. Materials

Ammonium ferrous sulfate ((NH4)2Fe(SO4)2·6H2O) was purchased from Aladdin
(Shanghai, China). Sodium chloride, Tris, and sodium hydroxide were obtained from
Sangon Biotech (Shanghai, China). All the water used in experiments was supplied by
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a Milli-Q system (Merck KGaA, Darmstadt, Germany). 3.2. Expression and Purification
of PfFn

Recombinant PfFn was prepared as previously described [20]. Briefly, the expres-
sion vector pET-22b containing the PfFn gene was transformed into Escherichia coli BL21
(DE3). The E. coli cells were cultured at 37 ◦C to an OD600 of 0.6 in ampicillin-containing
liquid Luria–Bertani (LB) medium and induced expression with 0.5 mM isopropyl-b-d-
thiogalactoside (IPTG) overnight at 30 ◦C. The cells were harvested by centrifugation at
8000 rpm for 8 min, and the pellet was washed once and resuspended in Tris–HCl buffer
(0.025 M Tris, 0.1 M NaCl, pH 8.5). The cells were then incubated in lysis buffer (1 mM
EDTA, 50 mg mL−1 lysozyme, 0.025 M Tris, 0.1 M NaCl, pH 8.5) for 2 h at 37 ◦C. The
purification process of PfFn was conducted by heating the lysate at 100 ◦C for 25 min
with constant stirring. The purified proteins were obtained by collecting the supernatant
after centrifugation at 20,000 g for 40 min. Finally, the purified PfFn was desalted with
0.1 M NaCl buffer for further synthesis of MPfFn particles. Protein concentrations were
determined by a Pierce™ BCA protein assay kit.

3.2. Synthesis of MPfFn under Different Temperatures

Four batches of prepared solution of purified PfFn (100 mL, 1 mg mL−1) in 0.1 M
NaCl in reaction vessels were degassed and transferred to an anaerobic chamber. A total of
50 mM (NH4)2Fe(SO4)2·6H2O as iron source and 16.67 mM H2O2 as oxidant were dissolved
in degassed water (200 mL) respectively. The Fe3O4 formation reaction can be expressed as,

3Fe2+ + H2O2 + 2H2O→Fe3O4 + 6H+ (4)

For the synthesis of MPfFn-45 with theoretical loading factors of 10,000 Fe/cage, 41.46 mL
of (NH4)2Fe(SO4)2·6H2O solution and 41.46 mL of H2O2 solution were simultaneously
added into the prepared PfFn solution at a rate of 50 Fe/(protein min) using a dosing device
(800 Dosino). The reaction temperature was maintained at 45 ◦C, and the pH was stabilized
at 8.5 by 100 mM NaOH solution with a pH stat titrator. After 200 min of titration, the
reaction was finished. 1 mL of 0.3 M sodium citrate was added to chelate any free iron
species. Finally, the MPfFn-45 solution was obtained after centrifugation (10,000× g) for
10 min. Similarly, MPfFfn-65, MPfFn-90, and MPfFn-95 were synthesized with the same
procedure under 65 ◦C, 90 ◦C, and 95 ◦C, respectively.

3.3. Characterization of MPfFn Particles

The morphology and crystallography of MPfFn were analyzed by TEM (JEOL JEM-2100,
Tokyo, Japan) with an accelerating voltage of 200 kV. The size distribution of the mag-
netoferritins was measured over 300 particles, and crystallographic orientation of the core
was examined by high-resolution TEM (HR-TEM). For negative staining TEM observa-
tion, apoferritin and magnetoferritin samples (3 µL, 0.2 mg ml−1) were embedded in a
Plasma Cleaner HPDC32G treated copper grid and stained with 1% uranyl acetate for
1 min then imaged with a JEM-1400 100-kV TEM (JEOL, Tokyo, Japan). The hydrodynamic
sizes of PfFn and MPfFn were determined by DLS (DynaPro NanoStar, Wyatt Technology
Corporation, Santa Barbara, CA, USA) at 25 ◦C with a scattering angle of 90◦. TGA was
used to obtain the proportion of ferritin cage of entire magnetoferritin nanoparticles by
using a thermogravimetric analyzer (TGA/DSC 3 STARe Mettler Toledo). Samples were
heated from 30 ◦C to 800 ◦C at 5 ◦C min−1 under N2 flow at 50 mL min−1. N2 flow is
used to prevent the further oxidation of Fe3O4. The iron concentration of the solutions was
determined by a ferrozine method [28]. FTIR spectroscopy (Thermo Fisher Nicolet 6700
spectrometer) characterization was performed using potassium bromide, and the FTIR
spectra of the prepared samples were recorded in the range from 4000 to 400 cm−1.

3.4. Magnetic Measurements of MPfFn

The desalted MPfFn nanoparticles were freeze dried, and magnetic measurements
of the dried samples were conducted with a magnetic property measurement system
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(MPMS-5XL, Quantum Design Inc., San Diego, CA, USA). The IRM acquisition and DCD
curves were measured at 5 K within 0–1 T to calculate the magnetostatic interactions. The
ZFC and FC curves were measured in a 1.5 mT field from 5 K to 300 K, and the blocking
temperature (TB) was determined from the maximum of the ZFC curves. Hysteresis loops
were measured in the field range of ±3 T at 5 K and 300 K. The AC susceptibility was
measured at frequencies of 1, 10, 100, and 1000 Hz within a temperature range of 5 K to
300 K in a weak field of 0.4 mT.

3.5. Hyperthermic Efficiency Analyses

The hyperthermic efficiency of MPfFn samples was measured with a commercial
system D5 series device (nB nanoScale Biomagnetics, Zaragoza, Spain). Each MPfFn
aqueous sample (1 mL) with a Fe concentration of 0.5 mg mL−1 was placed in the middle of
coil in a 2 mL glass chromatography vial. The temperatures of all samples during magnetic
treatment were recorded by an optic-fiber temperature probe. The initial temperature of
each sample was controlled and stabilized to 22 ◦C. The hyperthermic efficiency, expressed
in terms of SAR, was calculated.

SAR =
CV

m(Fe)
dT
dt

, (5)

where C is the volumetric specific heat capacity of water (4.185 J g−1 K−1), V is the sample
volume (1 mL), and m (Fe) is the total mass of Fe in the sample. dT/dt is the initial slope
of the ∆T curve as a function of time, which was determined by fitting the curves of field
application time vs. temperature with the Box–Lucas equation, T(t) = A(1−e−Bt) [15]. The
ILP was calculated using ILP = SAR/(f·H2).

4. Conclusions

Four kinds of magnetoferritins were fabricated by using PfFn as a template under
different temperatures (45 ◦C, 65 ◦C, 90 ◦C, and 95 ◦C), named MPfFn-45, MPfFn-65,
MPfFn-90, and MPfFn-95, respectively. The TEM images show that 90 ◦C is the highest
temperature for synthesis of monodispersed magnetoferritin particles through our method.
The core size, magnetic properties, and magnetic hyperthermic efficiency of magnetoferritin
show an increasing trend with the synthesis temperature increase. The MPfFn-90 shows
a highest SAR value of 805.3 W g−1 with a maximum ILP value of 1.36 nH m2 kg−1;
the values are significantly higher than those of other magnetoferritins and some MNPs
with the same size range. The MPfFn-90 with enhanced hyperthermic efficiency might
show good application prospects in magnetic hyperthermia treatment and heat-triggered
drug release.
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